Concluding remarks a.k.a. impressions and insights

Pasi Huovinen Uniwersytet Wrocławski

YSTAR2016

Nov 17, 2016, Thomas Jefferson National Accelerator Facility

- How good is the evidence for "missing states"?
- How can we find them?

• What is a *missing* resonance?

- What is a *missing* resonance?
- A missing person is someone you know exists, but you cannot find. . .

Robert Edwards: Lattice!

Excited strange (and charm) quark baryons

Various quark models:

Claudia Ratti: Finite temperature lattice QCD vs. hadron resonance gas

- Adding states to the spectrum allows to reproduce the lattice data
- We need the * states from the PDG 2016: the spectrum with only **, *** and **** states is not enough

WB collaboration, in preparation

25/27

- various independent models: there should be more states
- so probably there is something there

- "You have to distinguish between theory and model"
- "We need data to test different models"

How to find them?

Moskov Amaryan: ${\cal K}_L^0$ beam at Jlab

What can be learned with a K⁰_L beam?

List of reactions:

Elastic and charge-exchange

Two-body with S=-2

Three-body with S=-2

Three-body with S=-3

$$K_L^0 p \to K_S^0 p$$

 $K_L^0 p \to K^+ n$

$$K_L^0 p \to \pi^+ \Lambda$$

 $K_L^0 p \to \pi^+ \Sigma^0$

$$K_L^0 p \to K^+ \Xi^0$$

 $K_L^0 p \to K^+ \Xi^{0*}$

$$K_L^0 p \to \pi^+ K^+ \Xi^- \ K_L^0 p \to \pi^+ K^+ \Xi^{-*}$$

$$K_L^0 p \to K^+ K^+ \Omega^-$$
$$K_L^0 p \to K^+ K^+ \Omega^{-*}$$

Eugene Chudakov: photoproduction, Hall D:

Hall D/GlueX Spectrometer and DAQ

James Ritman: $\bar{p}p$ at PANDA

Antiproton Annihilations: Gluon Rich Environment

Production: all states with exotic and non-exotic quantum numbers accessible via associated production

high discovery potential

Formation: all states with non-exotic quantum numbers accessible

- not only limited to 1⁻⁻ as e⁺e⁻ colliders
- precision physics of known states
- resonant, high statistics, extremely good precision in mass and width

antiproton probe unique: large coupling to BB

Jim Ritman

Detailed discussion about the discovery potential of K_L^0p only Mark Manley:

Discussion

- ▶ Pure hyperon states in the N = 2 (20,1⁺) multiplet cannot couple to $\overline{K}N$ via a single-quark transition operator. They will not be considered further.
- ▶ Pure hyperon states in the N = 3 (20,1 $^-$), (70,2 $^-$), and (20,3 $^-$) multiplets cannot couple to $\overline{K}N$ via a single-quark transition operator. They will not be considered further.
- The next several slides compare experimental observations with predictions for low-lying states in the other multiplets (not including N=3)

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

Acknowledgments

7/33

Jacquelyn Noronha-Hostler: Bulk/thermal properties using quark model spectrum— How?

Interface between Spectroscopy and Heavy-Ions

If there are missing resonances, it would systematically affect most theory to experiment comparisons in heavy-ion collisions

- Most models in heavy-ions have a standardized hadron cocktail that they read in (includes particle ID, mass, degeneracy, quantum numbers, decay width, and branching ratios)
- These lists can be easily used to make direct comparison between the Hadron Resonance Gas and Lattice QCD
- Needed for dynamical models and thermal fits
- Can a database be created for easy comparisons with the most up-to-date PDG list vs. Quark Models?

UNIVERSITY of HOUSTON | PHYSICS

• When are we ready admit a predicted state does not exist?

Looking forward to new data