The Very Strange Spectroscopy Program at Jefferson Lab

Volker Credé

Florida State University, Tallahassee, FL

Excited Hyperons in QCD Thermodynamics at Freeze-Out

YSTAR 2016

Jefferson Lab

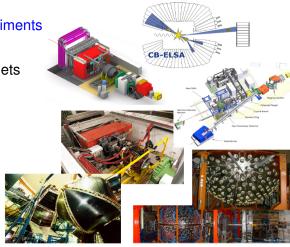
Outline

- Introduction
 - The Spectrum of Baryons
 - Lattice Calculations
- Properties of Ξ Resonances
 - Experimental Situation
 - Recent Efforts in Photoproduction
- Cascades at GlueX
 - Opportunities with Secondary K_l^0 Beams
- Summary and Outlook

Outline

- Introduction
 - The Spectrum of Baryons
 - Lattice Calculations
- ② Properties of ≡ Resonances
 - Experimental Situation
 - Recent Efforts in Photoproduction
- Cascades at GlueX
 - Opportunities with Secondary K_L^0 Beams
- Summary and Outlook

Baryon Spectroscopy in the 21st Century


Photoproduction

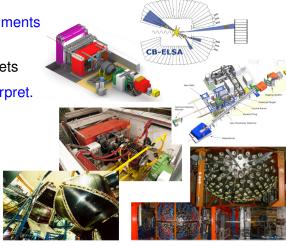
→ Toward Complete Experiments

(Double-) Polarization

Proton & Neutron Targets

Baryon Spectroscopy in the 21st Century

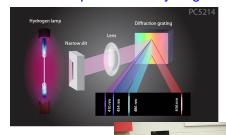
Photoproduction


→ Toward Complete Experiments

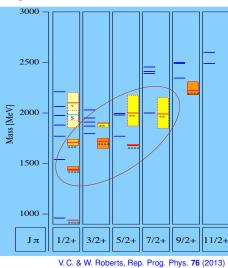
(Double-) Polarization

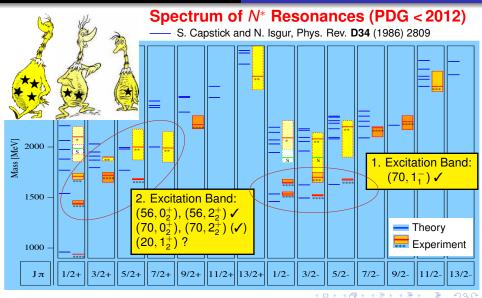
Proton & Neutron Targets

Data are still difficult to interpret.


Why are Polarization Observables Important?

without polarizer ... but there is more.

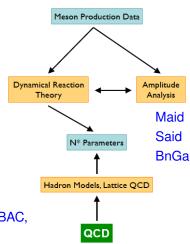

Atomic Spectrum of Hydrogen


Baryons are broad and overlapping ...

Spectrum of *N** **Resonances**

N*	$J^P(L_{2I,2J})$	2010	2014	
N(1440)	1/2 ⁺ (P ₁₁)	****	* * **	
N(1520)	3/2-(D ₁₃)	****	****	
N(1535)	$1/2^{-}(S_{11})$	****	* * **	
N(1650)	$1/2^{-}(S_{11})$	****	****	
N(1675)	5/2 ⁻ (D ₁₅)	****	****	
N(1680)	5/2 ⁺ (F ₁₅)	****	****	
N(1685)	, (13)		*	
N(1700)	$3/2^{-}(D_{13})$	***	***	
N(1710)	1/2 ⁺ (P ₁₁)	***	***	
N(1720)	$3/2^{+}(P_{13})$	****	* * **	
N(1860)	5/2 ⁺		**	
N(1875)	3/2-		* * *	
N(1880)	1/2 ⁺		**	
N(1895)	1/2-		**	
N(1900)	$3/2^{+}(P_{13})$	**	* * *	
N(1990)	$7/2^+ (F_{17})$	**	**	
N(2000)	5/2 ⁺ (F ₁₅)	**	**	
-N(2080)	D ₁₃	**		
N(2090)	S ₁₁	*		
N(2040)	3/2+		*	
N(2060)	5/2-		**	
N(2100)	1/2 ⁺ (P ₁₁)	*	*	
N(2120)	3/2-		**	12/2
N(2190)	$7/2^{-}(G_{17})$	****	* * **	13/2-
N(2200) N(2220)	D ₁₅ 9/2 ⁺ (H ₁₉)	**		
14(2220)	3/4 (1710)	* * **	* * **	\sim \sim

