hybrids (mesons and baryons)

the resonance spectrum of QCD

or,

"where are you hiding the scattering amplitudes?"

real QCD has very few stable particles : $\pi,\,K,\,N,\,\Sigma,\,\Lambda,\,\Xi,\,\Omega$

'states' like ρ , $\Delta \ldots$ are resonances

asymptotic states of the theory include multi-pion states

e.g. in the CM frame
$$\int \! d\hat{p} \; Y_L^m(\hat{p}) \left| \pi(\vec{p}) \pi(-\vec{p}) \right\rangle$$
 with $\left| \vec{p} \right|$ varying continuously up from zero

e.g. $\pi\pi$ scattering in isospin-1

real QCD has very few stable particles : $\pi,\,K,\,N,\,\Sigma,\,\Lambda,\,\Xi,\,\Omega$

'states' like ρ , Δ ... are resonances

asymptotic states of the theory include multi-pion states

e.g. in the CM frame
$$\int d\hat{p} \; Y_L^m(\hat{p}) \left| \pi(\vec{p}) \pi(-\vec{p}) \right\rangle$$
 with $\left| \vec{p} \right|$ varying continuously up from zero

real QCD has very few stable particles : $\pi,\,K,\,N,\,\Sigma,\,\Lambda,\,\Xi,\,\Omega$

'states' like ρ , $\Delta \ldots$ are resonances

asymptotic states of the theory include multi-pion states

e.g. in the CM frame
$$\begin{aligned} \int & d\hat{p} \; Y_L^m(\hat{p}) \left| \pi(\vec{p}) \pi(-\vec{p}) \right\rangle \\ & \text{ with } \left| \vec{p} \right| \text{ varying continuously up from zero } \end{aligned}$$

within the field-theory we have correlators

e.g. the (Euclidean) vector correlator

$$C_V(t) = \int dE \ e^{-Et} \rho_V(E)$$
spectral

function

the spectrum is continuous !

field theory in a finite volume

consider the case of one space dimension with a periodic boundary condition

this will make the allowed momenta of a free particle discrete :

$$\psi_p(x) = e^{ipx}$$
 free particle
 $\psi_p(x) = \psi_p(x+L)$ periodic boundary condition
 $e^{ipL} = 1 \implies p = \frac{2\pi}{L}n$ for integer n

non-interacting two-particle states in a finite volume

but hadrons do interact, and sometimes strongly

e.g.
$$\begin{array}{c} \pi\pi \to \rho \to \pi\pi \\ \pi N \to \Delta \to \pi N \end{array}$$

what is the impact of these interactions on the finite-volume spectrum ?

e.g. non-rel quantum mechanics in one-dimension

two spinless bosons separated by x interacting through a potential V(x) in center-of-momentum frame

$$-\frac{1}{m}\frac{d\psi}{dx^2} + V(x)\psi = E\psi$$
$$E = \frac{k^2}{m} > 0$$

$$\psi(x \to \infty) = N \cos [k|x| + \delta(k)]$$

finite length world -L/2 < x < L/2 with periodic b.c.

wavefunction and derivative continuous at boundary $\frac{1}{\psi} \frac{d\psi}{dx}\Big|_{x=-L/2} = \frac{1}{\psi} \frac{d\psi}{dx}\Big|_{x=+L/2}$ $-k \tan\left[\frac{kL}{2} + \delta(k)\right] = k \tan\left[\frac{kL}{2} + \delta(k)\right]$ $\tan\left[\frac{kL}{2} + \delta(k)\right] = 0$ $kL + 2\delta(k) = 0 \mod 2\pi$

e.g. quantum mechanics in one-dimension

 $kL+2\delta(k)=0\mod 2\pi$

discrete & volume-dependent spectrum of scattering states

the analogous expression for two-particle elastic scattering in a finite cubic volume has been derived by Lüscher

somewhat complicated by the lack of full rotational symmetry (a cube)

for our purposes, we'll pretend that it's as simple as

$$\delta_{\ell}(E) = f_{\ell}(E,L)$$

phase-shift in partial wave ℓ at scattering energy E

known function of energy and box length

so we 'measure' $E_{\mathfrak{n}}~$ on one or more volumes

and plug into the formula to determine $\,\delta\,$ at discrete energies

$\pi\pi$ isospin-2 scattering - field theory calculation

 $C(t) = \left\langle 0 \left| \mathcal{O}_{\pi^+}^{\dagger}(t) \mathcal{O}_{\pi^+}^{\dagger}(t) \cdot \mathcal{O}_{\pi^+}(0) \mathcal{O}_{\pi^+}(0) \right| 0 \right\rangle$

