CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Department of Physics Kent State University Kent, OH 44242 USA

November 16, 2016

イロト イヨト イヨト イヨト

3

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

Quark Model

- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Summary and Conclusions
- Acknowledgments

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Summary and Conclusions
- Acknowledgments

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Summary and Conclusions
- Acknowledgments

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Summary and Conclusions
- Acknowledgments

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Summary and Conclusions
- Acknowledgments

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Summary and Conclusions
- Acknowledgments

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

- Quark Model
- Missing Resonances
- PWA Formalism
- Discussion
- Current Data
- Summary and Conclusions
- Acknowledgments

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

Quark Shell Model for Baryons

It is convenient to describe baryons with a "quark shell model" in which each quark moves in a mean field generated mainly by the gluons in the hadron. Lattice gauge calculations have shown that the predicted spectrum of excited states is more-or-less consistent with what is expected from SU(6) symmetry.

In such models, baryons are grouped into three possible SU(6) multiplets:

$$56_S = {}^{2}8 + {}^{4}10$$

$$70_M = {}^{2}8 + {}^{4}8 + {}^{2}10 + {}^{2}1$$

$$20_A = {}^{2}8 + {}^{4}1$$

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Model

Missing Resonances PWA Formalism Discussion Current Data Summary Acknowledgment

SU(6) Multiplets in the Harmonic-Oscillator Model for Baryons*

$$N = 0 \qquad \psi(\mathbf{56}, 0^{+}) = (1s)^{3}$$

$$N = 1 \qquad \psi(\mathbf{70}, 1^{-}) = (1s)^{2}(1p)$$

$$N = 2 \qquad \psi(\mathbf{56}, 0^{+}) = \sqrt{\frac{2}{3}}(1s)^{2}(2s) + \sqrt{\frac{1}{3}}(1s)(1p)^{2}$$

$$\psi(\mathbf{70}, 0^{+}) = \sqrt{\frac{1}{3}}(1s)^{2}(2s) + \sqrt{\frac{2}{3}}(1s)(1p)^{2}$$

$$\psi(\mathbf{56}, 2^{+}) = \sqrt{\frac{2}{3}}(1s)^{2}(1d) - \sqrt{\frac{1}{3}}(1s)(1p)^{2}$$

$$\psi(\mathbf{70}, 2^{+}) = \sqrt{\frac{1}{3}}(1s)^{2}(1d) - \sqrt{\frac{2}{3}}(1s)(1p)^{2}$$

$$\psi(\mathbf{20}, 1^{+}) = (1s)(1p)^{2}$$

*D. Faiman and A.W. Hendry, PRD 173, 1720 (1968).

D. Mark Manley

Introduction

Quark Model

Missing Resonances PWA Formalism Discussion

Current Data

Summary

N=3 Baryons

The eight SU(6) multiplets that are allowed in the N = 3 band are:

(56 , 1 ⁻)	(70 , 2 ⁻)	(56 , 3 ⁻)
(70 , 1 ⁻)		(70 , 3 ⁻)
(70 , 1 ⁻)		(20 , 3 ⁻)
(20 , 1 ⁻)		

and the allowed shell-model configurations are:

$$\begin{array}{ccc} (1s)^2(2p) & L = 1\\ (1s)^2(1f) & L = 3\\ \hline (1s)(1p)(2s) & L = 1\\ (1s)(1p)(1d) & L = 1, 2, 3\\ \hline (1p)^3 & L = 1, 3 \end{array}$$

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

lissing Resonances

PWA Formalism

Discussion

Current Data

Summary

Splitting Pattern of SU(6) Multiplets*

FIG. 1. Splitting pattern caused by the anharmonic perturbation U for the N=2 multiplets and some of the N=3 multiplets using the parameters of Ref. 7.

*K.C Bowler et al., PRD 24, 197 (1981).

4) Q (?