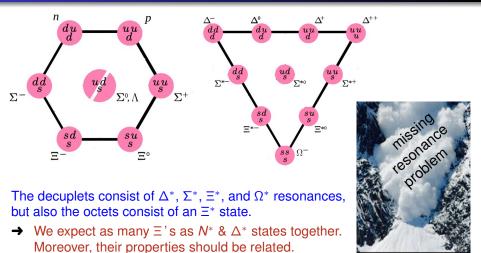
Extraction of Resonance Parameters in N* Physics


- Double-polarization measurements
- Measurements off neutron and proton to resolve isospin contributions:

 Re-scattering effects: Large number of measurements (and reaction channels) needed to extract full scattering amplitude.

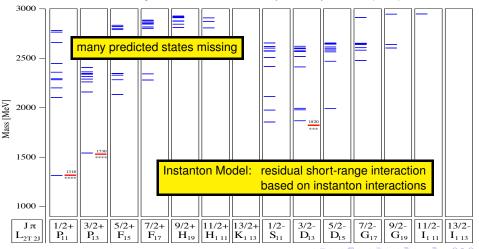
Coupled Channels

Jülich, Gießen, EBAC, Kent State, etc.

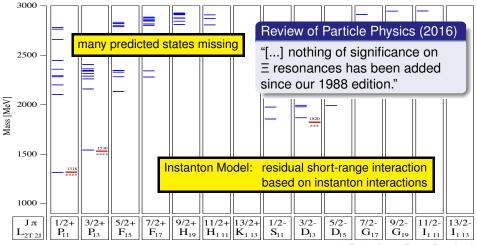

Open Issues in (Light) Baryon Spectroscopy

- What are the relevant degrees of freedom in (excited) baryons?
 - → Can the high-mass states be described by the dynamics of three flavored quarks? To what extent are diquark correlations, gluonic modes or hadronic degrees of freedom important in this physics?
- ② Can we identify unconventional states in the strangeness sector, e.g. $\Lambda(1405)$ or the N(1440)?
- What is the challenging situation with the (20, 1⁺₂) multiplet?
- Can we identify the leading interactions between the constituents?
- Do we understand the decay of high-mass baryon resonances? Is a similar dynamical mechanism applicable (hadronic d.o.f.)?
- What are the missing resonances and why are so many still missing?

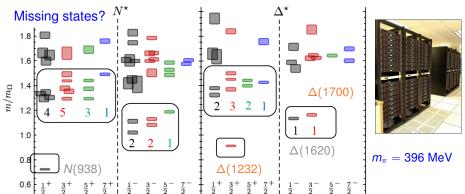
Hyperon spectroscopy will help shed some light on the fascinating challenges in QCD Resonance Physics.



Cascade Spectrum and Multiplets


Cascade Resonances: Status as of 2016

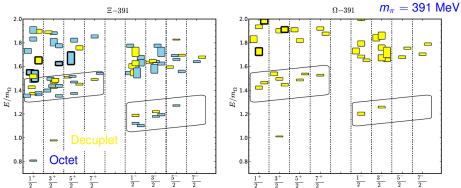
— U. Loering, B. Ch. Metsch, H. R. Petry, Eur. Phys. J. A10 (2001) 447-486


Cascade Resonances: Status as of 2016

— U. Loering, B. Ch. Metsch, H. R. Petry, Eur. Phys. J. A10 (2001) 447-486

The N^* and Δ^* Spectrum from Lattice QCD

R. Edwards et al., Phys. Rev. D 84, 074508 (2011); Phys. Rev. D 87, 054506 (2013)



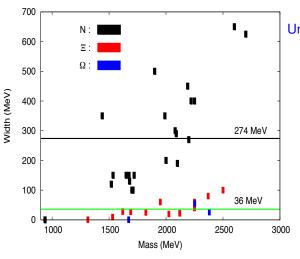
Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

→ Counting of levels consistent with non-rel. quark model, no parity doubling.

