

Exploring Excited Hyperon Spectroscopy with Antiproton Beams at PANDA

Jim Ritman

Forschungszentrum Juelich

Outline

- Why measure Hyperon Spectroscopy?
- PANDA Phase 1 Experiments with Excited Hyperons
- PANDA Phase 0 @HADES: Excited Hyperon Dalitz decays
- Summary & Outlook

Hyperon Spectroscopy

Open Questions

- Missing resonances
- Wrong masses, wrong sequence
- Relevant degrees of freedom?
 - 3-quark?
 - quark-diquark?
 - meson-baryon dynamics

Jim Ritman

from RPP 2014 / QM: S. Capstick, W. Roberts

Strange Partners

- Approximate SU(3) flavor symmetry
- N* & Δ states have partners in the strange sector
- focus on Ξ and Ω
 - Ξ : as many states as N* & Δ together
 - Ω: as many states as Δ
- scrutinize our understanding of the baryon excitation pattern

Status of **E**^{*} Resonances: RPP 2014

Chin. Phys. C 38 (2014) 090001

Table 1. The status of the Ξ resonances. Only those with an overall status of *** or **** are included in the Baryon Summary Table.

		J^P		Status as seen in —					
	Particle		Overall status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels	
	$\Xi(1318)$	1/2 + 2	****					Decays weakly	
	$\Xi(1530)$	3/2 +	****	****					
	$\Xi(1620)$		*	*					
а	$\Xi(1690)$		***		***	**			
	$\Xi(1820)$	3/2-7	***	**	***	**	**		
t s s J	$\Xi(1950)$		***	**	**		*		
	$\Xi(2030)$		***		**	***			
	$\Xi(2120)$		*		*				
	$\Xi(2250)$		**					3-body decays	
	$\Xi(2370)$		**					3-body decays	
	$\Xi(2500)$		*		*	*		3-body decays	

**** Existence is certain, and properties are at least fairly well explored.

- *** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, *etc.* are not well determined.
- ** Evidence of existence is only fair.
- * Evidence of existence is poor.

Ξ(1820):

Teodoro78 favors J = 3/2, but cannot make a parity discrimination. Biagi 87c is consistent with J = 3/2 and favors negative parity for this J value.

SU(6) x O(3) Classification

RPP 2014: Chin. Phys. C 38 (2014) 090001

"Assignments for ...

 $\Xi(1820)$ and $\Xi(2030)$, are merely educated guesses."

Ξ(1690), Ξ(1950): ? T. Melde *et al.*, PRD 77 (2008) 114002

decuplet: no Ξ^* , no Ω^*

"... nothing of significance on Ξ resonances has been added since our 1988 edition."

			_		
J^P	$(D,L_N^P)S$	Octet	members		Singlets
$1/2^{+}$	$(56,0^+_0) \ 1/2 N(939)$) $\Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	
$1/2^{+}$	$(56,0^+_2) \ 1/2 N(144)$	$0) \Lambda(1600)$	$\Sigma(1660)$	$\Xi(1690)^{\dagger}$	
$1/2^{-}$	$(70,1^{-}_{1}) \ 1/2 N(153)$	$5) \Lambda(1670)$	$\Sigma(1620)$	$\Xi(?)$	$\Lambda(1405)$
	-		$\Sigma(1560)^{\dagger}$		
$3/2^{-}$	$(70,1^{-}_{1}) \ 1/2 N(152)$	$0) \Lambda(1690)$	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
$1/2^{-}$	$(70,1^{-}_{1}) \ 3/2 N(165)$	$0) \Lambda(1800)$	$\Sigma(1750)$	$\Xi(?)$	
			$\Sigma(1620)^{\dagger}$		
$3/2^{-}$	$(70,1^{-}_{1}) \ 3/2 N(170)$	$0) \Lambda(?)$	$\Sigma(1940)^{\dagger}$	$\Xi(?)$	
$5/2^{-}$	$(70,1^{-}_{1}) \ 3/2 N(167)$	$5) \Lambda(1830)$	$\Sigma(1775)$	$\Xi(1950)^{\dagger}$	
$1/2^{+}$	$(70,0^+_2) \ 1/2 N(171)$	$0) \Lambda(1810)$	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(1810)^{\dagger}$
$3/2^{+}$	$(56,2^+_2) \ 1/2 N(172)$	$0) \Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
$5/2^{+}$	$(56,2^+_2) \ 1/2 N(168)$	$0) \Lambda(1820)$	$\Sigma(1915)$	$\Xi(2030)$	
$7/2^{-}$	$(70,3_3^-)$ 1/2 N(219	$0) \Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	$\Lambda(2100)$
$9/2^{-}$	$(70,3^3) \ 3/2 N(225)$	$0) \Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$9/2^{+}$	$(56,4_4^+) \ 1/2 N(222)$	$0) \Lambda(2350)$	$\Sigma(?)$	$\Xi(?)$	

