Outline

- Google map
- What is GIS?
- What we want to with GIS for SPring-8
- MapServer
- Two systems using MapServer
 - Equipment location manager
 - Real time alarm display
- Conclusion
Outline

- Google map
- **What is GIS?**
- What we want to with GIS for SPring-8
- MapServer
- Two systems using MapServer
 - Equipment location manager
 - Real time alarm display
- Conclusion
Outline

- Google map
- What is GIS?
- What we want to with GIS for SPring-8
- MapServer
- Two systems using MapServer
 - Equipment location manager
 - Real time alarm display
- Conclusion
Outline

- Google map
- What is GIS?
- What we want to with GIS for SPring-8
- MapServer
- Two systems using MapServer
 - Equipment location manager
 - Real time alarm display
- Conclusion
Outline

- Google map
- What is GIS?
- What we want to with GIS for SPring-8
- MapServer
- Two systems using MapServer
 - Equipment location manager
 - Real time alarm display
- Conclusion
Outline

- Google map
- What is GIS?
- What we want to with GIS for SPring-8
- MapServer
- Two systems using MapServer
 - Equipment location manager
 - Real time alarm display
- Conclusion
Outline

- Google map
- What is GIS?
- What we want to with GIS for SPring-8
- MapServer
- Two systems using MapServer
 - Equipment location manager
 - Real time alarm display
- Conclusion
Outline

- Google map
- What is GIS?
- What we want to with GIS for SPring-8
- MapServer
- Two systems using MapServer
 - Equipment location manager
 - Real time alarm display
- Conclusion
QUESTION
QUESTION
Do you like Google map?
I like it.
I wish I could have Google map for SPring-8.
SPring-8

- 4+1 accelerator complex
 - Injector linac
 - Booster synchrotron
 - 8 GeV storage ring
 - 1.5 GeV New Subaru
 - SCSS prototype accelerator
- 266 VME cpus
- 87 PLC's
- Distributed in 1km x 1km area.
4+1 accelerator complex
- Injector linac
- Booster synchrotron
- 8GeV storage ring
- 1.5GeV New Subaru
- SCSS prototype accelerator
- 266 VME cpus
- 87 PLC's
- Distributed in 1kmx1km area.
SPring-8

- 4+1 accelerator complex
 - Injector linac
 - Booster synchrotron
 - 8GeV storage ring
 - 1.5GeV New Subaru
 - SCSS prototype accelerator
- 266 VME cpus
- 87 PLC's
- Distributed in 1kmx1km area.
SPring-8

- 4+1 accelerator complex
 - Injector linac
 - Booster synchrotron
 - 8 GeV storage ring
 - 1.5 GeV New Subaru
 - SCSS prototype accelerator
- 266 VME cpus
- 87 PLC's
- Distributed in 1 km x 1 km area.
SPring-8

- 4+1 accelerator complex
 - Injector linac
 - Booster synchrotron
 - 8GeV storage ring
 - 1.5GeV New Subaru
 - SCSS prototype accelerator
- 266 VME cpus
- 87 PLC's
- Distributed in 1km x 1km area.
SPring-8

- 4+1 accelerator complex
 - Injector linac
 - Booster synchrotron
 - 8GeV storage ring
 - 1.5GeV New Subaru
 +
 - SCSS prototype accelerator

- 266 VME cpus
- 87 PLC's
- Distributed in 1kmx1km area.
SPring-8

- 4+1 accelerator complex
 - Injector linac
 - Booster synchrotron
 - 8GeV storage ring
 - 1.5GeV New Subaru
 +
 - SCSS prototype accelerator
- 266 VME cpus
- 87 PLC's
- Distributed in 1km x 1km area.
SPring-8

- 4+1 accelerator complex
 - Injector linac
 - Booster synchrotron
 - 8GeV storage ring
 - 1.5GeV New Subaru
 +
 - SCSS prototype accelerator
- 266 VME cpus
- 87 PLC's
- Distributed in 1km×1km area.
SPring-8

- **4+1 accelerator complex**
 - Injector linac
 - Booster synchrotron
 - 8GeV storage ring
 - 1.5GeV New Subaru
 - SCSS prototype accelerator
- **266 VME cpus**
- **87 PLC's**
- **Distributed in 1kmx1km area.**
We build our own map system
Evaluating the Potential of Commercial GIS for Accelerator Configuration Management

T. Larrieu, Y. Roblin, K. White, R. Slominski
Jefferson Lab, USA
What is GIS?

- *from Wikipedia*

- Geographic Information System (GIS) is a system for creating, storing, analyzing and managing spatial data and associated attributes.