The Ξ^* and Ω^* Spectrum from Lattice QCD

R. Edwards et al., Phys. Rev. D 87, no. 5, 054506 (2013)

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry


→ Counting of states of each flavor and spin consistent with QM for the lowest negative- and positive-parity bands.

Outline

- Introduction
 - The Spectrum of Baryons
 - Lattice Calculations
- \bigcirc Properties of \equiv Resonances
 - Experimental Situation
 - Recent Efforts in Photoproduction
- Cascades at GlueX
 - Opportunities with Secondary K_L^0 Beams
- Summary and Outlook

Baryon Widths: The Experimental Point of View

Unique features of Ξ^* and Ω^* :

- Strangeness S > 1
- Narrow widths:

 $\Gamma_{=*} \approx 10 - 20 \text{ MeV}$?

Why are Cascade Resonances Narrow?

Possible explanations:

- Narrowness related to the number of light quarks
 - → Specifically, resonance width proportional to square of the number of light quarks: Γ_{N*,Δ*} : Γ_{Λ*,Σ*} : Γ_{Ξ*} ≈ 9 : 4 : 1 (D. O. Riska, Eur. Phys. J. A17, 297 (2003))
- Alternative explanation based on Cascade structure and decay modes (S. Capstick et al.)
 - Decays $\Xi^* \to \Xi \pi$ are suppressed relative to $N^*, \Delta^* \to N\pi$. Non-rel. one-gluon exchange model: Chao, Isgur, Karl, PR **D23**, 155 (1981)
 - Flavor symmetry requires s-quarks at ends of ρ oscillator; excitation
 energy is given by the square root of K/M where K will be equal for
 all quark pairs if the confinement potential is flavor independent.
 - ightharpoonup Excitation of ho costs less energy than the excitation of λ . (Argument only valid for lowest states.)

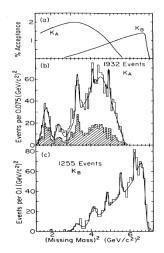
Measurements at BNL in $\overline{K^-p} ightarrow \overline{K^+_{ m slow}} + \overline{X^-}$

"Existence of ≡ Resonances above 2 GeV"

(C.M. Jenkins et al., Phys. Rev. Lett. 51, 951 (1983))

Observed ≡ States:

$$\Xi(1320)$$
 **** $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$


$$\Xi(1530)$$
 **** $I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$

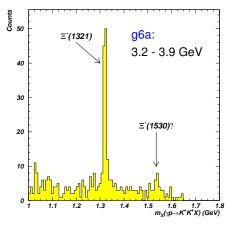
$$\Xi(1820)$$
 *** $I(J^P) = \frac{1}{2}(\frac{3}{2})$

$$\Xi(2030)$$
 *** $I(J^P) = \frac{1}{2} (\geq \frac{5}{2})$

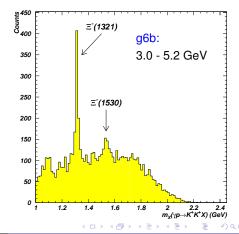
$$\Xi(2370)$$
 *** $I(J^P) = \frac{1}{2}(??)$

$$\Xi(2500)$$
 *** $I(J^P) = \frac{1}{2}(??)$

Excited Cascade Resonances at BaBar


BaBar collaboration has recently studied the $\Xi(1530)$ resonance in the decay $\Lambda_c^+ \to K^+ \Xi(1530)^0 \to K^+ (\Xi^- \pi^+)$ (V. Ziegler, MENU 2007)

- Complementary to the search in the reaction $\gamma p \to K^+(\Xi^-\pi^+)$
- Dalitz plot shows only one dominant structure: $\Xi(1530)^0 \to \Xi^- \pi^+$ • Spin-parity analysis favors a $J^P = 3/2^+$ assignment
- Evidence for *S-P*-wave interference in the $\Xi^-\pi^+$ system provides hints for possible $\Xi(1690)$ production
- Further indications for the $\Xi(1690)$ state have been found in the study of $\Lambda_c^+ \to \Lambda K_S K^+$
 - → BaBar data favor a spin-1/2 assignment at the 56.4 % C.L.


