

$K^0\Lambda$ photoproduction on the neutron at $E_{\gamma} < 1.2 \text{ GeV}$

Yusuke TSUCHIKAWA for the FOREST collaboration

Department of Physics, Nagoya University

Y. TSUCHIKAWA

 $K^0\Lambda$ photoproduction on the neutron at $E_{\gamma} < 1.2 \ GeV$ Outline

Introduction - Baryon spectroscopy and KY channels

- Narrow peak structures of special interest

at W \sim 1.67 and 1.71 GeV

Experiment - ELPH & 4π electromagnetic calorimeter FOREST Analysis

- Particle identification, Kinematic fit
- Yield counting, Background subtraction

Results

- Differential and Total cross sections
- Y^* contributions for the $K^0\Lambda$ photoproduction

Summary

Baryon spectroscopy via KY photoproduction

-> accessible highly excited baryons which hardly couple to πN (ηN)

 K^0

• $K^+\Lambda(\Sigma)$: recently well studied (CLAS, LEPS, SAPHIR, MAINZ,...)

Ν

 N^*

s-channel

• $K^0 \Lambda(\Sigma^0)$: few reports

 $\gamma n \rightarrow K^0 \Lambda$ reaction

Isospin selective -> $K\Lambda$: 1/2, $K\Sigma$: 3/2

Expected few t-channel contributions

All of the participants are NEUTRAL

 \rightarrow no K (not K^{*}) can be exchanged

Allowed,

Λ

if $K^{\pm}/$

 K^*

Ж

t-channel

Δ

 K^0

 $\Lambda \Lambda^*$

u-channel

 $N(1670) \qquad \gamma N \to \eta N \qquad \gamma n \to \eta n \to \Lambda \text{ narrow resonance-like structure @1670 MeV} \\ \gamma p \to \eta p \to No \text{ such structure (but a dip?)}$

 $N(1670) \qquad \gamma N \to \eta N \qquad \gamma n \to \eta n \to \Lambda \text{ narrow resonance-like structure @1670 MeV} \\ \gamma p \to \eta p \to No \text{ such structure (but a dip?)}$

N(1670)

Recent theoretical interpretations

- Intrinsic narrow state
- **Coupled-channel effects**
- Interference effects
- KY threshold effects

Interference effect

Intrinsic narrow state

15

10

0.6

20

15 10

5

0.6 0.8 1.0 1.2 1.4 0.6 0.8

 $\sigma(\eta n)$

 $\sigma(\eta n)$

1.0 1.2

E_[GeV]

0.8

15

10

15

10

1.4

0.6 0.8 1.0 1.2

More experimental information is needed -> How about the $K^0\Lambda$ case?

1.0 1.2

E_[GeV]

Similarities between $\eta n \& K^0 \Lambda$

- Isospin 1/2
- γn initial state
- ss component

Confirmation of the N(1670) must be a valuable info.

A. Fix et al., Eur. Phys. J. A 32, 311–319 (2007). $\sigma(\eta_p)$

0.6

0.6

0.8 1.0 1.2

E, [GeV]

1.4

1.4

 $\sigma(\eta p)$

0.8

1.0 1.2

 $\sigma(\eta n)/\sigma(\eta p)$

 $\sigma_{\rm l}^{\rm r}(\eta n)/\sigma(\eta p)$

N(1710)?

Another narrow, but small, peak structure has been also observed in $\eta(\pi^0)$ photoproduction

Y. TSUCHIKAWA

FIG. 3. Beam asymmetry Σ for Compton scattering on the proton. Dark (open) circles are the results obtained with UV (green) laser.

Experiment

Research Center for Electron Photon Science (ELPH)

Experiment @ ELPH, Tohoku University, Sendai

1.2 GeV Electron Synchrotron and photon beam line*@ Research Center for Electron Photon Science* (ELPH)

Experiment @ ELPH, Tohoku University, Sendai

Photon Tagging System

π electromagnetic calorimeter complex **FOREST**

Particle identification

The event timing criterion: average timing of 4 photons

Other clusters

Two charged particles were distinguished by TOF based kinematic cut conditions

Requirement: No other neutral particles but two more charged particles

Particle identification

Focusing decay chains:

All of the particles in the final state (4 photons and 2 charged particles) are identified

$$\gamma d \to K^0 \Lambda p \to K^0_S \Lambda p \to (\pi^0 \pi^0)(p\pi^-)p \to (4\gamma)(p\pi^-)p$$

Proton in the deuteron is assumed as a *spectator*

Y. TSUCHIKAWA

16 variables: γ_i momentum, polar, and azimuthal angles: E_i, θ_i, ϕ_i Kinematic fit with 4 constraints (i = 1, ..., 4), same for proton: $P_{n}, \theta_{n}, \phi_{n}$, " $\gamma\gamma$ invariant mass $= m_{\pi^0}$ " x2 and Photon beam energy: E_{γ} 1. $M^{2}(\gamma_{1}, \gamma_{2}) \equiv 2E_{1}E_{2}(1 - \sin\theta_{1}\sin\theta_{2}\cos(\phi_{1} - \phi_{2}) - \cos\theta_{1}\cos\theta_{2}) = m_{\pi^{0}}^{2}$ 2. $M^{2}(\gamma_{3}, \gamma_{4}) \equiv 2E_{3}E_{4}(1 - \sin\theta_{3}\sin\theta_{4}\cos(\phi_{3} - \phi_{4}) - \cos\theta_{3}\cos\theta_{4}) = m_{\pi^{0}}^{2}$ "4 γ missing mass = m_A " : 3. $M_X^2(\gamma_1, \gamma_2, \gamma_3, \gamma_4) \equiv E_X^2 - P_X^2 = (E_{\nu} + m_n - \sum_{i=1}^4 E_i)^2 - P_X^2(E_i, \theta_i, \phi_i, E_{\nu}) = m_A^2$ "4 γp missing mass = $m_{\pi^{-}}$ ": 4. $M_X^2(\gamma_1, \gamma_2, \gamma_3, \gamma_4, p) = m_{\pi^{-}}^2$ 500 ₹ 300 200 $\pi^0\pi^0$ π^{-} pAE (MeV) AE (MeV) Selected events with ([†]200 (^Å, 200 M^(Å) detected values