- Pure hyperon states in the N = 2 (**20**,1⁺) multiplet cannot couple to $\overline{K}N$ via a single-quark transition operator. They will not be considered further.
- Pure hyperon states in the N = 3 (20,1⁻), (70,2⁻), and (20,3⁻) multiplets cannot couple to KN via a single-quark transition operator. They will not be considered further.
- The next several slides compare experimental observations with predictions for low-lying states in the other multiplets (not including N = 3)

D. Mark Manley

Introduction

Quark Model

lissing lesonances

in the official

Discussion

Current Data

Summary

- ► Pure hyperon states in the N = 2 (20,1⁺) multiplet cannot couple to K̄N via a single-quark transition operator. They will not be considered further.
- Pure hyperon states in the N = 3 (20,1⁻), (70,2⁻), and (20,3⁻) multiplets cannot couple to KN via a single-quark transition operator. They will not be considered further.
- The next several slides compare experimental observations with predictions for low-lying states in the other multiplets (not including N = 3)

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

/lissing Resonances

WA Formalism

Discussion

Current Data

Summary

- ► Pure hyperon states in the N = 2 (20,1⁺) multiplet cannot couple to K̄N via a single-quark transition operator. They will not be considered further.
- Pure hyperon states in the N = 3 (20,1⁻), (70,2⁻), and (20,3⁻) multiplets cannot couple to KN via a single-quark transition operator. They will not be considered further.
- The next several slides compare experimental observations with predictions for low-lying states in the other multiplets (not including N = 3)

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Aissing Resonances

WA Formalism

Discussion

Current Data

Summary

N=0 (56,0⁺) Ground-State Baryons

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

² 8	N(939)	****	
1/2+	$\Lambda(1116)$	****	
	Σ(1193)	****	Missing Resonances
	Ξ(1322)	****	

⁴ 10	$\Delta(1232)$	****
3/2+	Σ(1385)	****
	Ξ(1530)	****
	Ω(1672)	****

N=1 (70,1⁻) Negative-Parity Excited States

²8 **** N(1535) $1/2^{-}$ $\Lambda(1670)$ **** Missina * Σ(1620) Resonances *** 三(1690) spin-parity undetermined

² 8	N(1520)	****
3/2-	Λ(1690)	****
	Σ(1670)	****
	Ξ(1820)	***

D. Mark Manley

N=1 (70,1⁻) Negative-Parity Excited States

- ⁴8 *N*(1650) ****
- 1/2⁻ Λ(1800) ***
- T(17E0) ***
 - $\Sigma(1750)$
 - Ξ(1950) *** spin-parity undetermined
- $\begin{array}{cccc}
 ^{4}8 & N(1700) & *** \\
 3/2^{-} & \Lambda \\ & \Sigma \\ & \Xi \\
 \end{array}$

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Mode

Missing Resonances

WA Formalism

Discussion

Current Data

Summary

N=1 (70,1⁻) Negative-Parity Excited States

²10 ²1 ∆(1620) **** **** $\Lambda(1405)$ $1/2^{-}$ Σ $1/2^{-}$ Ξ Ω 2**1** ²10 **** $\Delta(1700)$ **** Λ(1520) $3/2^{-}$ $\Sigma(1940)$ *** $3/2^{-}$ Ξ

Ω

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Mode

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

N=2 (56,0⁺) Positive-Parity Excited States

 $\begin{array}{cccc} {}^{2}8 & N(1440) & {}^{****} \\ 1/2^{+} & \Lambda(1600) & {}^{***} \\ & \Sigma(1660) & {}^{***} \\ & \Xi \end{array}$

⁴10 Δ(1600) *** $<math>3/2^+ Σ$ ΞΩ Ω Ω

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Mode

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

N=2 (56,2⁺) Positive-Parity Excited States

CAN K-LONG **BEAMS FIND** MISSING **HYPERON RESONANCES?**

D. Mark Manley

Missing Resonances

² 8	N(1720)	****
3/2+	Λ(1890)	****
	Σ	
	Ξ	

2 8	N(1680)	****
5/2+	Λ(1820)	****
	Σ(1915)	****

N=2 (56,2⁺) Positive-Parity Excited States

⁴ 10 1/2 ⁺	Δ(1910) Σ Ξ Ω	***	⁴ 10 3/2 ⁺	Δ(1920) Σ Ξ Ω	***
⁴ 10 5/2 ⁺	Δ(1905) Σ Ξ Ω	***	⁴ 10 7/2 ⁺	Δ(1950) Σ(2030) Ξ Ω	****