CLAS g6 Runs

First exclusive photoproduction of Ξ^-

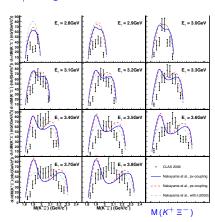
J. Price et al., PRC 71, 058201 (2005)

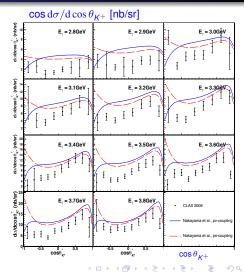

Look for $\gamma p \rightarrow K^+K^+(X)$ with B = +1, Q = -1, S = -2

CLAS g11a Run

More data mining based on much higher statistics

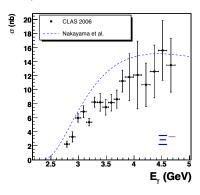
Guo et al., PRC 76, 025208 (2007)

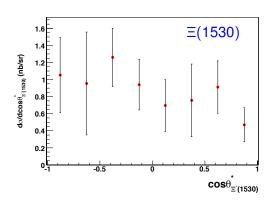



Reaction $\gamma p \rightarrow K^+K^+(X)$

- Very strong ≡(1320) signal
- Clear signal for $\Xi(1530)$
- Ratio N_≡ / N_{≡(1530)} ≈ 10 : 1
 - → About the same as for the CLAS-g6 data.

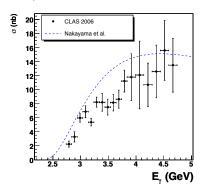
CLAS g11a Run: Differential Cross Sections

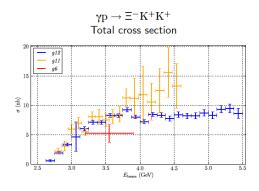

E_{γ} range of 2.75 - 3.85 GeV



CLAS g11a: Cross Sections of Ξ^- and $\Xi(1530)$

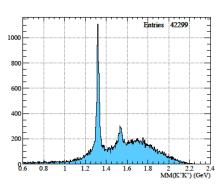
E_{γ} range of 2.75 - 4.75 GeV

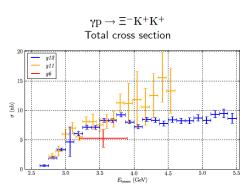



K. Nakayama, Y. Oh, and H. Haberzettl, Phys. Rev. C74, 035205 (2006)

CLAS g12: Total Cross Section of Ξ^- (preliminary)

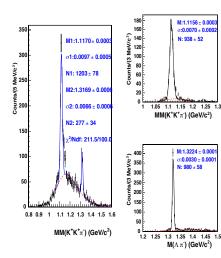
E_{γ} range of 2.75 - 4.75 GeV



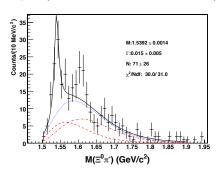

K. Nakayama, Y. Oh, and H. Haberzettl, Phys. Rev. C74, 035205 (2006)

CLAS g12: Total Cross Section of Ξ^- (preliminary)

Johann Goetz (CLAS Collaboration), UCLA, Ph.D. Thesis



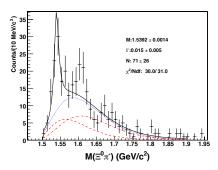
Upper Limits (integrated over 3.5-5.4 GeV):


(1) Ξ (1620): 0.78 nb (2) Ξ (1690): 0.97 nb

(3) $\Xi(1820)$: 1.09 nb

CLAS g11a: Excited States in $\gamma p \to K^+K^+\pi^-(X)$

- Only Ξ(1530) statistically significant
- **2** Ξ (1620) signal "plausible", but simulated K^{*0} events also peak in 1600 MeV/ c^2 region ($\gamma p \to K^+ K^{*0} \Xi^0, K^{*0} \to K^+ \pi^-$)

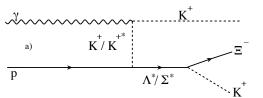


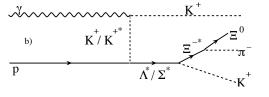
CLAS g11a: Excited States in $\gamma p \to K^+K^+\pi^-(X)$

From the paper: Although a small enhancement is observed in the $\Xi^0\pi^-$ invariant mass spectrum near the controversial 1-star Ξ^- (1620) resonance, it is not possible to determine its exact nature without a full partial wave analysis.

