Dynamical Model Analysis of Hadron Resonances (III)

T.-S. Harry Lee
Argonne National Laboratory

Lecture III:

1.Explain how resonances are determined from experiments and defined theoretically
2. Explain the extraction of resonances in exactly soluble models
3. Nucleon resonances extracted from 8-channels analysis of data of $\pi N, \gamma N->\pi N, \eta N, K \Lambda, K \Sigma$
4. Interpretations of extracted resonance parameters

What are nucleon resonances?

Experimental fact:

Excited Nucleons (N^{*}) are unstable and coupled with meson-baryon continuum to form nucleon resonances

Nucleon resonances contain information on a. Structure of N^{*}
b. Meson-baryon Interactions

How are Nucleon Resonances extracted from data?

Assumptions:

\checkmark Partial-wave amplitudes are analytic functions $F(E)$ on the complex E-plane
$\checkmark F(E)$ are defined uniquely by the partial-wave amplitudes $A(W)$ determined from accurate and complete experiments on physical W -axis
\checkmark The Poles of $F(E)$ are the masses of Resonances of the underlying fundamental theory (QCD).

Analytic continuation

$$
\mathrm{F}(\mathrm{E}) \longleftarrow \mathrm{A}(\mathrm{~W}) \longleftarrow \text { Data }
$$

In Dynamical Model Analysis:

a. Partial scattering amplitude $A(W)$ is defined by Hamiltonian

$$
A(W)=H_{1}+H_{1} \frac{1}{W-H+i \varepsilon} H_{1}
$$

b. Analytic continuation : dynamical

Solve

$$
F(E)=H_{1}+H_{1} \frac{1}{E-H+i \varepsilon} H_{1}
$$

Theoretical framework:

(Gamow, Peierls, Dalitz, Moorhouse, Bohm....)
Resonances are the eigenstates of the Hamiltonian with outgoing-wave boundary condition
$H|\psi\rangle=E \mid \Psi>$
$E=k^{2} / 2 m \quad$ scattering state
$E=\left(k_{R}+i k_{1}\right)^{2} / 2 m$ resonance

$$
\psi(r) \quad f \quad f(\theta) \frac{e^{i\left(k_{R}+i k_{1}\right) r}}{r}
$$

Resonance

$$
\psi(r) \longrightarrow e^{-i k r}+f(\theta) e^{i k r}
$$

Scattering

Since $E_{R}=\left(k_{R}+i k_{1}\right)^{2} /(2 m)$

Eigenstate with E_{R} can have momentum either $\left(k_{R}+i k_{1}\right)$ or $\left(-k_{R}-i k_{1}\right)$

Resonance : $\mathrm{k}_{\mathrm{R}}>0, \mathrm{k}_{1}<0$

$$
\begin{aligned}
E_{R} & =\left(k_{R}+i k_{1}\right)^{2} / 2 m \\
& =\left(k_{R}^{2}-k_{1}^{2}\right) / 2 m+i k_{R} k_{1} / m
\end{aligned}
$$

$\operatorname{Im}\left(E_{R}\right)<0$

$$
p=p_{R}+i p_{1}
$$

$\mathrm{p}_{1}>0$: physical sheet < 0 :unphysical sheet

Resonance position can be found from solutions on unphysical sheet $\left(k_{1}<0\right)$

$$
\begin{aligned}
& F(E)=H_{1}+H_{1} \frac{1}{E-H} H_{1} \\
& =H_{1}+\sum_{i} H_{1} \frac{\left|\Psi_{i}><\psi_{i}\right|}{E-E_{i}} H_{l} \\
& \longrightarrow \quad \mathrm{R} \quad \text { Pole on unphysical sheet } \\
& E-E_{p} \quad E-E_{p} \\
& H\left|\Psi_{R}>=E_{P}\right| \Psi_{R}>; E_{P}=\left(k_{R}+i k_{1}\right)^{2} / 2 m \text { resonance } \\
& k_{R}>0, k_{1}<0
\end{aligned}
$$

Interpretations :