D. Mark Manley

ntroduction

Quark Mode

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

N=2 (70,0⁺) Positive-Parity Excited States

² 8 1/2 ⁺	N(1710) Λ(1810) Σ(1880) Ξ	*** *** **	⁴ 8 3/2 ⁺	$egin{array}{c} N \ \Lambda \ \Sigma \ \Xi \end{array}$	
² 10 1/2 ⁺	Δ(1750) Σ Ξ Ω	*	² 1 1/2 ⁺	Λ(1710)	*

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Model

Missing Resonances

WA Formalism

Discussion

Current Data

Summary

Acknowledgments

・ロト・日本・日本・日本・日本

N=2 (70,2⁺) Positive-Parity Excited States

⁴ 8 1/2 ⁺	N(1880) Λ Σ Ξ	**	⁴ 8 3/2 ⁺	N(1900) Λ Ξ	***
⁴ 8 5/2 ⁺	N(2000) Λ Σ Ξ	**	⁴ 8 7/2 ⁺	N(1990) Λ(2020) Σ Ξ	**

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Mode

Missing Resonances

WA Formalism

Discussion

Current Data

Summary

N=2 (70,2⁺) Positive-Parity Excited States

² 8 3/2 ⁺	N Λ Σ Ξ	² 8 5/2 ⁺	N(1860) Λ Σ Ξ	**	D. Mark Manley Introduction Quark Model Missing Resonances PWA Formalism
² 10 3/2 ⁺	$egin{array}{c} \Delta & \ \Sigma & \ \Xi & \ \Omega & \end{array}$	² 10 5/2 ⁺	Δ(2000) Σ Ξ Ω	**	Discussion Current Data Summary Acknowledgments
² 1 3/2 ⁺	Λ	² 1 5/2 ⁺	Λ(2110)	***	

イロト (部) (国) (国) (国)

CAN K-LONG

BEAMS FIND MISSING HYPERON RESONANCES?

Summary of Missing Resonances

(one-star states are included as "missing")

	N = 0	N = 1	N = 2
Ν	0	0	2
Δ	0	0	2
Λ	0	1	9
Σ	0	3	15
Ξ	0	3	19
Ω	0	2	8

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

PWA Formalism

- Here, we summarize some of the physics issues involved with K⁰₁p scattering.
- The differential cross section and polarization for K⁰_Lp scattering are given by

$$\frac{d\sigma}{d\Omega} = \lambda^2 (|f|^2 + |g|^2),$$
$$P\frac{d\sigma}{d\Omega} = 2\lambda^2 \text{Im}(fg^*),$$

where $\lambda = \hbar/k$, with *k* the magnitude of c.m. momentum for the incoming meson. Here $f = f(W, \theta)$ and $g = g(W, \theta)$ are the usual spin-nonflip and spin-flip amplitudes at c.m. energy *W* and meson c.m. scattering angle θ . CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Model

Missing Resonances

PWA Formalism

)iscussion

Current Data

Summary

Partial-Wave Expansion

In terms of partial waves, f and g can be expanded as

$$f(W,\theta) = \sum_{l=0}^{\infty} [(l+1)T_{l+} + lT_{l-}]P_l(\cos\theta),$$

$$g(W, \theta) = \sum_{l=1}^{\infty} [T_{l+} - T_{l-}] P_l^1(\cos \theta).$$

- Here *l* is the initial orbital angular momentum, $P_l(\cos \theta)$ is a Legendre polynomial, and $P_l^1(\cos \theta) = \sin \theta \times dP_l(\cos \theta)/d(\cos \theta)$ is an associated Legendre function.
- ► The total angular momentum for T_{l+} is $J = l + \frac{1}{2}$, while that for T_{l-} is $J = l \frac{1}{2}$.

