Electroproduction of $\Lambda(1405)$

H. Lu¹ R. Schumacher¹ B. Raue² M. Gabrielyan²

¹Carnegie Mellon University

²Florida International University

The 8th International Workshop on the Physics of Excited Nucleons, Newport News, VA

(日) (日) (日) (日) (日) (日) (日)

- 2 Data Processing
- 3 Acceptance Correction and Fitting

▲□▶▲□▶▲□▶▲□▶ □ のQで

4 Summary and References

- Motivation

Reaction

Λ (1405) From PDG

•
$$e^- p
ightarrow e^- K^+ \Lambda(1405)$$

$$I(J^{P}) = 0(\frac{1}{2}^{-})$$

- Mass 1406 MeV, full width 50 MeV
- Decay 100% Σπ
- Three charge modes: $\Sigma^+\pi^-$, $\Sigma^-\pi^+$, $\Sigma^0\pi^0$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Motivation

L Theoretic Work

Theoretic Work

Fig. 1. Trajectories of the poles in the scattering amplitudes obtained by changing the SU(3) breaking parameter x gradually. At the SU(3) symmetric limit (x = 0), only two poles appear, one is for the singlet and the other for the octets. The symbols correspond to the step size $\delta x = 0.1$.

Two poles are at 1390+66i and 1426+16i [1].

SQC

ъ

・ロット (雪) (日) (日)

- Motivation

L Theoretic Work

Different Coupling

Fig. 4. The $\pi \Sigma$ mass distributions with I = 0 constructed from the $\overline{K}N \to \pi \Sigma$ and $\pi \Sigma \to \pi \Sigma$ amplitudes. The solid and dashed lines denote $|T_{\overline{K}N \to \pi \Sigma}|^2 q_{\pi}$ and $|T_{\pi \Sigma \to \pi \Sigma}|^2 q_{\pi}$, respectively. Units are arbitrary.

Two poles couple differently with $\pi\Sigma$ and $\bar{K}N$ [1].

Motivation

- Photoproduction

Lineshapes of different charge channels [2].

Data Processing

L Data Set

- E1F data set from Hall B in JLab
- Electron beam with 5.5 GeV
- Weak torus field (I=2250 A) for better acceptance

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

■ K⁺ skim

Data Processing

Event Selection

Event Selection

Data Processing

Event Selection

Q2 Distribution

Λ (1520) as a reference

Data Processing

Simulation and Background

Simulation and Mix

Simulation

Non-resonance background

$$e^-
ho
ightarrow e^- K^+ \Sigma^+ \pi^-$$

•
$$K^*$$
 production
 $e^- p \rightarrow e^- K^{*0} \Sigma^+ \rightarrow e^- K^+ \pi^- \Sigma^+$

Mix of two channels

The ratio of the two channels are determined by matching simulation with data

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Data Processing

Simulation and Background

Comparison of Simulation

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Data Processing

Simulation and Background

Mixture of Two Channels

- Invariant mass square of $K^+\pi^-$
- Black:E1F data points
- Red:overall fit
- Blue:component of non-resonance production
- Green:component of K* production
- Ratio:0.137

Data Processing

 $-\Sigma^{*0}$ Contamination

Σ^{*0} Contamination

- **\Sigma^{*0}** can decay into $\Sigma^+\pi^-$ too
- Extract yield from the $\Lambda\pi$ decay mode
- Scale the yield into the $\Sigma^+\pi^-$ mode
- Both $\Sigma\pi$ and $\Lambda\pi$ modes have the final particles $e^{-}K^{+}p\pi^{-}$

(日) (日) (日) (日) (日) (日) (日)

Conclusion is that little contamination from Σ^{*0}

Acceptance Correction and Fitting

Acceptance Correction

3D Acceptance Correction

Acceptance Calculation

- Non-resonance channel K⁺Σ⁺π⁻ is used to calculate acceptance
- Raw and simulated date are binned in Q^2 (1.0 3.0 GeV^2), W (1.5 3.5 GeV) and $cos(\Theta_K)$ in center-of-mass frame
- Data in low-acceptance areas are dropped (16 out of 9K events)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Acceptance Correction and Fitting

Acceptance Correction

Lineshape at High Q^2

Acceptance-corrected yield in Q^2 from 1.5 to 3.0 GeV²

(日)

Acceptance Correction and Fitting

Acceptance Correction

Lineshape at Low Q^2

Acceptance-corrected yield in Q^2 from 1.0 to 1.5 GeV²

(日)

Acceptance Correction and Fitting

Acceptance Correction

- Data is acceptance corrected
- Background is interpreted as mixture of two channels
- Lineshape in A (1405) region looks different from one resonance

(日) (日) (日) (日) (日) (日) (日)

Lineshape looks dependent on Q²

Acceptance Correction and Fitting

Fit the Lineshape

Two Pole Fitting

Model:

 $\begin{array}{c} 1.426 \pm \textit{i}0.016 \\ 1.390 \pm \textit{i}0.066 \end{array}$

- Black: acceptance-corrected data
- Yellow: background from mixture of two simulated channels
- Green: simulated ∧ (1520)
- Blue: two relativistic
 Breit-Wigner functions
- Fitting results: mean: 1.422, 1.393 width:0.016, 0.10

