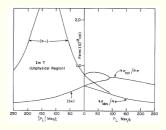
Structure of Antikaon-Nucleon Scattering

Maxim Mai

(The George Washington University)


M. Mai and U. G. Meißner, Nucl. Phys. A 900 (2013)

M. Mai and U.-G. Meißner, Eur. Phys. J. A 51 (2015)

L. Roca, M. Mai, E. Oset and U.-G. Meißner, Eur. Phys. J. C 75 (2015)

A. Cieplý, M. Mai, U.-G. Meißner and J. Smejkal, Nucl. Phys. A 954 (2016)

• "Four sets of scattering amplitudes are obtained consistent with all the present data on K--proton interactions and the possibilities for discrimination between them are discussed. Two of these amplitudes are found to correspond to a **resonance-like** behavior just within the unphysical region."

Dalitz, Tuan (1959)

⇒ What is this resonance? (S = -1; I = 0; J^p = $1/2^{-(?)}$; M ~ 1410 – 18i MeV)

A. Dynamically generated from coupled-channel effects

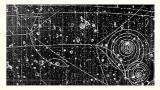
B

$ \begin{array}{l} \rightarrow \text{K-matrix} \\ \rightarrow \text{unitarized coupled-channel amplitude fn} \\ \qquad $	Dalitz, Tuan (1960!) com ChPT Kaiser, Siegel, Weise(1995) Oller, Meißner (2001)
. Quark model \rightarrow genuine qqq state	Capstick, Isgur (1986)
PDG favors A	Lattice QCD favors A
PDG MiniReview (2015)	Hall et al. (2014)

Experimental situation (no photons)

✓ Total cross sections on $K^-p \to K^-p, \bar{K}^0n, ...$

- \rightarrow bubble chamber experiments
- $\rightarrow~$ huge error bars
- \rightarrow large deviations btw. experiments


✓ πΣ mass distribution

- $\rightarrow~2\mathrm{m}$ bubble chamber @ CERN
- \rightarrow low energy resolution
- \rightarrow multistep production \Rightarrow new parameter
- ✓ Strong energy shift and width in $\bar{K}H$ ⇒ a_{K^-p} from modified Deser-type relation
- **Plans for an upgrade to** $\bar{K}D$ $\Rightarrow a_1, a_0$ from Faddeev equations/EFT

× pp collisions

 \Rightarrow high quality data, but theoretical analysis very intricate

LNL (1960s), Rutherford Lab(1980s), ...

Hemingway (1985)

Bazzi et al.(2011) Meißner, Raha, Rusetsky (2004)

Shevchenko (2014).../MM et al.(2014)...

COSY (2008) HADES (2013)

Scattering amplitude - framework

• ChPT is an appropriate tool to study low-energy hadronic interactions.

Weinberg (1979) Gasser, Leutwyler (1981)

Here it has to fail! Because:

- 1. Kaon mass is large
- 2. Relevant thresholds are widely separated
- 3. Resonance just below $\bar{K}N$ threshold
- Non-perturbative methods:
 - \rightarrow Dispersion relations, N/D, Roy-Steiner equations
 - $\rightarrow\,$ K-Matrix, JÜLICH-BONN model, ...
 - \rightarrow IAM, Chiral Unitary Models, ...
- Chiral Unitary Models driving term

 $V(\mathbf{q}_2, \mathbf{q}_1; p) = \mathbf{A}_{WT}(\mathbf{q}_1 + \mathbf{q}_2) + Born(s) + Born(u)$

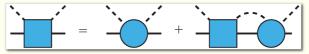
$$+A_{14}(q_1 \cdot q_2) + A_{57}[q_1, q_2] + A_M + A_{811}(q_2(q_1 \cdot p) + q_1(q_2 \cdot p))$$

 \Rightarrow $A_{..}$ depend on low energy constants \Rightarrow free parameters

 \rightarrow convergence

 \rightarrow convergence

 \rightarrow non-perturbative effect


Scattering amplitude - re-summation

• Bethe-Salpeter equation

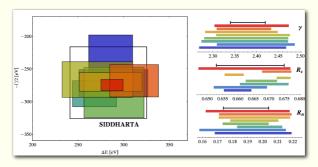
Salpeter et al.(1951)

