

Overview of STAR's Results of Anti/Hyper/Exotic-matter Measurements

Aihong Tang for the STAR Collaboration

Relativistic Heavy Ion Collider (RHIC)

Heavy Ion Collision

Big Bang

Little Bang: High Energy Heavy Ion Collision

Heavy Ion Missions at RHIC

- Locate the boundary of QCD phase diagram in Beam Energy Scan.
- Study the dynamic properties of QCD matter (e.g. η/s, chiral anomaly, transport properties through jet measurements etc.)

RHIC as a QCD test ground (including exotic production)

RHIC energies, species combinations and luminosities (Run-1 to 16)

http://www.rhichome.bnl.gov/RHIC/Runs/

Aihong Tang YSTAR Workshop, JLab, Nov 16 - 17 2016

- Annual integrated luminosity p+p equivalent: ~ 0.1 fb⁻¹
- Heavy ion collisions to tape @STAR : ~ 5 billion/year
- Annual particles to tape: > 10^{12}

RHIC is Exotic/Hyper/Antimatter-rich

RHIC is Exotic/Hyper/Antimatter-rich

BBC	Sign in	News	Sport	Weather	Shop	Earth	Trav
NEW	/S						
Home Video	o World US & Canad	la UK	Business	Tech	Science	Magazine	Ent
Science & Environment							

Strong forces make antimatter stick

Physicists have shed new light on one of the greatest mysteries in science: Why the Universe consists primarily of matter and not antimatter.

6 hours ago
 Science & Environment

A decade old experiment continues to make important, fresh contribution

STAR 🛧 Nature 527, 345 (2015)

nature

STAR

STAR : Excellent PID and Tracking

Understand the Y-N interaction

• (anti)hypertriton lifetime, 3-body decay

Push the boundary of standard model

• Strangelets and Dibaryons

Understand the fundamental force that binds antinuclei

Measurement of interaction between antiprotons

Atom/parton chemistry

Muonic Atoms

Hypernucleus : Binding energy and lifetime are sensitive to YN interaction

The first hypernucleus and the first antimatter of its kind

(anti)hypertriton : Three body decay

Aihong Tang YSTAR Workshop, JLab, Nov 16 - 17 2016

(anti)hypertriton : Branching Ratio

(anti)hypertriton : Lifetime

 $\tau = 155^{+25}_{-22}(stat) \pm 29(sys) \ ps$

A side remark on the combinatorial bg at RHIC

Large background in AuAu collisions Challenging for resonance studies

Nuclear force between antimatter

• So far the large body of knowledge on nuclear force was derived from studies made on nucleons or nuclei, little is known directly about the nuclear force between antinucleons.

> The knowledge of interaction among two anti-protons, one of the simplest system of antinucleons(nuclei), is a fundamental ingredient for understanding the structure of more complex antinuclei and their properties.

Correlation Function (CF): $C(p_{1,}p_{2}) = \frac{P(p_{1,}p_{2})}{P(p_{1})P(p_{2})}$

In practice,

$$C(k^*)_{measured} = \frac{\text{real pairs from same events}}{\text{pairs from mixed events}}$$

Purity correction :

$$C(k^*) = \frac{C(k^*)_{measured} - 1}{\text{PairPurity}(k^*)} + 1$$

Correlation analysis

distribution of the source and interaction in the final state.

Final State Interactions

- Quantum Statistics Effects
- Final State Interactions
 - Formation of resonances
 - Coulomb
 - Nuclear interaction

$$\mathbf{CF} \checkmark \mathbf{V}_{-k^*}^{S(+)}(r^*) = e^{i\delta_c} \sqrt{A_c(\eta)} \left[e^{-ik^*r^*} F(-i\eta, 1, i\xi) + f_c(k^*) \frac{\tilde{G}(\rho, \eta)}{r^*} \right]$$

Scattering amplitude
$$f_c(k^*) = \left[\frac{1}{f_0} + \frac{1}{2} d_0 k^{*2} - \frac{2}{a_c} h(\eta) - ik^* A_c(\eta) \right]^{-1}$$

Aihong Tang YSTAR Workshop, JLab, Nov 16 - 17 2016

f_0 and d_0

• The first direct measurement of interaction between two antiprotons.

