CP Violation and all that.

Brian Meadows University of Cincinnati

William and Mary, June 2012.

Brian Meadows, U. Cincinnati

Lecture I Outline

- CP Violation what it is, how it happens, what is it not.
- The CKM model for CPV
 - Unitarity triangles
- A role for hadrons and amplitude analysis
- Mixing and its role in CPV
- □ *B* factory measurements
- Pause for reflection

Lecture I Outline

- CP Violation what it is, how it happens, what is it not.
- The CKM model for CPV
 - Unitarity triangles
- A role for hadrons and amplitude analysis
- Mixing and its role in CPV
- □ *B* factory measurements
- Pause for reflection

CP Violation (CPV) - very brief History

• CPV is observable as a particle/antiparticle asymmetry in the rates of transitions:

 $\Gamma(i \rightarrow f) \neq \Gamma(\bar{i} \rightarrow \bar{f})$ (Bars indicate antiparticle conjugate states)

for processes with initial state i and final state f

- CPV was discovered (Fitch and Cronin 1963) in decays to $\pi^+\pi^-$ states (with CP=+1) by long-lived K₁ mesons that were formerly found to decay only to $\pi^{-\ell} \ell^{+} \nu_{\ell}$ (with CP=-1).
- \Box It was next seen as an asymmetry in $K_{I} \rightarrow \pi^{\mp} \ell^{\pm} \nu_{\ell}$ decays

CPV – very brief History (2)

- Theoretically, there was much speculation on the source of CPV – whether from mixing or decay ("direct").
- In 1973, Kobayashi and Moskawa suggested the current 3family nature of the SM and pointed out that it led to the possibility for CPV.
- Experimentally, *CPV* was not observed anywhere other than in neutral *K* decays for ~40 years when, much as predicted by *KM*, the BaBar and Belle experiments observed its interference with mixing in decays of *B*⁰ mesons to *J/ψ K_s* final states (*CP=-1*).
- First evidence for direct CPV in B decays was later observed in 2004 by the BaBar and Belle experiments.

Early evolution of the universe

CPV and Baryogenesis

- *CPV* is needed to account for excess $(\Delta N = N_B N_{\bar{B}})$ of baryons over anti-baryons in our universe.
- This excess is only a small fraction of the observed number of photons $\Delta N/N_{\gamma} \simeq N_B/N_{\gamma} \sim 10^{-10}$.
- Sakharov (1967) held that this requires:
 - Baryon number violating processes $H^{\text{eff}}_{\Delta N \neq 0} \neq 0$
 - CPV so that, for any baryon-violating process, $\Gamma(i \rightarrow f) \neq \Gamma(\bar{i} \rightarrow \bar{f})$
 - A period in the history of the universe when it was not in thermal equilibrium.

In thermal equilibrium (*T* invariance), *CPT* invariance is equivalent to *CP* invariance!

[*CPT* violation alone, could also generate $\Delta N \neq 0$

This would also violate locality, causality and Lorentz invariance.

William and Mary, June 2012.

Brian Meadows, U. Cincinnati

Early Universe – an Illustration

- Consider a particle X which has just two decay modes to final states $f_{1,2}$ with baryon numbers $B_{1,2}$ (*not necessarily the same*) and branching fractions r and (1 r).
- CPT invariance requires anti-particle \overline{X} to have the same total decay rates but CP violation can allow \overline{r} to differ from r.
- Decay of each $X\overline{X}$ pair (initially B = 0):

$$X \longrightarrow B = r B_1 + (1 - r) B_2$$

$$\overline{X} \longrightarrow B = \overline{r} (-B_1) + (1 - \overline{r})(-B_2)$$

results in a change in number of baryons $\Delta B = (r - \overline{r}) (B_1 - B_2)$

- Baryon-dominant universe requires this be positive, so:
 - $B_1 \neq B_2$ baryon number is violated for at least one decay mode AND
 - $r \neq \bar{r}$ there is *CPV*

Differences must have same sign too

CPV and Field Theory

• The SM Lagrangian is Hermitian and includes terms like $\mathcal{L}(x) = \sum_{i} \left[a_i \mathcal{F}_i(x) + a_i^* \mathcal{F}_i^{\dagger}(x) \right]$

where the $\mathcal{F}_i(x)^{i}$ are scalar operators defined from quark and lepton fields and the a_i are couplings.