Decuplet members

$3/2^{+}$	$(56,0^+_0)$	$3/2\Delta(1232)\Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$
$3/2^{+}$	$(56,0^+_2)$	$3/2\Delta(1600)\Sigma(1690)$	·Ξ(?)	$\Omega(?)$
$1/2^{-}$	$(70,1_1^-)$	$1/2 \Delta(1620) \Sigma(1750)^{2}$	Ξ(?)	$\Omega(?)$
$3/2^{-}$	$(70,1_1^-)$	$1/2\Delta(1700)\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$5/2^{+}$	$(56,2^+_2)$	$3/2\Delta(1905)\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$7/2^{+}$	$(56,2^+_2)$	$3/2\Delta(1950)\Sigma(2030)$	$\Xi(?)$	$\Omega(?)$
$11/2^+$	$(56, 4^+_4)$	$3/2\Delta(2420)\Sigma(?)$	$\Xi(?)$	$\Omega(?)$

PANDA Objectives

HEP: interference of coupled channels

New narrow XYZ: Search for partner states

> Production of exotic QCD states: Glueballs & hybrids

Bound States of Strong Interaction HEP: underlying elementary processes

ÜLICH

Nucleon Structure

p a n)d a

Generalized parton distributions: Orbital angular momentum

> **Drell Yan process:** Transverse structure, valence anti-quarks

Timelike formfactors:

Low and high E, e and μ pairs

> HI collisions: comparing QGP to elementary reactions

Nuclear physics: Hypernuclear spectroscopy

Astro physics:

Strange n-stars

Strange baryons: Spectroscopy

Strangeness

Polarisation

Nuclear Physics

Hypernuclear physics:

Double A hypernuclei Hyperon interaction

Jn.

Hadrons in nuclei: Charm and strangeness in the medium

Antiproton Annihilations: Gluon Rich Environment

Production: all states with exotic and non-exotic quantum numbers accessible via associated production

high discovery potential

Formation: all states with non-exotic quantum numbers accessible

- not only limited to 1⁻⁻ as e⁺e⁻ colliders
- precision physics of known states
- resonant, high statistics, extremely good precision in mass and width

antiproton probe unique: large coupling to BB

	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026 +
PANDA Phase 0			\geq	Pre-Con & Firs	nmission t Physics	ing					
PANDA Start		Design	Const	ruction							
Setup							Installatio	on	Commi	ssioning	
PANDA Phase 1				PAND avai	DA Hall lable				Physic	xs	
PANDA Full Setup		Desi	gn			Constru	uction		Instal	ation	2
PANDA Phase 2										P	hysics
PANDA Phase 3 RESR											\geq

Multi-Strangeness Baryon Spectroscopy

Baryon Spectroscopy

 Production of multi-strangeness baryons (unexplored, new territory, "Strangeness-Factory")