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Model

Missing Resonances

PWA Formalism

iscussion

Current Data

Summary

Isospin Amplitudes

We may ignore small CP-violating terms and write

$$K_L^0 = \frac{1}{\sqrt{2}} (K^0 - \overline{K^0}),$$

$$K_S^0 = \frac{1}{\sqrt{2}}(K^0 + \overline{K^0}).$$

We have both *I* = 0 and *I* = 1 amplitudes for *KN* and *KN* scattering, so that amplitudes *T*_{*l*±} can be expanded in isospin amplitudes as

$$T_{l\pm} = C_0 T_{l\pm}^0 + C_1 T_{l\pm}^1,$$

where $T_{l\pm}^{I}$ are partial-wave amplitudes with isospin I and total angular momentum $J = l \pm \frac{1}{2}$, with C_{I} the appropriate isospin Clebsch-Gordon coefficients.

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

Isospin Amplitudes (cont'd)

$$\begin{split} T(K_L^0 p \to K_S^0 p) &= \frac{1}{2} \left(\frac{1}{2} T^1(KN \to KN) + \frac{1}{2} T^0(KN \to KN) \right) \\ &- \frac{1}{2} T^1(\overline{K}N \to \overline{K}N) \\ T(K_L^0 p \to \pi^+ \Lambda) &= -\frac{1}{\sqrt{2}} T^1(\overline{K}N \to \pi\Lambda) \\ T(K_L^0 p \to \pi^+ \Sigma^0) &= -\frac{1}{2} T^1(\overline{K}N \to \pi\Sigma) \\ T(K_L^0 p \to \pi^0 \Sigma^+) &= \frac{1}{2} T^1(\overline{K}N \to \pi\Sigma) \\ T(K_L^0 p \to K^+ \Xi^0) &= -\frac{1}{\sqrt{2}} T^1(\overline{K}N \to K\Xi) \end{split}$$

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

Acknowledgments

- Only Σ* resonances are formed as intermediate states in K⁰₁p reactions.
- $K_L^0 p \to K_S^0 p$ is not ideal for finding missing Σ^* states that couple weakly to $\overline{K}N$ because of nonresonant KN background and because amplitude involves $\overline{K}N$ in both initial and final states.
- The inelastic 2-body reactions that can be studied with a K⁰_L beam would be better probes for finding missing Σ* states due to isospin selectivity, absence of nonresonant KN background, and fact that their amplitudes only involve KN coupling in initial state.

D. Mark Manley

ntroduction

Quark Model

/lissing Resonances

WA Formalism

Discussion

Current Data

Summary

- To search for missing Σ^* states that couple weakly to $\overline{K}N$, use production reactions such as $K_L^0 p \to \pi^+ \Sigma^{0*}$, with $\Sigma^{0*} \to \pi^0 \Lambda$, or use $K_L^0 p \to \pi^0 \Sigma^{+*}$, with $\Sigma^{+*} \to \pi^+ \Lambda$. (Note that the $\pi\Lambda$ decays establish Σ^* states (I = 1) uniquely.)
- ► To search for missing Λ^* states that couple weakly to $\overline{K}N$, use production reactions such as $K_L^0 p \to \pi^+ \Lambda^*$, with $\Lambda^* \to \pi^+ \Sigma^-$, $\Lambda^* \to \pi^- \Sigma^+$, or $\Lambda^* \to \pi^0 \Sigma^0$. (Note that the $\pi^0 \Sigma^0$ decays establish Λ^* states (I = 0) uniquely.)
- ► To search for missing Ξ^* or Ω^* states, use production reactions such as $K_L^0 p \to K^+ \Xi^{0*}$, $K_L^0 p \to \pi^+ K^+ \Xi^{-*}$, and $K_L^0 p \to K^+ K^+ \Omega^{-*}$.

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

$d\sigma/d\Omega$ Data for $K_L^0 p \to K_S^0 p$

Figure: Selected data for $K_L^0 p \to K_S^0 p$ at 1660 MeV and 1720 MeV. The curves are predictions using amplitudes from our previous PWA of $\overline{K}N \to \overline{K}N$ combined with $KN \to KN$ amplitudes from SAID solution. CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Model

/lissing Resonances

WA Formalism

Discussion

Current Data

Summary

- K⁻p → π⁰Λ and K⁰_Lp → π⁺Λ amplitudes imply that their observables measured at same energy should be identical except for small differences due to isospin-violating mass differences in the hadrons.
- At 1540 MeV and higher, dσ/dΩ and polarization data for the two reactions are in fair agreement, as shown in the following slides.