 CP -invariance requires that all couplings can be made <u>real</u> with a <u>suitable choice of phases for the fields</u>.

□ In the *SM*, charged *EW* terms are of the form

$$rac{g}{\sqrt{2}} \left(ar{u}_L \, ar{c}_L \, ar{t}_L
ight) V_{\scriptscriptstyle C\!K\!M} \gamma^\mu \left(egin{smallmatrix} d_L \ ar{s}_L \ ar{b}_L \end{array}
ight) W^+_\mu$$

These all involve the <u>CKM matrix</u> V_{CKM} that has a phase that depends on specific flavor couplings

The effects of such a phase cannot be removed, for all flavors, simply by re-phasing the quark fields $\rightarrow CPV$

CPV is not "T-violation"

- CP violation is not the same thing as "T violation". It would be only if CPT were an absolute symmetry.
- "T-violation" (time-reversal symmetry breaking), has yet to be found experimentally (?)
- □ For instance, we know, experimentally, that $B^0 \rightarrow K\pi$ is a *CP* violating process. However, we have not observed a weak scattering $K+\pi \rightarrow B^0$ occuring at a different rate (and we probably never will, even though *CPT* would so decree!)
- An amplitude <f|H|i> describes a transition from i→f. Under CP this becomes <f|H|i>, not <i |H|f>.

Lecture I Outline

- CP Violation what it is, how it happens, what is it not.
- The CKM model for CPV
 - Unitarity triangles
- A role for hadrons and amplitude analysis
- Mixing and its role in CPV
- □ *B* factory measurements
- Pause for reflection

The CKM Matrix

□ This is a 3x3 unitary transformation

$$V_{\scriptscriptstyle C\!K\!M} = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight)$$

• Defined by rotations about 3 axes by angles θ_{12} , θ_{13} , θ_{23}

$$U_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}; \ U_{13} = \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix}; \ U_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix},$$

where $s_{ij} = \sin \theta_{ij}$ and $c_{ij} = \sin \theta_{ij}$, and (<u>important</u>) a phase

$$V_{\delta} = \left(egin{array}{cccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & e^{-i\delta} \end{array}
ight)$$

Then

$$V_{\scriptscriptstyle CKM} = U_{23} U_{\delta}^{\dagger} U_{13} U_{\delta} U_{12}$$

Wolfenstein Expansion

• The terms have a numerical hierarchy that suggests an expansion in powers of the Cabibbo angle $\lambda = V_{us}$:

$$m{V}_{CKM}$$
 $pprox egin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(
ho-i\eta)\ -\lambda & 1-\lambda^2/2 & A\lambda^3\ A\lambda^3(1-
ho-i\eta) & A\lambda^3 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$

where A, ρ and η are parameters of order one.

William and Mary, June 2012.

Brian Meadows, U. Cincinnati

Get to know the CKM

Magnitudes:

Memorize the power of λ for each term.

& labels for rows/columns

Phases:

Remember the phases for the two terms circled

Other Expansions

- This expansion preserves unitarity below order λ^4 .
- Preserving unitarity to all orders is possible (Buras, Lautenbacher and Ostermaier, 1994) with parameters:

Unitarity Triangles

- $\mathbf{d} \cdot \mathbf{s}^* = 0$ (K system)
- $\mathbf{s} \cdot \mathbf{b}^* = 0$ (B_s system)
- $\mathbf{d} \cdot \mathbf{b}^* = 0$ (B_d system)

apply unitarity constraint to pairs of columns

from P. Burchat

Florida State U: Tallahasee, FLA, April 21 2003.