 $\rightarrow~$ Intermediate particles are $\mathit{off}\text{-}\mathit{shell}$

 \Rightarrow exactly corresponding to a series of Feynman loop diagrams

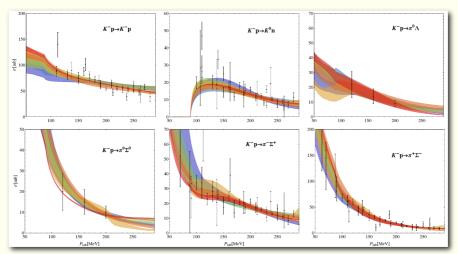
 \Rightarrow BSE can be solved analytically, if(f) $V\sim$ local terms $_{\rm Bruns,\ MM,\ Meißner\ (2011)}$ \Rightarrow drop the Born graphs

- \rightarrow Bubble chain in s direction \Rightarrow topologies are missing
 - \Rightarrow scale dependence **does not** cancel out \Rightarrow additional model parameters
- \rightarrow Off-shell effects are moderate

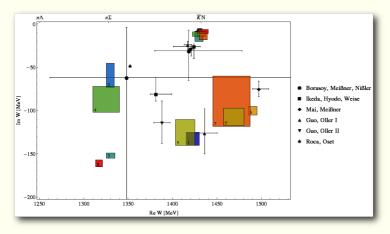

MM, Meißner (2013)

 \Rightarrow use on-shell approximation first (scan of 20-dim. parameter space)

Fits and results


- Randomly chosen sets of starting values (# $\approx 10000)$
- Solutions having poles on I. RS sorted out
- **Results**: 8 best fits obtained with similar $\chi^2_{d.o.f.}$

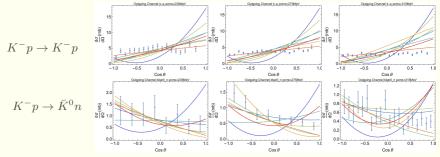
Fit $\#$	1	2	3	4	5	6	7	8
$\chi^2_{\rm d.o.f.}$	1.35	1.14	0.99	0.96	1.06	1.02	1.15	0.90


- $\rightarrow~{\rm error}$ bars are twofold
 - 1. parameter: variation of best fit parameters, such that $\Delta \chi^2_{d.o.f.} < 1.15$
 - 2. systematic: spread of solutions

Results

 \rightarrow similar cross sections

• Analytic continuation to the complex energy plane



- $\rightarrow~$ two poles in all solutions on II. RS
- $\rightarrow\,$ stable position of the narrow pole
- $\rightarrow~$ position of the second pole is rather unstable

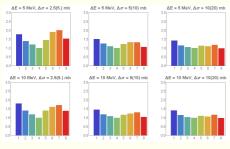
Can we reduce this ambiguity? PART 1

1) Differential cross sections

- $\rightarrow~$ Chiral Unitary Meson-Baryon amplitude has a genuine P-wave part
- \rightarrow Does the prediction agree with data?

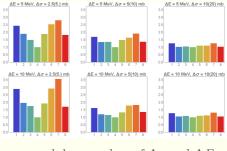
- $\rightarrow~$ solution #1 seems to deviate strongly from data
- $\rightarrow~$ further constraints require a refit

Mast et al. (1976)


[analyzed by D. Sadasivan]

Can we reduce this ambiguity? PART 2

2) New data on total cross sections - synthetic data from fit #4: $p_{lab} = 100...300 \text{ MeV}, \Delta E = 5, 10 \text{ MeV}, \Delta \sigma = 2.5, 5, 10$


Compare $\chi^2_{d.o.f.}/\chi^2_{d.o.f.}(#4)$

- $\rightarrow~$ threshold ratios, SIDDHARTA
- $\rightarrow~$ pseudo and real scattering data