S-wave scattering phase-shift

S-wave scattering phase-shift

D-wave scattering phase-shift

more interesting scattering channels are those featuring resonances

more interesting scattering channels are those featuring resonances

a strongly volume-dependent spectrum

expected finite-volume spectrum given a ρ resonance

 $m_{\pi} \sim 400 \text{ MeV}$

no systematic volume dependence observed in the spectrum

 $m_{\pi} \sim 400 \text{ MeV}$

 $m_{\pi} \sim 400 \text{ MeV}$

the spectrum using 'local' operators

we suspect that this effect can be understood

→ hypothesise that energy eigenstates are superpositions of

- \star a $q \overline{q}$ state, call it |
 ho
 angle
- \star "non-interacting" $|\pi\pi
 angle$ basis states

→ hypothesise that local $q\bar{q}$ operators have a suppressed overlap onto $|\pi\pi\rangle$ by at least a factor of 1/L³

expected finite-volume spectrum given a ρ resonance

the spectrum using 'local' operators

a simple two-state mixing model:

$$\frac{|E_1\rangle = \cos \theta |\rho\rangle + \sin \theta |\pi\pi\rangle}{|E_2\rangle = -\sin \theta |\rho\rangle + \cos \theta |\pi\pi\rangle}$$
if we only use operators which overlap well with $|\rho\rangle$ and not with $|\pi\pi\rangle$
then a variational solution won't be able to find the orthogonal combinations

the principal correlator will behave like

$\pi\pi$ isospin-1 scattering - lattice calculation

do it properly !

operator basis:

- ••• usual big set of derivative-based fermion bilinears
- $\rightarrow \pi\pi$ -like operators of definite relative momentum

need quark annihilation diagrams

[100] A1 - with & without $\pi\pi$ operators

'local' vector operators and $\pi\pi$ operators just 'local' vector operators

[100] A1 - with & without $\pi\pi$ operators

'local' vector operators and $\pi\pi$ operators just 'local' vector operators

$\pi\pi$ isospin-1 scattering - a lattice calculation

$\pi\pi$ isospin-1 scattering - a lattice calculation

 $m_{\pi}{\sim}400~MeV$

$\pi\pi$ isospin-1 scattering - pion mass dependence

European Twisted Mass Collaboration PRD83 (2011) 094505

- two-flavour calculation (no strange quarks)
- → four different quark masses
- → setting the lattice scale ?

$\pi\pi$ isospin-1 scattering - pion mass dependence

forthcoming resonance calculations

computationally challenging:

→ pion-nucleon elastic scattering (∆ resonance)

→ lots of quark lines

→ lots of matrix multiplication

... computer time

forthcoming resonance calculations

computationally challenging:

 \rightarrow pion-nucleon elastic scattering (Δ resonance)

requires untested formalism:

 \rightarrow meson-meson **inelastic** scattering (e.g a₀ in $\pi\eta$ -KK)

e.g. 2-channel inelastic scattering $\begin{bmatrix}
\frac{4\pi}{k_1} \frac{\eta e^{2i\delta_1} - 1}{2i} & \frac{4\pi}{\sqrt{k_1 k_2}} \frac{\sqrt{1 - \eta^2} e^{i(\delta_1 + \delta_2)}}{2} \\
\frac{4\pi}{\sqrt{k_1 k_2}} \frac{\sqrt{1 - \eta^2} e^{i(\delta_1 + \delta_2)}}{2} & \frac{4\pi}{k_2} \frac{\eta e^{2i\delta_2} - 1}{2i}
\end{bmatrix}$

three real numbers at each scattering energy

finite-volume formalism

$$E_{\mathfrak{n}}(L) = f(\delta_1(E), \delta_2(E), \eta(E); L)$$

'measured'

three unknowns

forthcoming resonance calculations

computationally challenging:

→ pion-nucleon elastic scattering (∆ resonance)

requires untested formalism:

 \rightarrow meson-meson **inelastic** scattering (e.g a₀ in $\pi\eta$ -KK)

 \Rightarrow three-meson decays, e.g. ω , a_1 , a_2 ... $\rightarrow \pi\pi\pi$

all the complications of building unitary, analytic scattering amplitudes present for experiment !