- In the strictest sense, it is a computer system capable of integrating, storing, editing, analyzing, sharing, and displaying geographically-referenced information.

- In a more generic sense, GIS is a tool that allows users to create interactive queries (user created searches), analyze the spatial information, and edit data.
What is GIS?

- From Wikipedia

- Geographic Information System (GIS) is a system for creating, storing, analyzing and managing spatial data and associated attributes.

- In the strictest sense, it is a computer system capable of integrating, storing, editing, analyzing, sharing, and displaying geographically-referenced information.

- In a more generic sense, GIS is a tool that allows users to create interactive queries (user created searches), analyze the spatial information, and edit data.
What is GIS?

- *from Wikipedia*

- Geographic Information System (GIS) is a system for creating, storing, analyzing and managing spatial data and associated attributes.

- In the strictest sense, it is a computer system capable of integrating, storing, editing, analyzing, sharing, and displaying geographically-referenced information.

- In a more generic sense, GIS is a tool that allows users to create interactive queries (user created searches), analyze the spatial information, and edit data.
What is GIS?

- **from Wikipedia**
- Geographic Information System (GIS) is a system for creating, storing, analyzing and managing spatial data and associated attributes.
- In the strictest sense, it is a computer system capable of integrating, storing, editing, analyzing, sharing, and displaying geographically-referenced information.
- In a more generic sense, GIS is a tool that allows users to create interactive queries (user created searches), analyze the spatial information, and edit data.
What we want with GIS for SPring-8

- Locate equipment distributed in the SPring-8 site.
 - Where is the X?
 - Information integration.
 - Where is the drawing of X?
 - Where is the maintenance history of X?
 - ...
 - Map based is more straightforward than text based system
 - Share information from everywhere on the net.
- Real-time status display.
What we want with GIS for SPring-8

- Locate equipment distributed in the SPring-8 site.
 - Where is the X?
- Information integration.
 - Where is the drawing of X?
 - Where is the maintenance history of X?
 - ...
 - Map based is more straightforward than text based system
- Share information from everywhere on the net.
- Real-time status display.
An episode.

- A VME cpu on beam-line 40XU got trouble.
An episode.

- A VME cpu on beam-line 40XU got trouble.
- “Go to the 40XU and reset it.”
An episode.

- A VME cpu on beam-line 40XU got trouble.
- "Go to the 40XU and reset it."
- The operator reset another VME CPU on 40B2 which was close to 40XU.
An episode.

- A VME cpu on beam-line 40XU got trouble.
- “Go to the 40XU and reset it.”
- The operator reset another VME CPU on 40B2 which was close to 40XU.
- VME map would have prevented such a trouble.
What we want with GIS for SPring-8

- Locate equipment distributed in the SPring-8 site.
 - Where is the X?
- Information integration.
 - Where is the drawing of X?
 - Where is the maintenance history of X?
 - ...
- Map system is more straightforward to understand than text based system.
 - We learn from Google map
- Share information from everywhere on the net.
- Real-time status display.
What we want with GIS for SPring-8

- Locate equipment distributed in the SPring-8 site.
 - Where is the X?
- Information integration.
 - Where is the drawing of X?
 - Where is the maintenance history of X?
 - ...
- Map based is more straightforward than text based system
- Share information from everywhere on the net.
- Real-time status display.
What we want with GIS for SPring-8

- Locate equipment distributed in the SPring-8 site.
 - Where is the X?
- Information integration.
 - Where is the drawing of X?
 - Where is the maintenance history of X?
 - ... Map based is more straightforward than text based system
- Share information from everywhere on the net.
- Real-time status display.
 - Google map does not have
What we want with GIS for SPring-8:

- **Technical requirement.**
 - **Google map like**
 - Web based.
 - No client application installation.
 - Access from everywhere.
 - zooming, panning, multi-layer
 - **Open source**
 - **Easy to manage**
 - Installation
 - Modification
 - Configuration
 - Data entry
What we want with GIS for SPring-8.

Technical requirement.