Need high-statistics, high-energy data from an experiment designed to see Ξ states:

- 3- or 4-track trigger
- Reconstruction of full decay chain
- Higher photon energy
- Improved detectors
- → CLAS 12 and GlueX at Jefferson Lab (L. Guo's talk on Opportunities at CLAS12)



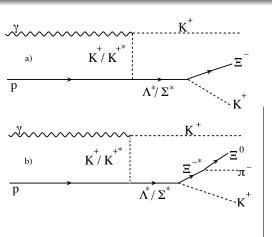

Outline

- Introduction
 - The Spectrum of Baryons
 - Lattice Calculations
- ② Properties of ≡ Resonances
 - Experimental Situation
 - Recent Efforts in Photoproduction
- Cascades at GlueX
 - Opportunities with Secondary K_L⁰ Beams
- Summary and Outlook

Possible Production Mechanisms

$$K^+(\Xi^-K^+),\; K^+(\Xi^0K^0),\; K^0(\Xi^0K^+)$$

→ Cross sections, beam asymmetries (similar to $p \pi \pi \& p KK^*$)


Production of excited states via a

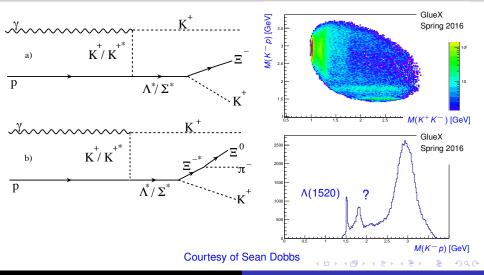
- forward-going K^0 meson
 - → K^0 ($\Xi^- \pi^+$) K^+ , etc.
- 2 forward-going K^+ meson
 - → $K^+ (\equiv^- \pi^+) K^0$, $K^+ (\equiv^0 \pi^-) K^+$, etc.

* W. Roberts et al., Phys. Rev. C **71**, 055201 (2005)

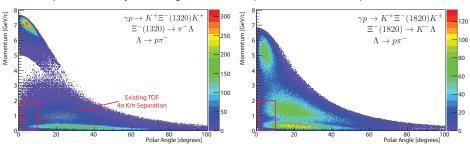
Possible Production Mechanisms

$$K^+(\Xi^-K^+),\ K^+(\Xi^0K^0),\ K^0(\Xi^0K^+)$$

→ Cross sections, beam asymmetries (similar to *p* ππ & *p* KK*)


At other facilities (for comparison):

$$\begin{array}{lll} {\cal K}^- p \to {\cal K}^+ \, \Xi^{*-} & \text{J-PARC} \\ {\cal K}_L \, p \to {\cal K}^+ \, \Xi^{*0} & \text{Hall D ?} \\ p \, p \to \Xi^* \, X & \text{LHCb} \\ \overline{p} \, p \to \Xi^* \, \overline{\Xi} & \overline{p} \text{ANDA} \\ e^+ \, e^- \to \Xi^* \, X & \text{Belle II, BES III} \end{array}$$


* W. Roberts *et al.*, Phys. Rev. C **71**, 055201 (2005)

Possible Production Mechanisms

GlueX Proposal on "Decays to Strange Final States" (JLab PAC 39, 40 & 42)

Efficiency should be adequate for conducting a study of excited Ξ states with the baseline detector:

Detailed studies of the production, especially of the ground state \(\existsiz'\)s, and a
parity measurement* will likely require enhanced kaon identification in the
forward direction → Components of the BaBar DIRC for GlueX.

^{*} e.g. Nakayama *et al.*, Phys. Rev. C **85**, 042201 (2012)

The Ξ octet ground states (Ξ^0 , Ξ^-) will be challenging to study via exclusive t-channel (meson exchange) production. The typical final states have kinematics for which the baseline GlueX detector has very low acceptance due to:

- the high-momentum forward-going kaon and
- the relatively low-momentum pions produced in the ≡ decay.

