TMD Factorization and Evolution for TMD Correlation Functions

Mert Aybat

In collaboration with Ted C. Rogers

Based on:

arXiv: 1101.5057

and Foundations of Perturbative QCD, J.C. Collins

http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521855334

PreDIS 2011 - JLab
• Collinear and TMD factorization

• A unified treatment that includes evolution

• New TMD definitions

• Evolution for TMDs

• Conclusions and Outlook
QCD gains its predictive power through factorization

Consider Drell-Yan process: \[P_1 + P_2 \rightarrow l\bar{l}(Q^2) + X \]

\[
\frac{d\sigma_{P_1 P_2 \rightarrow u'(Q^2)+X(s, Q^2)}}{dQ^2} = \sum_{i,j} \int_0^1 dx_1 \ dx_2 \ f_{i/P_1}(x_1, \mu^2) f_{j/P_2}(x_2, \mu^2) H_{ij}(Q^2, x_1 x_2 s, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2))
\]

Collins, Soper and Sterman (1985, 1988)

PDFs: Long distance dynamics, non-perturbative, universal, evolution through DGLAP
Hard scattering function: short distance dynamics, pQCD calculations

Not complete description \(\rightarrow\) transverse momentum of incoming partons are important
examples: DY, SIDIS, hadron production at \(e^+e^-\) collisions...
Consider Drell-Yan process

We want to get \(\frac{d\sigma}{dq_T} \) for all \(q_T \)
Two Common Approaches

A) Typical implementation of CSS formalism

• Parametrize the non-perturbative parts.

• Global fit to several experiments (example: Tevatron data).

Collins-Soper-Sterman formalism for DY gives (1985)

\[d\sigma \sim \int d^2b e^{-ib \cdot q_T} \]

\[
\int_{x_1}^{1} \frac{d\hat{x}_1}{\hat{x}_1} \tilde{C}_{\bar{f}/j} \left(\frac{x_1}{\hat{x}_1}, b_*, \mu_b^2, \mu_b, g(\mu_b) \right) f_{j/P_1}(\hat{x}_1, \mu_b) \\
\int_{x_2}^{1} \frac{d\hat{x}_2}{\hat{x}_2} \tilde{C}_{\bar{f}/j} \left(\frac{x_2}{\hat{x}_2}, b_*, \mu_b^2, \mu_b, g(\mu_b) \right) f_{j/P_2}(\hat{x}_2, \mu_b) \\
\exp \left[\int_{1/b^2}^{Q^2} \frac{d\mu'}{\mu'^2} \left\{ A(\alpha_s(\mu')) \ln \frac{Q^2}{\mu'^2} + B(\alpha_s(\mu')) \right\} \right] \\
\exp \left[-g_K(b) \ln \frac{Q^2}{Q_0^2} - g_1(x_1, b) - g_2(x_2, b) \right] \\
+ \text{Large } q_T \text{ term}
\]

Where is the TMD PDF?
• Underlying presence of individual TMD PDFs is hidden.

• TMD PDF → hadron structure.

• T-Odd effects (Sivers ...) require TMD Correlation functions.

• Explicit soft factors → different pieces entangled.

• Different processes → start over → new fits.

A unified treatment is needed to relate different experiments!

Want: Analogous to collinear factorization
Two Common Approaches

A) Typical implementation of CSS formalism

- Parametrize the non-perturbative parts.
- Global fit to several experiments (example: Tevatron data).

B) Use gaussian parametrization

- Assume x and k_T behaviors factorize.
- Fixed scale, no evolution.
- Ok for fixed, small scales but redo the fits for each experiment and for each scale.

 Schweitzer, Teckentrup and Metz (2010)
Main Philosophy and the Goal

Extend collinear factorization methodology to TMD factorization.

- Repository of well defined TMD fits with evolution for use in phenomenology.

 https://projects.hepforge.org/tmd

- Unified treatment → use existing fits to build a global fit.