1. Time dependence of Resonance state

$$
\begin{aligned}
& \Psi_{E_{p}}(r, t)=e^{-i E_{p} t} \psi_{E_{p}}(r)=e^{-i E_{r} t} e^{-E_{i} t} \psi_{E_{p}}(r) \\
\rightarrow \quad & \mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{R}}-\mathrm{i} \mathrm{E}_{\mathrm{i}}, \quad \mathrm{E}_{\mathrm{R},} \mathrm{E}_{\mathrm{l}}>0
\end{aligned}
$$

It is a "virtual" decaying state :

$$
P(t)=\left|<\Psi_{E_{p}}(t)\right| \Psi_{E_{p}}(t)>\left.\right|^{2}=e^{-2 E_{i} t}\left|<\psi_{E_{p}}\right| \psi_{E_{p}}>\left.\right|^{2}
$$

2. E_{p} is on unphysical sheet : $\quad E_{p}=k_{p}^{2} / 2 m ; \quad k_{p}=k_{R}-i k_{1}, \quad k_{1}>0$

$$
\begin{aligned}
u_{E_{p}}(r \rightarrow \infty) & =N e^{i k_{p} r} \\
& =N e^{i k_{r} r} e^{k_{i} r} \rightarrow \infty
\end{aligned}
$$

The wavefunction is not square integrable
\rightarrow
$\mid \psi_{E p}>$ is not in the Hilbert space of H, and therefore is "virtual" and unstable.

To illustrate, consider several exactly soluble model Hamiltonians

1. one-channel, one resonance
2. two-channel, one resonance
3. two-channel, two resonances

One-channel, one-resonance

$$
\begin{aligned}
& t\left(p^{\prime}, p ; E\right)=v\left(p^{\prime}, p ; E\right)+\int_{C_{0}} d q q^{2} \frac{v\left(p^{\prime}, q ; E\right) t(q, p ; E)}{E-E_{1}(q)-E_{2}(q)} \\
& v\left(p^{\prime}, p ; E\right)=\frac{g\left(p^{\prime}\right) g(p)}{E-M_{0}} \\
& g(p)=\frac{\lambda}{1+p^{2} / \beta^{2}}
\end{aligned}
$$

Exact solution :

$$
\begin{aligned}
& t\left(p^{\prime}, p ; E\right)=\frac{g\left(p^{\prime}\right) g(p)}{E-M_{0}-\Sigma(E)}=0 \text { at } \mathrm{E}=\mathrm{E}_{\mathrm{p}} \text { of resonance } \\
& \Sigma(E)=\int_{C_{0}} d p p^{2} \frac{g^{2}(p)}{E-E_{1}(p)-E_{2}(p)}
\end{aligned}
$$

To find resonance pole, need to choose $\mathrm{C}_{0}=\mathrm{C}_{1}$ or C_{1}

$$
\begin{aligned}
& t\left(p^{\prime}, p ; E\right)=v\left(p^{\prime}, p ; E\right)+\int_{C_{0}} d q q^{2} \frac{v\left(p^{\prime}, q ; E\right) t(q, p ; E)}{E-E_{1}(q)-E_{2}(q)} \\
& v\left(p^{\prime}, p ; E\right)=\frac{g\left(p^{\prime}\right) g(p)}{E-M_{0}} \\
& g(p)=\frac{\lambda}{1+p^{2} / \beta^{2}}
\end{aligned}
$$

Set $E(p)=m+p_{2} / 2 m$

Trajectory of pole as $\lambda=0->0.04$

$$
\begin{array}{ll}
t\left(p^{\prime}, p ; E\right)=v\left(p^{\prime}, p ; E\right)+\int_{C_{0}} d q q^{2} \frac{v\left(p^{\prime}, q ; E\right) t(q, p ; E)}{E-E_{1}(q)-E_{2}(q)} \\
v\left(p^{\prime}, p ; E\right)=\frac{g\left(p^{\prime}\right) g(p)}{E-M_{0}} \\
g(p)=\frac{\lambda}{1+p^{2} / \beta^{2}} & \text { solve integral equation } u
\end{array}
$$