The production of the Ξ decuplet ground state, Ξ (1530), and other excited Ξ 's decaying to $\Xi\pi$ results in a lower momentum kaon at the upper vertex, and these heavier Ξ states produce higher momentum pions in their decays.

The lightest excited Ξ states are expected to decouple from $\Xi\pi$ and can be searched for and studied also in their decays to $\Lambda \overline{K}$ and $\Sigma \overline{K}$:

The Ξ octet ground states (Ξ^0 , Ξ^-) will be challenging to study via exclusive *t*-channel (meson exchange) production. The typical final states have kinematics for which the baseline GlueX detector has very low acceptance due to:

- the high-momentum forward-going kaon and
- the relatively low-momentum pions produced in the ≡ decay.

The production of the Ξ decuplet ground state, Ξ (1530), and other excited Ξ 's decaying to $\Xi\pi$ results in a lower momentum kaon at the upper vertex, and these heavier Ξ states produce higher momentum pions in their decays.

The lightest excited Ξ states are expected to decouple from $\Xi\pi$ and can be searched for and studied also in their decays to $\Lambda \overline{K}$ and $\Sigma \overline{K}$:

$$\gamma p \to K Y^* \quad \to \quad K^+ \left(\overline{K} \Lambda \right)_{\equiv^{-*}} K^+, \quad K^+ \left(\overline{K} \Lambda \right)_{\equiv^{0*}} K^0, \quad K^0 \left(\overline{K} \Lambda \right)_{\equiv^{0*}} K^+,$$

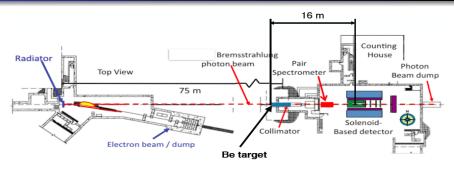
$$\gamma p \to K Y^* \quad \to \quad K^+ \left(\overline{K} \Sigma \right)_{\equiv^{-*}} K^+, \quad K^+ \left(\overline{K} \Sigma \right)_{\equiv^{0*}} K^0, \quad K^0 \left(\overline{K} \Sigma \right)_{\equiv^{0*}} K^+.$$

The Ξ octet ground states (Ξ^0 , Ξ^-) will be challenging to study via exclusive *t*-channel (meson exchange) production. The typical final states have kinematics for which the baseline GlueX detector has very low acceptance due to:

- the high-momentum forward-going kaon and
- the relatively low-momentum pions produced in the ≡ decay.

The production of the Ξ decuplet ground state, Ξ (1530), and other excited Ξ 's decaying to $\Xi\pi$ results in a lower momentum kaon at the upper vertex, and these heavier Ξ states produce higher momentum pions in their decays.

The lightest excited Ξ states are expected to decouple from $\Xi\pi$ and can be searched for and studied also in their decays to $\Lambda \overline{K}$ and $\Sigma \overline{K}$:


Expected yields of Ξ states using (PAC 40 proposal):

$$N = \epsilon \sigma n_{\gamma} n_{t} T$$
 where

$$\sigma_{\Xi(1320)}=$$
 15 nb and $\sigma_{\Xi(1530)}=$ 2 nb at $E_{\gamma}=$ 5 GeV $\epsilon_{\Xi(1820)}\approx 30\,\%$ (BDT: signal purity 0.9)

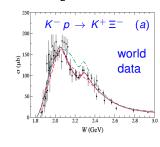
- → 800,000 Ξ⁻(1320) events 100,000 Ξ⁻(1530) events 90,000 K⁺K⁺K⁻Λ events (based on PYTHIA)
- → At least x10 more statistics than previous CLAS result.

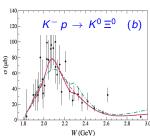
Opportunities with Secondary K_i^0 Beams in Hall D

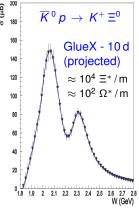
K_L^0 mesons from collimated photon beam on a Be target ($R=2~{\rm cm},~L=40~{\rm cm}$)

- $\Delta L \approx$ 16 m (between Be & LH₂ targets); thick lead absorber to stop photons.
 - $\approx 2000 \ K_L^0 / \text{sec} \ (x10 \ \text{higher than in LASS experiment at SLAC}).$
- Resolution of $\Delta p/p \approx 0.3 \,\%$ for K_L^0 momenta based on TOF.
- Reduced n rate compared to LASS.