(Three more) Unitarity Triangles

 $\mathbf{u} \cdot \mathbf{c}^* = 0$ (D system)

$$\mathbf{c} \cdot \mathbf{t}^* = 0$$
 ("T" system)

 $u \cdot t^* = 0$ ("T'" system)

All six triangles have the same area. A nonzero area is a measure of CP violation and is an invariant of the CKM matrix.

Apply unitarity constraint to pairs of rows

from P. Burchat

The triangles

See Bigi and Sanda, hep-phy/9909479 (1999)

"The" (Usual) Unitarity Triangle

[This is the "bd" triangle a.k.a. the " B_d " triangle]. $V_{ub}*V_{ud} \qquad V_{tb}*V_{td}$ $V_{tb}*V_{td}$ $V_{tb}*V_{td}$ $V_{cb}*V_{cd}$

Apply unitarity constraint to these two columns

from P. Burchat

Orientation of triangle has no physical significance. Only relative angle between sides is significant.

The Usual Unitarity Triangle

Apply unitarity constraint to these two columns

from P. Burchat

The bd Unitarity Triangle before B Factories

• CKM parameters ρ and η predict the observables $\epsilon_{K}, x_{d} = \Delta M_{d}/\Gamma, |V_{ub}|, |V_{cb}|$

The bd Unitarity Triangle Today

□ CKM parameters can be used to predict more observables $\epsilon_{K}, \Delta M_{d}, \Delta M_{s}, BF(B \rightarrow \tau \nu), V_{ub}, sin2\beta, \gamma, V_{cb}, lattice, ...$

CKMFitter

CKM Parameters

• CKM parameters from these fits:

	UTFit	CKM Fitter	
λ	0.22545 ± 0.00065	0.22543 ± 0.00077	Significant discrepancies exist:
A	0.8095 ± 0.0095	$0.812^{\mathrm{+0.013}}_{\mathrm{-0.027}}$	$sin 2\beta$ $\sim 3\sigma low$
ρ	0.135 ± 0.021		BF(B $\rightarrow \tau v$) 2.7 σ high
η	0.367 ± 0.013		Is CKM model in question?
$\overline{ ho}$	0.132 ± 0.020	0.144 ± 0.025	
$\overline{\eta}$	0.358 ± 0.012	0.342 + 0.016	arXiv:1104.2117 [hep-ph]

Some "tension" exists and it will be important to continue to check the <u>CKM paradigm</u> with more precise measurements.

Measurements of CKM elements

$ V_{ud} $	0.974250) ±0.0022	Super-allowed β decay. Best measurement
$ V_{us} $	0.2253	\pm 0.0008	$K_{2} \& K_{3}$ (need lattice) and $\tau \rightarrow K_{v_{\tau}}$.
$ V_{ub} $	0.00392	\pm 0.00046	$B \rightarrow X l_{v}, B \rightarrow u$ decays. Some discrepancies
V _{cd}	0.230	± 0.011	Charm prod by v 's. $D \rightarrow K I_V$ needs theory
$ V_{cs} $	1.04	± 0.06	$D \rightarrow K I_{V}$, $D_{s} \rightarrow I_{V}$ (theory limited)
$ V_{cb} $	0.0409	\pm 0.0007	$B \rightarrow D I_V$, $B \rightarrow D^* I_V$, lattice
$ V_{td} $	0.0081	± 0.0005	B_d Mixing, lattice prediction for $ V_{ts} / V_{td} $
V _{ts}	0.0387	± 0.0023	B _s Mixing
$ V_{ts} $	0.88	± 0.07	Single top production (CDF,D0,Atlas,CMS)

Lecture I Outline

- CP Violation what it is, how it happens, what it is not.
- The CKM model for CPV
 - Unitarity triangles
- A role for hadrons and amplitude analysis
- Mixing and its role in CPV
- □ *B* factory measurements
- Pause for reflection

Anatomy of Weak Decays

Space-time regimes (2)

The two space-time ranges differ greatly so that we can write overall decay amplitude *A* as a product

$$\mathcal{A} = A \; e^{i(\delta + \phi)} \qquad [A \equiv W imes S]$$

Strong phase Weak phase

• Under *CP* weak phase ϕ flips sign but δ does not

SO
$$ar{\mathcal{A}} = A \; e^{i(\delta - \phi)}$$

This can give rise to CPV

Similar considerations govern the behavior of all processes involving weak interactions.