Two-channels, one-resonance

$$
\begin{aligned}
& t_{i j}\left(p^{\prime}, p ; E\right)=v_{i j}\left(p^{\prime}, p ; E\right)+\sum_{k=1,2} \int_{C_{0}} d q q^{2} \frac{v_{i k}\left(p^{\prime}, q\right) t_{k j}(q, p ; E)}{E-E_{k 1}(q)-E_{k 2}(q)} \\
& v_{i j}\left(p^{\prime}, p ; E\right)=g_{i}\left(p^{\prime}\right) \frac{1}{E-M_{0}} g_{j}(p) \\
& g_{i}(p)=\frac{\lambda_{i}}{1+p^{2} / \beta_{i}^{2}} \\
& t_{i j}\left(p^{\prime}, p ; E\right)=\frac{g_{i}\left(p^{\prime}\right) g_{j}(p)}{E-M_{0}-\Sigma_{1}(E)-\Sigma_{2}(E)}=0 \text { at } \mathrm{E}=\mathrm{E}_{p} \text { of resonance } \\
& \Sigma_{k}(E)=\int_{C_{0}} d p p^{2} \frac{g_{k}^{2}(p)}{E-E_{k 1}(p)-E_{k 2}(p)} .
\end{aligned}
$$

Energy-sheet of two-channel

$$
E_{P}-M_{0}-\Sigma_{1}\left(E_{P}\right)-\Sigma_{2}\left(E_{P}\right)=0
$$

E_{p} can be on

Exactly soluble

$$
E_{P}-M_{0}-\Sigma_{1}\left(E_{P}\right)-\Sigma_{2}\left(E_{P}\right)=0
$$

$$
\operatorname{Set} E(p)=m+p_{2} / 2 m
$$

$$
\Sigma_{i}(E)=\frac{\pi \mu_{i} \beta_{i}^{3} \lambda_{i}^{2}}{2\left(p_{i}+i \beta_{i}\right)^{2}}
$$

Trajectories of poles as $\lambda_{1}=0->0.02$

Finding :

1. One bare can evolve into two resonances
2. one resonance on uu-sheet one resonance on up-sheet

Two-channels, two-esonances

$$
\begin{aligned}
& t_{i j}\left(p^{\prime}, p ; E\right)=v_{i j}\left(p^{\prime}, p ; E\right)+\sum_{k=1,2} \int_{C_{0}} d q q^{2} \frac{v_{i k}\left(p^{\prime}, q\right) t_{k j}(q, p ; E)}{E-E_{k 1}(q)-E_{k 2}(q)} \\
& v_{i j}\left(p^{\prime}, p ; E\right)=g_{i 1}\left(p^{\prime}\right) \frac{1}{E-M_{1}} g_{j 1}(p)+g_{i 2}\left(p^{\prime}\right) \frac{1}{E-M_{2}} g_{j 2}(p) \\
& t_{i j}\left(p^{\prime}, p ; E\right)=\sum_{\alpha, \beta}\left[D^{-1}(E)\right]_{\alpha, \beta} g_{j, \beta}(p) \\
& {[D(E)]_{\alpha, \beta}=\left[E-M_{\alpha}\right] \delta_{\alpha, \beta}-\Sigma_{\alpha, \beta}(E) \quad \text { Bare states }} \\
& \Sigma_{\alpha, \beta}(E)=\sum_{i} \int_{C_{0}} d q q^{2} \frac{g_{i, \alpha}(q) g_{i, \beta}(q)}{E-E_{i 1}(q)-E_{i 2}(q)+i \varepsilon} \\
& g_{i \alpha}(p)=\frac{\lambda_{i \alpha}}{1+p^{2} / \beta_{i \alpha}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Det} D(E)= & {\left[E-M_{1}-\Sigma_{11}(E)\right]\left[E-M_{2}-\Sigma_{22}(E)\right]-\Sigma_{12}(E) \Sigma_{21}(E) } \\
= & 0 \\
& M_{2}=M_{1}+\Delta M
\end{aligned}
$$

Mass difference between two bare stste

Trajectories of resonances as $\Delta \mathrm{M}=600->700$

SP : speed-plot method
TD : time-delayed method

Finding :

1. Two bare can evolve into four resonances
2. two resonances on uu-sheet two resonances on up-sheet

For realistic coupled-channel models, the extraction of resonance is further complicated by the mechanisms due to meson-exchange $\mathrm{v}_{\mathrm{MB}, \mathrm{M}^{\prime} \mathrm{B}^{\prime},} \mathrm{v}_{\mathrm{MB}, \pi \pi \mathrm{N}}$