Opportunities with Secondary K_L^0 Beams in Hall D


Possible reactions to be studied (elastic and charge-exchange reactions):


- 2- & 3-body reactions producing S = -1 hyperons
- 2-body reactions producing S = -2 hyperons


→
$$K_L^0 \rho \to K^+ \Xi^0$$
; $\pi^+ K^+ \Xi^-$; $K^+ \Xi^{0*}$; $\pi^+ K^+ \Xi^{-*}$

ullet 3-body reactions producing S=-3 hyperons

$$\rightarrow K_L^0 p \rightarrow K^+ K^+ \Omega^-; K^+ K^+ \Omega^{-*}$$

Outline

- Introduction
 - The Spectrum of Baryons
 - Lattice Calculations
- ② Properties of ≡ Resonances
 - Experimental Situation
 - Recent Efforts in Photoproduction
- Cascades at GlueX
 - Opportunities with Secondary K_I⁰ Beams
- Summary and Outlook

Summary and Outlook

Baryon Spectroscopy: Are we there, yet? Certainly not ...

New era in the spectroscopy of strange baryons (GlueX, LHCb, PANDA, ...)

- Mapping out the spectrum of ≡ baryons is the primary motivation (including parity measurements); some hope for peak hunting.
- Ground-state Ξ in $\gamma p \to KK \Xi$ will allow the spectroscopy of Σ^*/Λ^* states.

The multi-strange baryons provide a missing link between the light-flavor and the heavy-flavor baryons. Also:

- **1** Do the lightest excited Ξ states in certain partial waves decouple from the $\Xi\pi$ channel, confirming the flavor independence of confinement?
- E baryons as a probe of excited hadron structure?
 - → Measurements of the isospin splittings in spatially excited Ξ states appear possible for the first time (similar to n-p or $\Delta^0 \Delta^{++}$).

Acknowledgement

This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-92ER40735.

Introduction
Properties of Ξ Resonances
Cascades at GlueX
Summary and Outlook

Backup Slides

SU(3) Flavor Symmetry

 $SU(3)_F$ symmetry is broken by the strange-light quark mass difference

→ Corrections in quark models are substantial

However:

 Some static properties, such as the masses of the baryons, are found to obey SU(3)_F symmetry:

$$\Delta m[N(1440)\frac{1}{2}^{+} - N(939)\frac{1}{2}^{+}] \approx \Delta m[\Lambda(1600)\frac{1}{2}^{+} - \Lambda(1115)\frac{1}{2}^{+}]$$

- Also some dynamic properties exhibit SU(3)_F symmetry:
 - Similarity of near-threshold cross sections of the reactions $\pi^- p \to \eta n$ and $K^- p \to \eta \Lambda$ (S. Prakhov *et al.*, Phys. Rev. **C72**, 015203 (2005))
 - Similarity in the Dalitz plots for the processes $\pi^- p \to \pi^0 \pi^0 n$ and $K^- p \to \pi^0 \pi^0 \Lambda$ (S. Prakhov *et al.*, Phys. Rev. **C69**, 042202 (2004))

SU(3) Flavor Symmetry: Implications

Conclusion:

Parallel members of different multiplets should exhibit a similar mass difference Δm .

→ Unfortunately, we cannot compare with any Ξ states because the $2^{\text{nd}} \Xi(?) P_{11}(J^P = \frac{1}{2}^+)$ has not been found, yet.

However, the $SU(3)_F$ symmetric basis may not be ideal: (Everything is strongly mixed.)

- Better choice (S. Capstick): "uds" basis where you (anti-)symmetrize only in u, d quark degrees of freedom.
 - → Isospin much better symmetry than SU(3)_F.
- E.g.: $\phi_{\Lambda} = (ud du)s/\sqrt{2}$ $\phi_{\Sigma} = uus$, $(ud + du)s/\sqrt{2}$, dds In Ξ states, symmetrize only in ss pair: $\phi_{\Xi} = ssu$, ssd