•The force between two antiprotons is found to be attractive, and is as strong as that between protons.

• Besides examining CPT from a new aspect, this measurement provides a fundamental ingredient for understanding the structure of more complex anti-nuclei and their properties.

Aihong Tang YSTAR Workshop, JLab, Nov 16 - 17 2016

The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty

Strangelet	Hadronic Counterpart			
6 quark-bag bound state (uuddss)	(ΛΛ) _b			
m _{H0} <2m _Λ =2231 MeV Stable against strong decay but not against weak hadronic decay	Other dibaryons might exist as bound states made by coalescence of 2 strange baryons (Schaffner-Bielich et al PRL 84 (2000))			
T = 10 ⁻⁸ -10 ⁻¹⁰ s (R. Jaffe PRL 38 195 (1977), Donoghue' 86) Decay mode : NΣ $\Lambda N \pi$ Mass threshold (MeV) 2134 2192 2231	Decay length ~ 1-5cm $(\Lambda\Lambda)_{b} \rightarrow \Lambda + p + \pi$ $\rightarrow \Sigma^{-} + p$ $(\Sigma^{+}p)_{b} \rightarrow p + p$ $(\Xi^{0}p)_{b} \rightarrow \Lambda + p$ $(\Xi^{0}n)_{b} \rightarrow \Lambda + p$ $(\Xi^{0}n)_{b} \rightarrow \Lambda + p$ $(\Xi^{0}n)_{b} \rightarrow \Lambda + n$ $(\Xi^{0}n)_{b} \rightarrow \Lambda + n$ $(\Xi^{0}n)_{b} \rightarrow \Lambda + n$			

Star Previous search for strangelet, in Forward Region

STAR 🛧 PRC 76, 011901 (2007)

Aihong Tang YSTAR Workshop, JLab, Nov 16 - 17 2016

Hyperon-Hyperon interaction is one of the key quantities to understand the dense matter EOS, of great interest to astrophysicists. Origin of residual (long tail) needs to be understood.

Search for H⁰-Dibaryon at midrapidity

Potential discovery of new atoms

<i>p</i> ⁺-μ⁻	<i>K</i> ⁺-μ⁻	<i>π</i> +-μ-
anti-p-µ+	<i>Κ</i> μ+	<i>π-</i> μ ⁺

A Side Note : Recently $\pi\text{-}k$ atoms have been observed by DIRAC Collaboration PRL 117 112001 (2016)

Muonic Atoms

Dissociation at the beam pipe

Muonic Atoms

Sharp peaks observed in the signal region.

Muonic Atoms

- The study of exotic, anti/hyper-matter expands RHIC's research horizon.
- RHIC is an ideal machine for exotic, anti/hyper-matter production.
- STAR has made important discoveries, and continues to have vigorous programs to study exotic, anti/hyper-matter.

Backup Slides

STAR experiment at RHIC

YSTAR Workshop, JLab, Nov 16 - 17 2016

Period	Physics	Upgrades
2008	Generic	Trigger QT
2009	Generic	TPC/DAQ1000
2010-2011	BES I, PID	TOF
20132015	Heavy-Flavor	HFT, MTD
20152016	Heavy-Flavor Diffractive, nPDF	FMS, FPS, Roman Pots, HLT
2017	Spin Sign Change Diffractive	FMS Post-shower
2018	Isobar (Zr, Ru), CME, dileptons	(EPD?)
20192020	BES II	iTPC, EPD, CBM endcap TOF
2022-2023	High-statistics Unbiased Jets, Open Beauty, PID FF Drell-Yan, Longitudinal correl	Forward Upgrade, HFT+?