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

/lissing Resonances

WA Formalism

Discussion

Current Data

Summary

Figure: Comparison of selected $d\sigma/d\Omega$ data for $K^-p \rightarrow \pi^0 \Lambda$ (red) and $K^0_L p \rightarrow \pi^+ \Lambda$ (blue) at 1540 MeV and 1620 MeV. The curves are from our previous PWA of $K^-p \rightarrow \pi^0 \Lambda$ data.

(ロ) (部) (目) (目) (日) (の)

Figure: Comparison of selected $d\sigma/d\Omega$ data for $K^-p \rightarrow \pi^0 \Lambda$ (red) and $K^0_L p \rightarrow \pi^+ \Lambda$ (blue) at 1760 MeV and 1840 MeV. The curves are from our previous PWA of $K^-p \rightarrow \pi^0 \Lambda$ data.

(ロ) (部) (目) (目) (日) (の)

Polarization Data for $K^- p \rightarrow \pi^0 \Lambda$ and $K^0_L p \rightarrow \pi^+ \Lambda$

Figure: Comparison of selected polarization data for $K^-p \rightarrow \pi^0 \Lambda$ (red) and $K^0_L p \rightarrow \pi^+ \Lambda$ (blue) at 1760 MeV and 1880 MeV. The curves are from our previous PWA of $K^-p \rightarrow \pi^0 \Lambda$ data.

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

► Reactions $K_L^0 p \to \pi^+ \Sigma^0$ and $K_L^0 p \to \pi^0 \Sigma^+$ are isospin selective (only I = 1 amplitudes are involved) whereas reactions $K^- p \to \pi^- \Sigma^+$ and $K^- p \to \pi^+ \Sigma^-$ are not. New measurements with a K_L^0 beam would lead to better understanding of Σ^* states and help constrain amplitudes for $K^- p \to \pi \Sigma$ reactions CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

/lissing Resonances

WA Formalism

Discussion

Current Data

Summary

- ► Threshold for K^-p and K_L^0p reactions leading to $K\Xi$ final states is fairly high ($W_{\text{thresh}} = 1816 \text{ MeV}$)
- ► There are no $d\sigma/d\Omega$ data available for $K^0_L p \to K^+ \Xi^0$ and very few (none recent) for $K^- p \to K^0 \Xi^0$ or $K^- p \to K^+ \Xi^-$
- Measurements for these reactions would be very helpful, especially for comparing with predictions from dynamical coupled-channel (DCC) models
- ► $K_L^0 p \to K^+ \Xi^0$ is isospin-1 selective, whereas the reactions $K^- p \to K^0 \Xi^0$ and $K^- p \to K^+ \Xi^-$ involve both I = 0 and I = 1 amplitudes

D. Mark Manley

ntroduction

Quark Model

Missing Resonances

WA Formalism

Discussion

Current Data

Summary

- New data for inelastic K⁰_Lp scattering would significantly improve our knowledge of Σ* Resonances
- Very few polarization data are available for any K⁰_Lp reactions but are needed to help remove ambiguities in PWAs
- To search for missing hyperon resonances, we need measurements of production reactions:

$$\Sigma^*$$
: $K^0_L p \to \pi \Sigma^* \to \pi \pi \Lambda$

$$\Lambda^*: \quad K^0_L p \to \pi \Lambda^* \to \pi \pi \Sigma$$

$$\Xi^*$$
: $K^0_L p o K \Xi^*, \pi K \Xi^*$

 $\Omega^*: \quad K^0_L p \to K^+ K^+ \Omega^*$

► If such measurements can be performed with good energy & angle coverage & good statistics, then it is very likely that measurements with K⁰_L beams would find several missing hyperon resonances. CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Model