⇒ $\Delta \sigma < 5(10)$ mb and $\Delta E < 10$ MeV desired

- \rightarrow threshold ratios, SIDDHARTA
- \rightarrow pseudo scattering data

 $\Rightarrow \text{ much larger values of } \Delta\sigma \text{ and } \Delta E$ are sufficient

Can we reduce this ambiguity? PART 3

- 3) CLAS data on $\gamma p \to K^+ \pi \Sigma$
 - $\rightarrow \pi \Sigma$ mass distribution
 - \rightarrow electro- and photoproduction:
 - $\gamma p \to (K^+) \Lambda(1405) \to \pi \Sigma$
 - $\rightarrow J^P = \frac{1}{2}^{-}$ "confirmed" experimentally
 - $\rightarrow~$ high statistics and good angular resolution
- ⇒ theoretical analysis requires a photoproduction amplitude

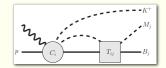
Photoproduction amplitude

I Gauge invariant approaches

- 1. "Turtle" approximation Gross, Riska (1987), Kvinikhidze et al.(1999) Borasoy et al.(2005)
 - attach photon everywhere to $\mathit{off}\text{-}\mathit{shell}$ hadronic amplitude
 - single meson case is done for the NLO-kernel
- 2. Gauged vertices

MM et al.(2012) Nakamura, Jido (2014)

- photon attached to meson production amplitude at the tree level
 - \Rightarrow at the LO driving term no good fit to CLAS data
 - \Rightarrow good fit with additional vector meson d.o.f. 15 per energy bin!

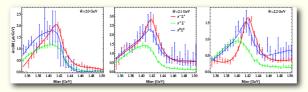

Oset, Roca (2013)

II Test model

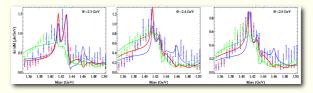
- most simple ansatz to test the hadronic solution:

 $\mathcal{M}_j(W, M_{\pi\Sigma}) = C_i(W) \cdot G_i(M_{\pi\Sigma}) \cdot T_{i \to j}^{on}(M_{\pi\Sigma})$

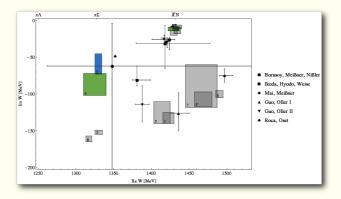
- flexible enough for the CLAS data \Rightarrow less free parameters (15 \mapsto 10)
- no gauge invariance, parameters are not physical
 - \Rightarrow global fit is meaningless
 - \Rightarrow **conservative** test of the hadronic solutions



Results


• Test of hadronic solutions

Fit #	1	2	3	4	5	6	7	8
$\chi^2_{\rm d.o.f.}$ (hadr.) $\chi^2_{\rm p.p.}$ (CLAS)	1.35	1.14	0.99	0.96	1.06	1.02	1.15	0.90
$\chi^2_{\rm p.p.}$ (CLAS)	3.18	1.94	2.56	1.77	1.90	6.11	2.93	3.14


• Hadronic fits #2, #4 and #5 lead to good fits

• Hadronic fits #1, #3, #6, #7 and #8 do not!!!

 \Rightarrow after comparison with Hemingway data $(K^-p\to\Sigma^+\pi^-\pi^+\pi^-)$ two solutions remain: #2 and #4

 \Rightarrow both solutions have similar pole positions

... also similar to the estimation by Oset and Roca (2013)

 \Rightarrow universal feature demanded by CLAS data!

- The <u>NLO</u> chiral unitary $\bar{K}N$ amplitude used to analyze hadronic data
- 8 solutions are found in the *on-shell* approximation
 - \rightarrow the position of the narrow pole is quite certain
 - \rightarrow broad pole has large systematic uncertainty
- Fit to differential cross section is possible ... work in progress
- Photoproduction amplitude constructed from the hadronic part
 → simple, but very flexible ansatz ... conservative test
 → 5 solutions disagree with the CLAS data, 2 remain after all tests
- New data can actually reduce the ambiguity of the $\bar{K}N$ amplitude \rightarrow desired accuracy is not a part of science-fiction