- Google map like
 - Web based.
 - No client application installation.
 - Access from everywhere.
 - zooming, panning, multi-layer

- Open source

- Easy to manage
 - Installation
 - Modification
 - Configuration
 - Data entry
What we want with GIS for SPring-8.
Technical requirement.

- **Google map like**
 - Web based.
 - No client application installation.
 - Access from everywhere.
 - zooming, panning, multi-layer

- **Open source**

- **Easy to manage**
 - Installation
 - Modification
 - Configuration
 - Data entry
What we want with GIS for SPring-8.

Technical requirement.

- **Google map like**
 - Web based.
 - No client application installation.
 - Access from everywhere.
 - zooming, panning, multi-layer

- **Open source**

- **Easy to manage**
 - Installation
 - Modification
 - Configuration
 - Data entry
What we want with GIS for SPring-8:

Technical requirement:

- **Google map like**
 - Web based.
 - No client application installation.
 - Access from everywhere.
 - zooming, panning, multi-layer

- **Open source**

- **Easy to manage**
 - Installation
 - Modification
 - Configuration
 - Data entry
What we want with GIS for SPring-8.

Technical requirement.

- **Google map like**
 - Web based.
 - No client application installation.
 - Access from everywhere.
 - zooming, panning, multi-layer

- **Open source**

- **Easy to manage**
 - Installation
 - Modification
 - Configuration
 - Data entry
What we want with GIS for SPring-8.

Technical requirement.

- Google map like
 - Web based.
 - No client application installation.
 - Access from everywhere.
 - zooming, panning, multi-layer

- Open source

- Easy to manage
 - Installation
 - Modification
 - Configuration
 - Data entry
What we want with GIS for SPring-8.

Technical requirement.

- Google map like
 - Web based.
 - No client application installation.
 - Access from everywhere.
 - zooming, panning, multi-layer

- Open source

- Easy to manage
 - Installation
 - Modification
 - Configuration
 - Data entry
What we want with GIS for SPring-8.

Technical requirement.

- **Google map like**
 - Web based.
 - No client application installation.
 - Access from everywhere.
 - zooming, panning, multi-layer

- **Open source**

- **Easy to manage**
 - Installation
 - Modification
 - Configuration
 - Data entry
MapServer

- Web based map display system like google map.
- Developed at University of Minnesota.
 - Originally developed for forest resource management
 - http://mapserver.gis.umn.edu/
- Open source
- Multi data sources
 - CAD data, image data, databases...
- Multi platform
 - Unix, Windows and Macintosh
- Multi development languages
 - Web application using PHP, perl, java, python
MapServer

- Web based map display system like google map.
- Developed at University of Minnesota.
 - Originally developed for forest resource management
 - http://mapserver.gis.umn.edu/
- Open source
- Multi data sources
 - CAD data, image data, databases...
- Multi platform
 - Unix, Windows and Macintosh
- Multi development languages
 - Web application using PHP, perl, java, python
MapServer

- Web based map display system like google map.
- Developed at University of Minnesota.
 - Originally developed for forest resource management
 - http://mapserver.gis.umn.edu/
- Open source
- Multi data sources
 - CAD data, image data, databases...
- Multi platform
 - Unix, Windows and Macintosh
- Multi development languages
 - Web application using PHP, perl, java, python
MapServer

- Web based map display system like google map.
- Developed at University of Minnesota.
 - Originally developed for forest resource management
 - http://mapserver.gis.umn.edu/
- Open source
- Multi data sources
 - CAD data, image data, databases...
- Multi platform
 - Unix, Windows and Macintosh
- Multi development languages
 - Web application using PHP, perl, java, python
MapServer

- Web based map display system like google map.
- Developed at University of Minnesota.
 - Originally developed for forest resource management
 - http://mapserver.gis.umn.edu/
- Open source
- Multi data sources
 - CAD data, image data, databases...
- Multi platform
 - Unix, Windows and Macintosh
- Multi development languages
 - Web application using PHP, perl, java, python
MapServer

- Web based map display system like google map.
- Developed at University of Minnesota.
 - Originally developed for forest resource management
 - http://mapserver.gis.umn.edu/
- Open source
- Multi data sources
 - CAD data, image data, databases...
- Multi platform
 - Unix, Windows and Macintosh
- Multi development languages
 - Web application using PHP, perl, java, python
MapServer two books