William and Mary, June 2012.

Brian Meadows, U. Cincinnati

Hadron – Friend or Foe!

- Hadrons were once thought to be a nuisance, obscuring the "more fundamental" aspects of the short-range weak interactions which lay at the heart of CPV !
- Interference between hadronic amplitudes, though, allows relative phases to be measured.
- The phases observed include both strong and weak components, so actually provide valuable information on the short range weak phases in the amplitudes governing the decay.

Weak phases through the hadron eye

- □ Dalitz plot for $D^0 \rightarrow K_S \pi^+ \pi^-$
- □ The flavour of the K_S (ie $K^0 \rightarrow \pi^+ \pi$) is undefined, so both K^{*0} and \overline{K}^{*0} can be produced at the quark level:
 - \overline{K}^{*0} ($c \rightarrow s\overline{u}d \propto \cos \theta_c^2$)
 - K^{*0} ($c \rightarrow d\overline{s}u \propto -\sin \theta_c^2$)
- NOTE change of sign of weak (ie "production" amplitude)
- Observe the K^{*0} (horizontal band) !

Some things multi-hadron systems have done for "real physics":

- Provided evidence for CPV in B decays
- Allowed measurement of weak phases
- Exposed small parameters such as x and y, relating to D⁰-D⁰ mixing appearing linearly in the interference between the weak interactions involved.
- Resolved ambiguities in CPV phases, B_s mixing parameters, …

Lecture I Outline

- CP Violation what it is, how it happens, what it is not.
- The CKM model for CPV
 - Unitarity triangles
- A role for hadrons and amplitude analysis
- Mixing and its role in CPV
- □ *B* factory measurements
- Pause for reflection

Mixing - another "useful nuisance"

- Mixing is a ubiquitous phenomenon readily observed in the K^0 , D^0 , B^0 and B_s neutral meson systems.
 - The **7**⁰ could mix, but will decay before mixing can occur.
 - π^0 , η^0 , η 'mesons do not mix since they are their own anti-particles.
 - The D⁰ system is the only up-type meson that mixes. The SM greatly suppresses this, however.
- Mixing can lead to CPV and, in bringing meson and antimeson decays into interference, it can allow the measurement of the weak decay phases involved.
- A brief description follows

Neutral Meson (M⁰) Systems

□ Flavour eigenstates are not mass eigenstates so they mix:

$$egin{array}{rcl} |M_1
angle &=& p|M^0
angle\!+\!q|\overline{M}^0
angle &=& e^{i(m_1-i\Gamma_1t/2)} \ |M_2
angle &=& p|M^0
angle\!-\!q|\overline{M}^0
angle &=& e^{i(m_2-i\Gamma_2t/2)} \end{array}
ight\} \quad p^2\!+\!q^2=1$$

We define four mixing parameters as

$$egin{array}{rcl} x & = & (m_1 - m_2) / \Gamma & ; & r_m & = & |q/p| \ y & = & (\Gamma_1 - \Gamma_2) / \Gamma & ; & \phi_{\scriptscriptstyle M} & = & rg \left\{ q/p
ight\} \end{array} iggree \Gamma = rac{\Gamma_1 + \Gamma_2}{2} \end{array}$$

• *CP* is conserved only if p=q. In this case, then M_1 is *CP*-even and M_2 is *CP*-odd