/lissing Resonances

WA Formalism

Discussion

Current Data

Summary

- ► New data for inelastic K⁰_Lp scattering would significantly improve our knowledge of Σ* Resonances
- Very few polarization data are available for any K⁰_Lp reactions but are needed to help remove ambiguities in PWAs
- To search for missing hyperon resonances, we need measurements of production reactions:

$$\Sigma^*$$
: $K^0_L p \to \pi \Sigma^* \to \pi \pi \Lambda$

$$\Lambda^*: \quad K^0_L p \to \pi \Lambda^* \to \pi \pi \Sigma$$

$$\Xi^*$$
: $K^0_L p o K \Xi^*, \pi K \Xi^*$

 $\Omega^*: \quad K^0_L p \to K^+ K^+ \Omega^*$

► If such measurements can be performed with good energy & angle coverage & good statistics, then it is very likely that measurements with K⁰_L beams would find several missing hyperon resonances. CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

/lissing Resonances

PWA Formalism

Discussion

Current Data

Summary

- ► New data for inelastic K⁰_Lp scattering would significantly improve our knowledge of Σ* Resonances
- Very few polarization data are available for any K⁰_Lp reactions but are needed to help remove ambiguities in PWAs
- To search for missing hyperon resonances, we need measurements of production reactions:
 - $\Sigma^*: \quad K^0_L p \to \pi \Sigma^* \to \pi \pi \Lambda$

$$\Lambda^*: \quad K^0_L p \to \pi \Lambda^* \to \pi \pi \Sigma$$

$$\Xi^*: \quad K^0_L p \to K \Xi^*, \, \pi K \Xi^*$$

- $\Omega^*: \quad K^0_L p \to K^+ K^+ \Omega^*$
- ► If such measurements can be performed with good energy & angle coverage & good statistics, then it is very likely that measurements with K⁰_L beams would find several missing hyperon resonances.

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Model

/lissing Resonances

WA Formalism

Discussion

Current Data

Summary

- ► New data for inelastic K⁰_Lp scattering would significantly improve our knowledge of Σ* Resonances
- Very few polarization data are available for any K⁰_Lp reactions but are needed to help remove ambiguities in PWAs
- To search for missing hyperon resonances, we need measurements of production reactions:
 - $\Sigma^*: \quad K^0_L p \to \pi \Sigma^* \to \pi \pi \Lambda$

$$\Lambda^*: \quad K^0_L p \to \pi \Lambda^* \to \pi \pi \Sigma$$

$$\Xi^*$$
: $K^0_L p \to K \Xi^*, \pi K \Xi^*$

 $\Omega^*: \quad K^0_L p \to K^+ K^+ \Omega^*$

If such measurements can be performed with good energy & angle coverage & good statistics, then it is very likely that measurements with K⁰_L beams would find several missing hyperon resonances. CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

ntroduction

Quark Model

/lissing Resonances

PWA Formalism

Discussion

Current Data

Summary

- Thanks to Igor Strakovsky and the other organizers for inviting me to talk at this workshop
- Thanks to my Ph.D. student, Brian Hunt, who prepared all the figures of observables in this talk
- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award No. DE-SC0014323
- Thank YOU for your attention!

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

- Thanks to Igor Strakovsky and the other organizers for inviting me to talk at this workshop
- Thanks to my Ph.D. student, Brian Hunt, who prepared all the figures of observables in this talk
- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award No. DE-SC0014323
- Thank YOU for your attention!

CAN K-LONG
BEAMS FIND
MISSING
HYPERON
RESONANCES

D. Mark Manley

ntroduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

- Thanks to Igor Strakovsky and the other organizers for inviting me to talk at this workshop
- Thanks to my Ph.D. student, Brian Hunt, who prepared all the figures of observables in this talk
- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award No. DE-SC0014323
- Thank YOU for your attention!

CAN K-LONG BEAMS FIND MISSING HYPERON RESONANCES?

D. Mark Manley

Introduction

Quark Model

Missing Resonances

PWA Formalism

Discussion

Current Data

Summary

- Thanks to Igor Strakovsky and the other organizers for inviting me to talk at this workshop
- Thanks to my Ph.D. student, Brian Hunt, who prepared all the figures of observables in this talk
- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award No. DE-SC0014323
- Thank YOU for your attention!

D. Mark Manley

ntroduction

Quark Model

/lissing Resonances

WA Formalism

Discussion

Current Data

Summary