MapServer: Open Source GIS Development
Bil Kropla
Apress

Web Mapping: Illustrated
Tyler Mitchell
O'REILLY
MapServer mechanism

http server

Application

map server

map file

Vector data Raster data database xml datafile
MapServer mechanism

HTTP request

http server

Application

map server

map file

Vector data Raster data database xml datafile
MapServer mechanism

http server

Application

map server

map file

Vector data
Raster data
database
xml datafile
MapServer mechanism

API call by mapscript
PHP, perl, java, python

http server

Application

Map server

Map file

Vector data
Raster data
Database
XML datafile
MapServer mechanism

http server

Application

map server

map file

Vector data Raster data database xml datafile
Mapfile

- **Configuration file**
 - Text file format.

- **Integrate data files and database**
 - Defines location of data.
 - Image size
 - Layer
 - Font
 - Color
 - etc.
Mapfile

- Configuration file
 - Text file format.

- Integrate data files and database
 - Defines location of data.
 - Image size
 - Layer
 - Font
 - Color
 - etc.
Mapfile

- Configuration file
 - Text file format.
- Integrate data files and database
 - Defines location of data.
 - Image size
 - Layer
 - Font
 - Color
 - etc.
Mapfile

- Configuration file
 - Text file format.
- Integrate data files and database
 - Defines location of data.
- Image size
- Layer
- Font
- Color
- etc.
Mapfile

- Configuration file
 - Text file format.

- Integrate data files and database
 - Defines location of data.
 - Image size
 - Layer
 - Font
 - Color
 - etc.
Mapfile

- Configuration file
 - Text file format.
- Integrate data files and database
 - Defines location of data.
 - Image size
 - Layer
 - Font
 - Color
 - etc.
Mapfile

- Configuration file
 - Text file format.
- Integrate data files and database
 - Defines location of data.
 - Image size
 - Layer
 - Font
 - Color
 - etc.
Mapfile

- Configuration file
 - Text file format.
- Integrate data files and database
 - Defines location of data.
 - Image size
 - Layer
 - Font
 - Color
 - etc.
Mapfile example

```
MAP
  NAME "MapTest"
  STATUS ON
  IMAGECOLOR 255 254 203
  IMAGETYPE gif
  EXTENT -500000 -600000 1300000 800000
  UNITS meters
  SHAPEPATH "D:/shp_data/"
  SYMBOLSET "D:/symbols/symbols35.sym"
  FONTSET "D:/etc/fonts.txt"
  RESOLUTION 96
  INTERLACE OFF
```

```
WEB
  TEMPLATE "map.html"
  IMAGEPATH "D:/ms4w/tmp/ms_tmp/
  IMAGEURL "/ms_tmp/"
  METADATA
  END # Metadata
```

END
LEGEND
 STATUS ON
 POSITION UL
 KEYSIZE 18 12
 LABEL
 TYPE BITMAP
 SIZE MEDIUM
 COLOR 0 0 89
END
END # Legend

REFERENCE
 IMAGE ./images/sp8.bmp
 EXTENT -500000. -600000. 1300000. 800000.
 SIZE 150 128
 STATUS ON
 COLOR 200 200 200
 OUTLINECOLOR 255 0 0
END
MapServer mechanism

Read data from data sources

- Vector data
- Raster data
- Database
- XML datafile

http server

Application

Map server

Map file

Read data from data sources
Data sources

- **Vector data**
 - Standard data format
 - Shape file
 - CAD data (.dxf file converted shape file)
 - Mapinfo TAB

- **Raster data**
 - jpg, png, gif, tiff...

- **Databases**
 - MySQL, postgresql, Oracle...

- **Files**
 - Gxml (geographic XML)
Data sources

- **Vector data**
 - Standard data format
 - Shape file
 - CAD data (.dxf file converted shape file)
 - MapinfoTAB

- **Raster data**
 - jpg, png, gif, tiff...

- **Databases**
 - MySQL, postgresql, Oracle...

- **Files**
 - Gxml (geographic XML)
Data sources

- **Vector data**
 - Standard data format
 - Shape file
 - CAD data (.dxf file converted shape file)
 - Mapinfo TAB
- **Raster data**
 - jpg, png, gif, tiff...
- **Databases**
 - MySQL, postgresql, Oracle...
- **Files**
 - Gxml (geographic XML)
Data sources

- **Vector data**
 - Standard data format
 - Shape file
 - CAD data (.dxf file converted to shape file)
 - Mapinfo TAB
 - CAD data (.dxf file converted to shape file)

- **Raster data**
 - jpg, png, gif, tiff...