Momentum	Reaction	σ (μb)	Efficiency (%)	Rate		
(GeV/c)				at 0.5x10 ³¹ /cm ² /s		
1.64	$\overline{p}p \rightarrow \overline{\Lambda}\Lambda$	64	10	28 s ⁻¹		
4	$\overline{p}p \rightarrow \overline{\Lambda}\Sigma^{\circ}$	~40	30	30 s ⁻¹		
4	$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$	~2	20	1.5 s ⁻¹		
12	$\overline{p}p \rightarrow \overline{\Omega}^+ \Omega^-$	~0.002	30	~4 h ⁻¹		
12	$\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$	~0.1	35	~2 day ⁻¹		

Example: Ξ(1820)

High signal rates and high background rejection for excited double strange baryons

Particle	$N_{\rm sig}$	$N_{\mathrm{bg}} \cdot B$	S
		0	
Λ	$786,\!243$	$1.321 \cdot 10^{9}$	467.68
$ar{\Lambda}$	$711,\!820$	$620.341 \cdot 10^{6}$	815.85
Ē+	$302,\!681$	$15.31\cdot 10^6$	5,868.03
$\Xi (1820)^{-}$	$490,\!672$	$1.49\cdot 10^6$	$121,\!544.21$
$\Xi (1820)^{-} \bar{\Xi}^{+}$	$74,\!523$	0	$> 69,\!837.37$

PANDA Phase 0 Projects

Already 2018++ PANDA detector components can be used for physics

PANDA Phase 0 Experiments with HADES Physics Motivation

Λ(1520)

 $\Gamma = 15.6$

J = 3/2-

Λ(1405)

Г

= 50

 $\Lambda(1115)$

J = 1/2 +

Jim Ritman

Goal: Hyperon structure, extend our understanding of the nucleon
 How: Hyperon Dalitz decay Transition FF
 well connected to PANDA physics program

Role of ρ -baryon coupling (VMD?)

- Only few measurements of radiative decays:
 (Σ^{0(*)} →Λγ Λ(1520)→Λγ)
- $Y \rightarrow \Lambda e + e$ never measured !
- Proposed reaction: p p(A) \rightarrow Y (any hyperon) X $\rightarrow Ae+e-X$

tag with $\Lambda \rightarrow \pi^- p$ BR ~ 10⁻⁵

PANDA Phase 0 Experiments with HADES **JÜLICH** Detectors

PANDA pre-series and prototype detectors for STS1/2

- HADES measures the dileptons & mesons
- PANDA Straw Trackers for the baryon (Θ<7°) STS1: 640 tubes (use later as FT3/4) STS2: 900 tubes (use later as FT5/6) (4 double layers each)

 10^8 p/s

PANDA Phase 0 Experiments with HADES Simulations

p+(p/C) →pK
$$\Lambda$$
(1520) → pK Λ ee
Max. SIS18 energy
10⁸ /s
 $\sigma = 40$ µb (assumed)

Proton Beam Pion Beam HADES only Carbon Target 52/day0.2/dayHydrogen Target 13.2/day0.2/dayHADES and FW Carbon Target 128.3/day 0.5/dayHydrogen Target 32.6/day 0.7/day

5*10⁵ π/s

Excellent Physics from the Start

Summary

- Clear strategy for a strong PANDA physics case with high impact for the start phase
- PANDA detector for the start phase defined in line with FAIR high level time schedule
- Start of Physics from 2018 with the <u>Phase 0</u> measurements : Hyperon Dalitz decays together with HADES

PANDA Phase 1 Program

Key-Experiments of the Start Phase

Concentration on unique and forefront physics topics

- Production of multi-strangeness baryons (unexplored, new territory, "Strangeness-Factory")
- Precise measurement of the line shape of narrow XYZ-states, e.g. X(3872) (only possible in proton–antiproton, counting experiment, clarification of the nature of the states)
- Resonant formation of the negative and uncharged partners of the Z-States (only possible in proton–antiproton, clarification of the nature of the states)
- Measurement of the electromagnetic form factors of the proton in the time-like domain with electrons and muons in the final state
- Production of high spin charmonia (only possible in proton–antiproton) light mesons, baryons and production of hybrids und glueballs