- Acceptance Correction and Fitting
 - Sweeping the Q² Region

- Left top: *Q*² from 1.0 3.0 *GeV*²
- Right top: *Q*² from 1.4 3.0 *GeV*²
- Left bottom: Q² from 1.8 3.0 GeV²
- Right bottom: Q^2 from 2.2 3.0 GeV²

Acceptance Correction and Fitting

└- Other Choices

Comparison with other choices

- Left top: fitting with two relativistic Breit-Wigner functions
- Right top: fitting with simulation with PDG values
- Bottom: fitting with one relativistic Breit-Wigner function

Acceptance Correction and Fitting

L Other Choices

Comparison of different fits						
Low limit of Q ²	High limit of Q ²	two-pole fit	PDG value	one-pole fit		
1.4	2.8	1.40	3.83	1.85		
1.36	2.76	1.29	4.04	1.73		
1.32	2.72	1.11	4.24	1.61		
1.28	2.68	1.07	4.43	1.60		
1.24	2.64	1.02	4.61	1.53		
1.2	2.6	1.04	4.62	1.48		
1.16	2.56	1.19	4.76	1.67		
1.12	2.52	1.18	4.94	1.67		
1.08	2.48	1.35	5.22	1.72		
1.04	2.44	1.37	5.23	1.75		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Acceptance Correction and Fitting

L Other Choices

Reduced χ^2 of Another Loop

Comparison of different fits

Low limit of Q^2	High limit of Q ²	two-pole fit	PDG value	one-pole fit
1.0	3.0	1.37	5.46	1.74
1.2	3.0	1.14	4.86	1.57
1.4	3.0	1.54	4.01	1.95
1.5	3.0	1.36	3.39	1.73
1.6	3.0	1.42	3.11	1.76
1.8	3.0	1.29	2.50	1.86
2.0	3.0	1.45	2.22	1.83
2.2	3.0	1.42	1.93	1.73

Acceptance Correction and Fitting

Amplitude Fitting

Amplitudes are in relativistice Briet-Wigner form [3] and an overall relative phase is fitted:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$BW(m)_{1420} = \frac{\sqrt{mm_{1420}}\Gamma_{1420}(q)}{m^2 - m_{1420}^2 - im_{1420}\Gamma_{1420}(q)}$$
$$BW(m)_{1390} = Ae^{i\phi} \frac{\sqrt{mm_{1390}}\Gamma_{1390}(q)}{m^2 - m_{1390}^2 - im_{1390}\Gamma_{1390}(q)}$$

Acceptance Correction and Fitting

Amplitude Fitting

Fitting

 Q^2 : 1.8 - 3.0 GeV^2 phase:24.57 $^\circ$ \pm 6.50 $^\circ$

 Q^2 : 2.2 - 3.0 GeV² phase:27.41° ± 14.19°

э.

Summary and References

- Lineshape of ∧ (1405) is not consistent with PDG values
- Lineshape of electroproduction varies with Q²
- Two-pole physics nature of Λ (1405) is the best fit with data

(日) (日) (日) (日) (日) (日) (日)

Summary and References

D. Jido et al

Nucl. Phys. A 725, 181-200 (2000)

Kei Moriya PhD Thesis

http://www.jlab.org/Hall-B/general/thesis/
Moriya_thesis.pdf (2010)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

R. Schumacher and M. Sargsian Phys. Rev. C 83, 025207 (2011) http://arxiv.org/pdf/1012.2126 (2011)

Event Selection

Hyperon Spectrum

Λ (1520) as a reference

- Backup

 $-\Sigma^{*0}$ Contamination

Scale Factor

$\Lambda\pi \bmod$

- Σ^{*0} decays into $\Lambda\pi$ with 87%
- A decays into $p\pi^-$ with 64%
- Total branching ratio is 56%

$\Sigma\pi \bmod$

- Σ^{*0} decays into $\Sigma\pi$ with 11.7%
- $\Sigma^+\pi^-$ takes half of it
- Σ^+ decays into $p\pi^0$ with 51.6%
- Overall braching ratio is 3%
- Scale Factor is 3/56 = 0.054

Backup

 \sum^{*0} Contamination

Select Λ to clean the data set

 $L_{\Sigma^{*0}}$ Contamination

Exclusive Channel

Select exclusive $e^{-}K^{+}\Sigma^{*0}$ channel

Backup

 $-\Sigma^{*0}$ Contamination

Yield

・ロト・個ト・モト・モト ヨー のへで

 $L_{\Sigma^{*0}}$ Contamination

Example of Fits to Extract Yield

Example of fits at the two lowest Q^2 region

Sweeping the Q² Region

Fitting Results of Mean and Width of 1420 Dependence on Q^2

・ロト・西ト・西ト・西ト・日・ シック

Sweeping the Q² Region

Fitting Results of Mean and Width of 1390 Dependence on Q^2

・ロト・西ト・西ト・西・ うくぐ

Sweeping the Q² Region

Fitting Acceptance-Corrected Yield of 1420 and 1390 Dependence on Q^2

くして 前 ふかく ボット 間 うくの