- **Databases**
 - MySQL, postgresql, Oracle...

- **Files**
 - Gxml (geographic XML)
MapServer mechanism

http server

Application

map server

map file

Vector data Raster data database xml datafile

generates temporary image file
MapSever applications

- Open source MapSever applications
- Mapscrip application (server) + Javascript (client)
 - p.mapper
 - ka-map
 - many more.
- Standalone (no Web) systems are also available.
MapSever applications

- Open source MapSever applications
- Maps.js application (server) + Javascript (client)
 - p.mapper
 - ka-map
 - many more.
- Standalone (no Web) systems are also available.
musmap
primagis

intergrated into plone
MapSever applications

- Open source MapSever applications
- Mapscript application server + Javascript client
 - p.mapper
 - ka-map
 - many more.
- Standalone (no Web) systems are also available.
p.mapper

- **Framework**
 - PHP (server)
 - Javascript (client)
- **Rich functions**
 - Pan/zoom
 - Reference map
 - Query functions (identify, select, search)
 - Print functions: HTML and PDF
p.mapper

- Framework
 - PHP (server).
 - Javascript (client)
- Rich functions.
 - Pan/zoom
 - Reference map
 - Query functions (identify, select, search)
 - Print functions: HTML and PDF
p.mapper

- **Framework**
 - PHP (server).
 - Javascript (client)

- **Rich functions.**
 - Pan/zoom .
 - Reference map
 - Query functions (identify, select, search)
 - Print functions: HTML and PDF
p.mapper

- Framework
 - PHP (server)
 - Javascript (client)
- Rich functions.
 - Pan/zoom
 - Reference map
 - Query functions (identify, select, search)
 - Print functions: HTML and PDF
p. mapper

- Framework
 - PHP (server)
 - Javascript (client)
- Rich functions.
 - Pan/zoom
 - Reference map
 - Query functions (identify, select, search)
 - Print functions: HTML and PDF
p.mapper

- Framework
 - PHP (server).
 - Javascript (client)
- Rich functions.
 - Pan/zoom
 - Reference map
 - Query functions (identify, select, search)
 - Print functions: HTML and PDF
Accelerator management with MapServer

- **P.mapper used**
 - Most function-rich

- **Two applications.**
 - Equipment management for SPring-8
 - Real-time alarm display for SCSS prototype
Accelerator management with MapServer

- P.mapper used
 - Most function-rich
- Two applications.
 - Equipment management for SPring-8
 - Real-time alarm display for SCSS prototype
Accelerator management with MapServer

- P.mapper used
 - Most function-rich
- Two applications.
 - Equipment management for SPring-8
 - Real-time alarm display for SCSS prototype
Accelerator management with MapServer

- P.mapper used
 - Most function-rich
- Two applications.
 - Equipment management for SPring-8
 - Real-time alarm display for SCSS prototype
Equipment management for SPring-8

- **Equipment management**
 - VME cpu and PLC
 - Location
 - Attribute
 - Manufacturer
 - Production date
 - Production serial number
 - Stored into a RDB (Postgres)

- **Multi layers**

- **CAD data (.dxf) files are converted to a shape file.**
Equipment management for SPring-8

- Equipment management
 - VME cpu and PLC
 - Location
 - Attribute
 - Manufacturer
 - Production date
 - Production serial number
 - Stored into a RDB (Postgres)

- Multi layers

- CAD data (.dxf) files are converted to a shape file.
Equipment management for SPring-8

- Equipment management
 - VME cpu and PLC
 - Location
 - Attribute
 - Manufacturer
 - Production date
 - Production serial number
 - Stored into a RDB (Postgres)

- Multi layers

- CAD data (.dxf) files are converted to a shape file.
Equipment management for SPring-8

- **Equipment management**
 - VME cpu and PLC
 - Location
 - Attribute
 - Manufacturer
 - Production date
 - Production serial number
 - Stored into a RDB (Postgres)

- **Multi layers**
- **CAD data (.dxf) files are converted to a shape file.**
Equipment management for SPring-8

- Equipment management
 - VME cpu and PLC
 - Location
 - Attribute
 - Manufacturer
 - Production date
 - Production serial number
 - Stored into a RDB (Postgres)