Need to choose path C_{0} carefully

Dynamical coupled-channels (DCC) model for meson production reactions

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

$$
\begin{aligned}
V_{a, b}= & v_{a, b}+Z_{a, b}+\sum_{N^{*}} \frac{\Gamma_{N^{*}, a}^{\dagger} \Gamma_{N^{*}, b}}{E-M_{N^{*}}} \\
& \text { Exchange potentials Z-diagrams }
\end{aligned}
$$

8-channel model parameters have been determined by the fits to the data of
$\pi N, \gamma N->\pi N, \eta N, K \Lambda, K \Sigma$

Extract nucleon resonances

Extraction of \mathbf{N}^{*} information

Definitions of
$\checkmark \mathbf{N}^{*}$ masses (spectrum)
$\checkmark \mathbf{N}^{\star} \rightarrow$ MB, $\gamma \mathbf{N}$ decay vertices
\Rightarrow Pole positions of the amplitudes
\Rightarrow Residues $^{1 / 2}$ of the pole

Suzuki, Sato, Lee, Phys. Rev. C79, 025205 (2009) Phys. Rev. C 82, 045206 (2010)

$$
T_{a, b}^{(L S J)}\left(p_{a}, p_{b} ; E\right)=V_{a, b}^{(L S J)}\left(p_{a}, p_{b} ; E\right)+\sum_{c} \int_{0}^{\infty} q^{2} d q V_{a, c}^{(L S J)}\left(p_{a}, q ; E\right) G_{c}(q ; E) T_{c, b}^{(L S J)}\left(q, p_{b} ; E\right)
$$

Search poles on 2^{n} sheets of Riemann surface $\mathrm{n}=8$

Search on the sheets where
a. close channels: physical ($\mathrm{k}_{\mathrm{l}}>0$) b. open channels: unphysical $\left(k_{1}<0\right)$

Near threshold :
search on both physical and unphysical
$k=k_{R}+i k_{1}$ on-shell momentum

Delta(1232) : The 1st P33 resonance

Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 042302 (2010)

Complex E-plane

Two-pole structure of the Roper P11(1440)

Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 042302 (2010)

Complex E-plane

Dynamical origin of P11 resonances

Dynamical origin of P11 resonances

Bare N* = states ${ }^{169 P}$ hadrorf ${ }^{10}$ alculatienhs 2000 excluding meson-baryon continu (ReV (Me) (quark models, DSE, etc..)

Spectrum of N* resonances

Kamano, Nakamura, Lee, Sato ,2012
Real parts of N* pole values

Width of N* resonances

N-N* form factors at Resonance poles

```
Nucleon-1 1t D13 e.m. transition form factors
```


Complex : consequence of analytic continuation
Identified with exact solution of fundamental theory (QCD)

Interpretations:

Meson cloud effects are essential for testing structure calculations of -Delta (1232)
-Roper(1440)

$\mathrm{G}_{\mathrm{m}}\left(\mathrm{Q}^{2}\right)$ for $\gamma \mathrm{N} \rightarrow \Delta_{(1232)}$ transition

Note:
Most of the available static hadron models give $G_{M}\left(Q^{2}\right)$ close to "Bare" form factor.

$\gamma \mathrm{N} \rightarrow \Delta(1232)$ form factors compared with Lattice QCD data (2006)

$\gamma p \rightarrow$ Roper e.m. transition

Back up

$$
\begin{aligned}
& S(E)=e^{2 i \delta} \\
& S(E)=1+2 i T(E)
\end{aligned}
$$

Speed:

$$
\begin{equation*}
\operatorname{sp}(E)=\left|\frac{d T}{d E}\right| . \tag{1}
\end{equation*}
$$

The SP method defines the resonance mass M_{R} by

$$
\begin{aligned}
& \left.\frac{d}{d E} \operatorname{sp}(E)\right|_{E=M_{R}}=0 \\
& \text { and } \\
& \operatorname{sp}\left(M_{R} \pm \Gamma_{R} / 2\right)=\operatorname{sp}\left(M_{R}\right) / 2
\end{aligned}
$$

This can be easily by the usual Breit-Wigner parameterization:

$$
T(E)=\frac{\Gamma_{R} / 2}{E-M_{R}+i \Gamma_{R} / 2}
$$

