Excited Hyperons at CLAS/CLAS12

Lei Guo Florida International University

n

Motivation

- Compared with the N* sector, the spectrum of hyperons receives less attention
 - For S=-1 sector, only 14 A, and 10 Σ states have been established
 - For S=-2 sector, only 6 Ξ states have been established
 - For S=-3 sector, only 2 Ω states have been established
- Most hyperon data came from kaon-beam experiments
- Photoproduction is a great alternative for strangeness production
 - Photon beam has intrinsic SS component
 - CLAS, CLAS12 and GlueX offers great opportunities in all hyperon sectors

QM predictions for S=-1 Hyeprons (>2.0GeV)

- Λ 1/2⁻ 2015, 2095, 2160, 2195, 2235, 2280
- Λ 3/2⁻ 2030, 2110, 2185, 2230, 2290
- Λ 5/2- 2180, 2225, 2240, 2295
- Λ 7/2⁻ 2150, 2230
- Σ 1/2⁻ 2110, 2155, 2165, 2205, 2260, 2275
- Σ 3/2⁻ 2120, 2185, 2200, 2215, 2265, 2290
- Σ 5/2⁻ 2205, 2250, 2270, 2280
- Σ 7/2⁻ 2245

S. Capstick et al., PRD34, 2809 (1986)

Plenty are missing; Can we discover at least one new state?

What have been established?

State	Rating
Λ(2100) 7/2-	* * * *
Λ(2110) 5/2+	****
Λ(2350) 9/2+	* * *
Σ(2030) 7/2+	* * * *
Σ(2250) ??	***

J. Beringer et al, (PDG), PRD86, 010001, (2012)

LQCD calculation for the S=-1 Hyperon Spectra

Number of states compatible with QM predictions: Just as many missing states!

S=-1 Hyperons can be also probed via the ΞK channel!

R. Edwards et al. "Flavor structure of the excited baryon spectra from lattice QCD", PRD 87, 054506(2013)

Various Unseen/Rare Decay Modes of Hyperons

• Y*→ΞK

- Believed to be the leading contributor to Ξ photoproduction (Oh, Nakayama et al)
- Never been established;
- Upper Limit was set for $\Lambda(2100)$ and $\Sigma(2030)$
- $Y^* \rightarrow \Lambda/\Sigma + \eta$

 $\Lambda(1670) \rightarrow \Lambda \eta, \Sigma(1750) \rightarrow \Sigma \eta$

- Radiative Decay of exited hyperons
 - Only two have been measured
 - Σ(1385), and Λ(1520)
- $Y^* \rightarrow \Lambda/\Sigma + \eta'$
 - Never been seen

Production Mechanism for Ground States:

Most data from CLAS Λ seems to follow a single K trajectory Σ cannot be explained by Kaon exchange Higher energy data missing (GlueX/CLAS12) arXiv:1609.03879v2 hep-ph Freese et al. (2016)

Production Mechanism for Ground States: Double-Exponential Fits

- Λ Photoproduction dominated by K exchange;Σ photoproduction:
- 2 photoproduction: comaprable contributions from K and K* exchange Excited hyperons?

Production Mechanisms of Hyperons

Two Pseudoscalar Meson Photproduction: ππ VS KK (non-resonance region)

Beam Helicity Asymmetry:ππ VS KK

Strautch et al., PRL 95, 162003 (2005)

(not necessarily fair comparisons)

Beam Helicity Asymmetry: Dependence on invariant masses

Fourier Coefficient dependence on the plane definitions

The dominant term $(\sin\phi)$ coefficient seems independent on the planne definition Similar observation for the $\pi\pi$ chanel Higher terms do not exhibit this independence

Radiative Decay of Excited Hyperons

CLAS Results in PDG

Σ(1385)→Λγ $\Gamma(\Lambda\gamma)/\Gamma(\Lambda\pi)$ 1.42±0.12^{+0.11}_{-0.07} 624±25 KELLER 11 CLAS 1.53±0.39^{+0.15}_{-0.24} 61 TAYLOR 05 CLAS $\Lambda(1520)$ →Λγ PRC 71, 054609 (2005)

 $\frac{\Gamma(\Lambda\gamma)}{\Gamma_{total}} \xrightarrow{0.1^{c_1}}{10.7 \pm 2.9^{+1.5}_{-0.4}} \xrightarrow{32} \text{TAYLOR} \xrightarrow{0.5} \text{CLAS}$ The radiative decay is related to the meson Cloud effect on the magnetic moment, and the quark wavefunctions of hyperons Others? None observed

g12 prospect

Radiative Decay of Excited Hyperons

$\gamma p \rightarrow K^+ \Lambda(\eta / \omega / \eta')$? A tentative look

 $Y^* \rightarrow \Lambda/\Sigma + \eta$ Two states reported $Y^* \rightarrow \Lambda/\Sigma + \omega$ Some limits established $Y^* \rightarrow \Lambda/\Sigma + \eta'$ Never been seen

Beam helicity asymmetry could be studied Statistics limited for (PWA) Future experiments (CLAS12/GlueX) Could also be due to strange meson's decay to $K^+\eta/\omega/\eta'$

A polarization in $K^+\Lambda/K^{*+}\Lambda$ photoproduction

- 100% polarization in K⁺ Λ photoproduction
- Various models suggest similar behavior in
- $K^{*+}\Lambda$ photoproduction

Extending the Λ polarization measurements

Polarization observables important to extract the missing nucleon resonances New CLAS data (g12) can reduce the statistical uncertainty by a factor of 3!

Polarization extraction methods improved (2d Fits/Maximum Log Likelyhood) Future data can extend the measurement at higher energies

Ξ^- induced olarization in photoproduction

First time measurement! (Bono Ph.D Thesis, 2014) Collaboration review in progress.

Ξ^- Polarization in photoproduction

- Results VS prediction: Limited by statistics
 - R~0.3 VS R~1 for Λ results
- Unable to distinguish models
- Future data expects multiple orders of magnitude more statistics GlueX CLAS12: Very Strange Experiment

Theoretical curves from Nakayama et al

Model variants: Pseudoscalar/Pseudovector coupling/High-mass hyperons Man et al., PRC83, 055201, (2011) Nakayama et al., PRC74, 035205 (2006)

Summary

- Hyperon Spectroscopy offers multiple opportunites for S=-1 sector
- CLAS data already has multiple promises
 - First measurement of pK⁺K⁻ beam helicity asymmetry measurements
 - First measurement of Ξ^- polarization in photoproduction
 - Radiative decays of excited hyperons could be extended
- CLAS12/GlueX would be gold mines for hyperons
 - − Y* $\rightarrow \Lambda \eta / \omega / \eta'$
 - Ξ polarization: Much higher statistics; PWA of Y->K Ξ
 - Extend the measurement for ground states at higher energies

Acknowledgement

- Organizers and Jefferson Lab
- This work is supported by DOE grant 800004726