- Connection between operator definitions and phenomenology.
Relation to Generalized Parton Model??

$$W^{\mu\nu} = \sum_f |\mathcal{H}_f(Q^2, \mu)|^{\mu\nu} \int d^2k_{1T}d^2k_{2T} \tilde{F}_{f/P_1}(x_1, k_{1T}, \mu, \zeta_F)\tilde{F}_{f/P_2}(x_2, k_{2T}, \mu, \zeta_F)\delta^{(2)}(k_{1T} + k_{2T} - q_T) + \text{corrections}$$

Correct QCD Formula

$$\zeta_F = 2M_P^2x^2e^{2(y_p - y_s)}$$

Hard Part

PDFs

Generalized Parton Model
Definitions of TMD Correlation Functions

- Dictated by requirements of factorization.
- Identified with operator definitions - universality/non-universality properties clear.
- Deal with all divergences.

Consistently defined TMD correlation functions

- Have evolution equations associated with them individually.
- Be analogous to generalized parton model picture.

See talk by J. Collins for the new, consistent definitions of TMD parton densities.
New TMD Definitions

\[F_{f/P}(x, b; \mu; \zeta_F) = \]

"Unsubtracted"

\[\text{Implements Subtractions/Cancellations} \]

From *Foundations of Perturbative QCD*, J. Collins
(See talk by J. Collins and also J. Collins, *TMD 2010 Trento Workshop* talk)
Some Results

Up Quark TMD PDF, $x = 0.09$

JLab Energies
matches STM fit

Tevatron Energies
matches BNLY fit

Schweitzer, Teckentrup and Metz (2010) (STM)

Brock, Landry, Nadolsky, Yuan (2003) (BLNY)
Some Results

Up Quark TMD PDF, $x = 0.09$, $Q = 91.19$ GeV

$F_{\text{up}}(x=0.09, k_T) (\text{GeV}^{-2})$

$b_{T,\text{max}} = 0.5 \text{ GeV}^{-1}$

gaussian fit does not capture the effects of evolution quite well
Evolution for TMDs

Energy evolution from Collins-Soper equation

\[\frac{\partial \ln \tilde{F}(x, b_T, \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = \tilde{K}(b_T, \mu) \]

with \[\tilde{K}(b_T, \mu) = \frac{1}{2} \frac{\partial}{\partial y_n} \ln \frac{\tilde{S}(b_T; y_n, -\infty)}{\tilde{S}(b_T; +\infty, y_n)} \]

Renormalization group equations

\[\frac{d\tilde{K}}{d \ln \mu} = -\gamma_K(g(\mu)) \]
and \[\frac{d \ln \tilde{F}(x, b_T, \mu, \zeta)}{d \ln \mu} = -\gamma_F(g(\mu), \zeta/\mu^2) \]

energy evolution for \(\gamma_F \):

\[\gamma_F(g(\mu); \zeta_F/\mu^2) = \gamma_F(g(\mu); 1) - \frac{1}{2} \gamma_K(g(\mu)) \ln \frac{\zeta_F}{\mu^2} \]
Evolution for TMDs

Small $b_T \rightarrow$ collinear factorization formalism

$$\tilde{F}_{f/P}(x, b_T, \mu, \zeta_F) = \sum_j \int_x^1 \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x}, b_T, \zeta_F, \mu, g(\mu)) f_{j/P}(\hat{x}, \mu) + \mathcal{O}(\lambda_{QCD} b_T)^a)$$

At large $b_T \rightarrow$ perturbative description breaks down \rightarrow scale dependence through evolution

Matching for large and small b_T

$$b_*(b_T) = \frac{b_T}{\sqrt{1 + b_T^2/b_{\text{max}}^2}}$$

Collins and Soper (1982)

- Use collinear factorization treatment for small b_T.
- Implement matching procedure.
- Apply evolution equations.
\[\tilde{F}_{f/P}(x, b_T, \mu, \zeta_F) = \sum_j \int_x^1 \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x}, b_*, \zeta_F, \mu, g(\mu)) f_{j/P}(\hat{x}, \mu) \]
\[\times \exp \left\{ \ln \frac{\sqrt{\zeta_F}}{\mu_b} \tilde{K}(b_*, \mu_b) + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'), 1) - \ln \frac{\sqrt{\zeta_F}}{\mu'} \gamma_K(g(\mu')) \right] \right\} \times \exp \left\{ g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_F}, 0} \right\} \]