Neutral Meson (M⁰) Systems

The flavour states oscillate in time differently

$$egin{aligned} |M^0(t)
angle = \ e^{-(\Gamma/2+im)t} \left\{\cosh[\Gamma t/2(y+ix)]|M^0
angle + \left(rac{q}{p}
ight)\sinh[\Gamma t/2(y+ix)]|ar{M}^0
angle
ight\} \ |\overline{M}^0(t)
angle = \ e^{-(\Gamma/2+im)t} \left\{\left(rac{p}{q}
ight)\sinh[\Gamma t/2(y+ix)]|M^0
angle + \cosh[\Gamma t/2(y+ix)]|ar{M}^0
angle
ight\} \end{aligned}$$

 Unless *p* = *q*, these are in not phase and "mixing-induced", time-dependent *CPV* asymmetry occurs.

Where does mixing come from ?

□ Transitions that change flavour (ΔS , ΔC or $\Delta B=2$) are possible via box diagrams, illustrated for B_d^0 below:

• The weak phase $\phi_M = \operatorname{Arg}\{q/p\}$ can be computed in the SM.

$$\begin{array}{l} \text{for } B^{0} \text{ system } \phi_{M}^{B} = \arg \left\{ \frac{V_{td}V_{tb}^{*}}{V_{td}^{*}V_{tb}} \right\} \simeq 2\beta \\ \text{for } \mathcal{K}^{0} \text{ system } \phi_{M}^{K} = \arg \left\{ \frac{V_{td}V_{ts}^{*}}{V_{td}^{*}V_{ts}} \right\} \simeq 2\beta \\ \text{for } \mathcal{B}_{s} \text{ system } \phi_{M}^{B_{s}} = \arg \left\{ \frac{V_{ts}V_{tb}^{*}}{V_{ts}^{*}V_{tb}} \right\} \simeq 0 \end{array}$$

William and Mary, June 2012.

Brian Meadows, U. Cincinnati

Observation of Mixing

- For mixing to be observed, M^0 (or $\overline{M^0}$) must be flavourtagged at time t=0 and then again when it decays
- Decays to final states accessible to both M⁰ and M⁰ are possible, especially when the final state is comprised of hadrons.

In such cases, interference between M^0 and \overline{M}^0 decays occurs and can be used to measure mixing and CPV parameters.

Decays to states accessible to both M⁰ and M⁰

We define amplitudes

The important parameter is

 $\lambda_f = \frac{q}{p} \frac{\mathcal{A}_f}{\mathcal{A}_f} \qquad \text{The phase of } \lambda_f \text{ includes } \phi_M \text{ and the weak and strong phases in the decay.}$

and its measurement is crucial to CPV studies.

William and Mary, June 2012.

Brian Meadows, U. Cincinnati

Time-dependent "Dalitz plot fits"

- The effects of mixing can be included in a fit to a multi-body hadronic final state f arising from decays of neutral mesons, such as M^0 .
- □ The *t*-dependent decay amplitude for a state M^0 at t = 0 is: $\langle f|H|M^0(t) \rangle \equiv \mathcal{A}_f(t) =$ $e^{-(\Gamma/2+im)t} \left\{ \cosh[\Gamma t/2(y+ix)] \langle f|H|M^0 \rangle + \left(\frac{q}{p}\right) \sinh[\Gamma t/2(y+ix)] \langle f|H|\overline{M}^0 \rangle \right\}$ where $\langle f|H|M^0 \rangle \equiv \mathcal{A}_f$ and $\langle f|H|\overline{M}^0 \rangle \equiv \overline{\mathcal{A}}_f$ are linear combinations of amplitudes (eg "isobar", etc.) normally present in a fit at t = 0. They depend upon the position \vec{s} in the phase space
- This can be written in the form:

 $egin{aligned} \mathcal{A}_f(ec{s},t) &= \ \mathcal{A}_f(ec{s},0) e^{-(rac{\Gamma}{2}+im)t} \left\{ \cosh[rac{\Gamma}{2}(y\!+\!ix)t] + \lambda_f(ec{s}) \sinh[rac{\Gamma}{2}(y\!+\!ix)t]
ight\} \end{aligned}$

• The dependences on point in phase space \vec{s} and time *t* factorize.