->50M\$ worth of upgrades going into 2019+

Physics Opportunities beyond BES-II

Physics Goal	Measurements	Requirements					ents			
			Base	fCal	fTS	RP	HFT+	BSMD	Streaming	
Nuclear PDFs	DY, Direct photons +J/Psi R _{pA}	★■	1	1	Enh					1. Define QCD Phase Structure
Nuclear FF	Hadron + Jet	★■	1						Enh	2 Study Chiral Properties
Polarized Nuclear FF	Hadron + Jet	*	1							3 Man T dependence of [7]/s
Odderon & Polarized Diffraction	Aut of pion + forward proton	*		1		~				4. Test KT factorization
Low-x ∆G	Di-jets	*	Enh	1	✓					and Universality
High-x Transversity	Hadron+jet	★■		1	1					
Mapping the Initial State in	R. Plane Rapidity de-correlations	*	Needs iTPC							
3-D: QGP Transport	Ridge Δη <3	*	Needs iTPC							Extended coverage and
Properties	Ridge <mark> </mark> Δη <6	*	Needs iTPC		1					targeted upgrades open up
	Forward Energy Flow	*	Needs iTPC	1						for a diverse scientific
Effects of Chiral	Di-lepton spectra at µ _B =0	★■	Needs iTPC				HFT out		Enh	program in 2020+
Symmetry at µ _B =0	Extended LPV observables	★■	Needs iTPC						Enh	
Internal	Y(1S,2S,3S)	0								
the OGP and	B R _{AA}	★■								-
Color	B v ₂	★■						~	~	✓ Measurement needs upgrade Enh : Enhances measurement, but is not required
Response	B-tagged Jets	0					~		Each	★ Unique to STAR • Complementary to sPHENIX ■ Complemented by LHC and/or [Lab
	y -lets	0						1	Enn	Green highlighted rows require only continued running with STAR as instrumented for the BES-II
DI DI		-	·					•		
Phase Diagram	at up=0	× .	iTPC							iTPC : Inner sector TPC upgrade extending coverage from $ \eta < 1$ to $ \eta < 1.5$
and Freeze-Out	C6/C2, C4/C2	*	Needs							fTS : Forward Tracking System fCal : Forward Electromagnetic and Hadronic Calorimeters HFT+ : An extended faster heavy flavor tracker
The Strong Force	Exotics and Bound States (di-Baryons)	*	Needs iTPC						 ✓ 	Streaming : An electronics and DAQ upgrade allowing significant increase in minbias data rate BSMD : Replacing the BSMD readout HFT out: Di-lepton spectra at μ_{B} =0 improved by running with less material

The theoretical correlation function can be obtained with

$$C(k^{*}) = \frac{\sum_{pairs} \delta(k_{pairs}^{*} - k^{*}) w(k^{*}, r^{*})}{\sum_{pairs} \delta(k_{pairs}^{*} - k^{*})}$$
where $w(k^{*}, r^{*}) = \left| \psi_{-k^{*}}^{S(+)}(r^{*}) + (-1)^{S} \psi_{k^{*}}^{S(+)}(r^{*}) \right|^{2} / 2$ and
 $\psi_{-k^{*}}^{S(+)}(r^{*}) = e^{i\delta_{c}} \sqrt{A_{c}(\eta)} \left[e^{-ik^{*}r^{*}} F(-i\eta, 1, i\xi) + f_{c}(k^{*}) \frac{\tilde{G}(\rho, \eta)}{r^{*}} \right]$
 $f_{c}(k^{*}) = \left[\frac{1}{f_{0}} + \frac{1}{2} d_{0}k^{*2} - \frac{2}{a_{c}}h(\eta) - ik^{*}A_{c}(\eta) \right]^{-1}$ is the s-wave scattering amplitude

renormalized by Coulomb interaction.

$$\eta = (k^* a_c)^{-1}, a_c = 57.5 \text{ fm}$$

$$\rho = k^* r^*, \xi = k^* r^* + \rho$$

$$A_c(\eta) = 2\pi \eta [\exp(2\pi\eta) - 1]^{-1}$$

$$F \text{ is the confluent hypergeometric function}$$

$$\tilde{G}(\rho, \eta) = \sqrt{A_c(\eta)} [G_0(\rho, \eta) + iF_0(\rho, \eta)] \text{ is a}$$
combination of the regular (F₀) and singular (G₀)
s-wave Coulomb functions. Proton pairs are from
THERMINATOR2 when deriving theoretical C(K*)