Y. TSUCHIKAWA

K^0 signal and background

 4^{th} pol. + gaussian $\mu = 494.9(3)$ MeV $\sigma = 17.9(3)$ MeV About 8,400 K^0 signals Clear peak but **S/N ~50%**

Reactions as background sources have been investigated via GEANT4-based simulations. Candidates of the reactions:

$$\gamma n \to \pi X(\Delta, N^*, \rho N) \to \pi^- \pi^0 \pi^0 p,$$

 $\gamma n \to \pi^0 \pi^0 \pi^- p.$

Those candidates do not show significant differences on 2 pi invariant mass distributions with one another.

Yield counting

Acceptance

Decrease of the acceptance in the forward angle at higher energy parts -> lost of high energy proton from the detector hole around the beam axis

Differential Cross Sections First measurement (CM frame, whole θ range)

Total Cross Sections

311–319 (2007).

Legendre coefficients

0.6

0.5

0.4

$$\frac{k^*}{q^*} \frac{d\sigma}{d\Omega} = |\mathcal{F}_1|^2 + |\mathcal{F}_2|^2 + \frac{1}{2} |\mathcal{F}_3|^2 + \frac{1}{2} |\mathcal{F}_4|^2 + \operatorname{Re}(\mathcal{F}_1 \mathcal{F}_4^*) + \operatorname{Re}(\mathcal{F}_2 \mathcal{F}_3^*) + \{\operatorname{Re}(\mathcal{F}_3 \mathcal{F}_4^*) - 2\operatorname{Re}(\mathcal{F}_1 \mathcal{F}_2^*)\} \cos \theta^* - \left\{\frac{1}{2} |\mathcal{F}_3|^2 + \frac{1}{2} |\mathcal{F}_4|^2 + \operatorname{Re}(\mathcal{F}_1 \mathcal{F}_4^*) + \operatorname{Re}(\mathcal{F}_2 \mathcal{F}_3^*)\right\} \cos^2 \theta^* - \{\operatorname{Re}(\mathcal{F}_3 \mathcal{F}_4^*)\} \cos^3 \theta^*$$

Total Cross Section

A. Salam, T. Mart & K. Miyagawa, Mod. Phys. Lett. A 24, 11 (2009)

Final state interaction?

-> expected to be small in the $\gamma d \rightarrow K^0 Y N$ reactions

Fig. 5. Elementary amplitude as a function of kaon angle θ_K for photon energies $E_{\gamma} = 1.1$ GeV (left panels) and 1.3 GeV (right panels) with \vec{p}_N fixed at $\theta_N = 30^{\circ}$ and $\phi_N = 180^{\circ}$, but the magnitude varied with 0, 50, 100 MeV/c. The solid line for the extracted ones and the dash ones are obtained from the free-process.

Differential Cross Sections and theoretical curves

Resonance term	Kaon-MAID	Saclay-Lyon A
s-channel	$S_{11}(1650)$	$P_{13}(1720)$
	$P_{11}(1710)$	
	$P_{13}(1720)$	
	$D_{13}(1895)$	
<i>t</i> -channel	$K^{*}(892)$	$K^{*}(892)$
	$K_1(1270)$	$K_1(1270)$
<i>u</i> -channel		$S_{01}(1407)$
		$S_{01}(1670)$
		$P_{01}(1810)$
		$P_{11}(1660)$

Compared to two theoretical curves: Kaon-MAID and Saclay-Lyon A

Present results favor the SLA model \rightarrow u-channel Y* contribution may play an important role in the $\gamma n \rightarrow K^0 \Lambda$ reaction

Summary

- The $\gamma d \rightarrow K^0 \Lambda p$ photoproduction reaction is studied with electromagnetic calorimeter complex FOREST at ELPH, Sendai
- K⁰ signals are well confirmed by $\gamma d \rightarrow K_S^0 \Lambda p \rightarrow (\pi^0 \pi^0)(p\pi^-)p \rightarrow (4\gamma)(p\pi^-)p$ reaction chains
- Shape of the background shown in the $\pi^0 \pi^0$ invariant mass distribution can be well reproduced by the simulated distribution of $\gamma n \to \pi^0 \pi^0 \pi^- p$ non-resonant reaction
- Differential cross sections show flat to backward enhancement as E_{γ} increases
- The total cross section shows comparable order of magnitude to the $K^+\Lambda$ photoproduction cross section
- Comparison with the theoretical calculations may indicate that the hyperon resonance *Y*^{*} plays an important role in this reaction at higher energies
- An excess-like structure was observed in the vicinity of 1670 MeV it may be related to the prominent structure observed in the $\gamma n \rightarrow \eta n$ reaction