- Multi layers

- CAD data (.dxf) files are converted to a shape file.
Equipment management for SPring-8

- Equipment management
 - VME cpu and PLC
 - Location
 - Attribute
 - Manufacturer
 - Production date
 - Production serial number
 - Stored into a RDB (Postgres)

- Multi layers

- CAD data (.dxf) files are converted to a shape file.
layer
reference map
Select zoom in area
Select layer
PLC appeared
Zoom out by slider
raster image overlay
select information
get information window
Alarm display for SCSS prototype linac
Alarm display for SCSS prototype linac

Heartbeat icon
Real time alarm display

Browser requests periodically by ajax.

http server

Application

map server

map file

read from database and write gxml file

Vector data

Raster data

database

xml datafile
About 1 man month to develop equipment management system from zero.
- Begin with little knowledge on PHP and javascript.
- Understanding mapfile.

About 1 week to develop alarm display.

Little effort to convert Autocad .dxf to shapefile
- fGIS utility program.

Data entry into MapServer is under way.
Development

- About 1 man month to develop equipment management system from zero.
 - Begin with little knowledge on PHP and javascript.
 - Understanding mapfile.
- About 1 week to develop alarm display.
- Little effort to convert Autocad .dxf to shapefile
 - fGIS utility program.
- Data entry into MapServer is under way.
Development

- About 1 man month to develop equipment management system from zero.
 - Begin with little knowledge on PHP and javascript.
 - Understanding mapfile.
- About 1 week to develop alarm display.
- Little effort to convert Autocad .dxf to shapefile
 - fGIS utility program.
- Data entry into MapServer is under way.
Development

- About 1 man month to develop equipment management system from zero.
 - Begin with little knowledge on PHP and javascript.
 - Understanding mapfile.
- About 1 week to develop alarm display.
- Little effort to convert Autocad .dxf to shapefile
 - fGIS utility program.
- Data entry into MapServer is under way.
Development

- About 1 man month to develop equipment management system from zero.
 - Begin with little knowledge on PHP and javascript.
 - Understanding mapfile.
- About 1 week to develop alarm display.
- Little effort to convert Autocad .dxf to shapefile
 - fGIS utility program.
- Data entry into MapServer is under way.
Development

- About 1 man month to develop equipment management system from zero.
 - Begin with little knowledge on PHP and javascript.
 - Understanding mapfile.
- About 1 week to develop alarm display.
- Little effort to convert Autocad .dxf to shapefile
 - fGIS utility program.
- Data entry into MapServer is under way.
Conclusion

- Geographic presentation of accelerator is very useful for equipment management.
- MapServer provides easy way to develop our own google map like system
- Application development was easy.
- Data entry requires huge effort.
Conclusion

- Geographic presentation of accelerator is very useful for equipment management.
- MapServer provides easy way to develop our own google map like system
- Application development was easy.
- Data entry requires huge effort.
Conclusion

- Geographic presentation of accelerator is very useful for equipment management.
- MapServer provides easy way to develop our own google map like system
- Application development was easy.
- Data entry requires huge effort.
Conclusion

- Geographic presentation of accelerator is very useful for equipment management.
- MapServer provides easy way to develop our own google map like system.
- Application development was easy.
 - Especially, very quick development for alarm display system.
- Data entry requires huge effort.
Conclusion

- Geographic presentation of accelerator is very useful for equipment management.
- MapServer provides easy way to develop our own google map like system
- Application development was easy.
- Data entry requires huge effort.
Conclusion

- Geographic presentation of accelerator is very useful for equipment management.
- MapServer provides easy way to develop our own google map like system.
- Application development was easy.
- Data entry requires huge effort.
 - Personal data entry system
 - Everybody can enter data from web.
Conclusion

- Geographic presentation of accelerator is very useful for equipment management.
- MapServer provides easy way to develop our own google map like system
- Application development was easy.
- Data entry requires huge effort.
 - Personal data entry system
 - Everybody can enter data from web.
 - Consumer Generated Media
Conclusion

- Geographic presentation of accelerator is very useful for equipment management.
- MapServer provides easy way to develop our own google map like system
- Application development was easy.
- Data entry requires huge effort.
 - Personal data entry system
 - Everybody can enter data from web.
 - Consumer Generated Media
 - Web 2.0 keyword