\[\tilde{C}_{j'/j}(x, b_T, \mu, \zeta_F/\mu^2) = \delta_{j'j} \delta(1 - x) + \delta_{j'j} \frac{\alpha_s C_F}{2\pi} \left\{ 2 \left[\ln \left(\frac{2}{\mu b_T} \right) - \gamma_E \right] + \left(\frac{2}{1 - x} \right)_+ - 1 - x \right\} + 1 - x \]
\[+ \delta(1 - x) \left\{ - \frac{1}{2} [\ln(b_T^2 \mu^2) - 2(\ln 2 - \gamma_E)]^2 - [\ln(b_T^2 \mu^2) - 2(\ln 2 - \gamma_E)] \ln \left(\frac{\zeta_F}{\mu^2} \right) \right\} + \mathcal{O}(\alpha_s^2) \]
Evolved TMDs

\[
\tilde{F}_{f/P}(x, b_T, \mu, \zeta_F) = \sum_j \int_x^1 \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x}, b_*, \zeta_F, \mu, g(\mu)) f_{j/P}(\hat{x}, \mu) \\
\times \exp \left\{ \ln \frac{\sqrt{\zeta_F}}{\mu_b} \tilde{K}(b_*, \mu_b) + \int_{\mu_b}^\mu \frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'), 1) - \ln \frac{\sqrt{\zeta_F}}{\mu'} \gamma_K(g(\mu')) \right] \right\} \times \exp \left\{ g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_F}} \right\}
\]

\[
\mu_b = \frac{C_1}{b_*(b_T)} \quad \text{with} \quad C_1 = 2e^{-\gamma_E}
\]
Evolved TMDs

\[
\tilde{F}_{f/P}(x, b_T, \mu, \zeta_F) = \sum_j \int_x^1 \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x}, b_*, \zeta_F, \mu, g(\mu)) f_{j/P}(\hat{x}, \mu) \\
\times \exp \left\{ \ln \sqrt{\frac{\zeta_F}{\mu_b}} \tilde{K}(b_*, \mu_b) + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'), 1) - \ln \frac{\sqrt{\zeta_F}}{\mu'} \gamma_K(g(\mu')) \right] \right\} \times \exp \left\{ g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_F, 0}} \right\}
\]

\[\mu_b = \frac{C_1}{b_*(b_T)} \text{ with } C_1 = 2e^{-\gamma_E}\]

nonperturbative b_T behavior in $\tilde{F}_{f/P}$

nonperturbative b_T behavior in \tilde{K}
Determination of the Non-perturbative Parts

Using CSS formalism for the full cross section, fits to DY Tevatron data

\[
\exp \left\{ - \left[g_1 + g_2 \ln \frac{Q}{2Q_0} + g_1 g_3 \ln (100x_1x_2) \right] b_T^2 \right\}
\]

Assuming flavor independence and symmetric role of PDFs we use for one specific TMD

\[
\exp \left\{ - \left[\frac{g_2}{2} \ln \frac{Q}{2Q_0} + g_1 \left(\frac{1}{2} + g_3 \ln \left(10 \frac{xx_0}{x_0 + x} \right) \right) \right] b_T^2 \right\}
\]

with \(g_1 = 0.21 \text{ GeV}^2 \), \(g_2 = 0.68 \text{ GeV}^2 \) and \(g_3 = -0.6 \text{ GeV}^2 \), using \(Q_0 = 1.6 \text{ GeV} \) for \(b_{\text{max}} = 0.5 \text{ GeV}^{-1} \).

- For large \(Q \) and small \(x \): reduces to BLNY fit for DY
- For \(x_0 = 0.02 \): matches the STM fit for SIDIS at \(x = 0.09 \) and \(Q = \sqrt{2.4} \text{ GeV} \)
Conclusions and Outlook

• TMD correlation functions with evolution based on definitions by J. Collins.

• Combined previous fits (BNLY and STM) which apply at different scales.

• Use TMDs in actual calculations: DY and SIDIS (work in progress).

• Improve fits, include higher order.

• Evolution for polarization dependent TMDs.

• Gluon distribution.

• Quantify factorization breaking effects.

See DIS talk by Ted Rogers.
Stay tuned for new and improved results at

https://projects.hepforge.org/tmd