Time-dependent "Dalitz plot fits"

- The Dalitz plot density is then $\propto |\mathcal{A}_f(\vec{s},t)|^2$
- The Dalitz plot density can be written, similarly, for $\overline{M^0}$.
 - It is not, in general, the same as that for the M^0 .
- Note that
 - mixing brings both M^0 and \overline{M}^0 into interference in the decay of \overline{M}^0 ;
 - The phase space \vec{s} time *t* dependences <u>factorize</u>.
 - The parameter λ_f becomes $\lambda_f(ec{s})e^{i\phi_{ ext{W}}}$

The weak phase, ϕ_W , of λ_f is assumed not to depend on \vec{s}

Three types of CPV

1. Origin is in the mixing ("indirect CPV")

$$rac{q}{p}=r_{\scriptscriptstyle M}e^{i\phi_{\scriptscriptstyle M}}
eq 1 \qquad (r_{\scriptscriptstyle M}\equiv \left|rac{q}{p}
ight|).$$

2. Origin in the decay ("direct CPV")

 $\left|ar{\mathcal{A}}_{f}
ight|
eq \left|\mathcal{A}_{f}
ight|$

3. Coming from interference between mixing and decay ("indirect *CPV*" – a.k.a. "mixing-induced *CPV*")

$$\lambda_f = rac{q}{p} rac{ar{\mathcal{A}}_f}{\mathcal{A}_f}
eq 1$$

Direct CPV

When two (or more) amplitudes, *T* and *P* for example, mediate a decay process, then decay amplitudes are

$$egin{aligned} egin{aligned} A &= T + Pe^{i(\Delta\delta_P + \Delta\phi_P)} \ A &= T + Pe^{i(\Delta\delta_P - \Delta\phi_P)} \ \end{pmatrix} & \left\{ egin{aligned} \Delta\phi &\equiv (\phi_T - \phi_P) \ \Delta\delta &\equiv (\delta_T - \delta_P) \ \end{array}
ight. \ & \left| egin{aligned} eta &\equiv (\delta_T - \delta_P) \ \end{array}
ight. \ & \left| eta &\equiv A \ A & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ \end{array}
ight. \ & \left| eta & A \ & \left| eta$$

This leads to a *CP* asymmetry in decay rates

$$A^{CP} = \frac{|\mathcal{A}_{f}|^{2} - |\overline{\mathcal{A}}_{f}|^{2}}{|\mathcal{A}_{f}|^{2} + |\overline{\mathcal{A}}_{f}|^{2}} = \frac{2r\sin(\Delta\phi)\sin(\Delta\delta)}{1 + r^{2} + 2r\cos\Delta\delta\cos\Delta\phi} \quad (r \equiv P/T)$$

NOTE $A^{CP} = 0$ unless
 $\Delta\phi \neq 0$ AND $\Delta\delta \neq 0$

William and Mary, June 2012.

Brian Meadows, U. Cincinnati

Mixing-induced CPV in M⁰ Decays

□ Since M^0 and M^0 states oscillate differently in time, so do the rates for their decays $\Gamma(\overline{\Gamma})$ for $M^0(\overline{M}^0)$ to *f*:

$$\Gamma \propto e^{-\Gamma\Delta t} \left[\cosh(y\Gamma\Delta t) + \frac{2Re(\lambda_f)}{1+|\lambda_f|^2} \sinh(y\Gamma\Delta t) + \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2} \cos(x\Gamma\Delta t) - \frac{2Im(\lambda_f)}{1+|\lambda_f|^2} \sin(x\Gamma\Delta t) \right]$$

$$\overline{\Gamma} \propto e^{-\Gamma\Delta t} \left[\cosh(y\Gamma t) + \frac{2Re(\lambda_f)}{1+|\lambda_f|^2} \sinh(y\Gamma\Delta t) - \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2} \cos(x\Gamma\Delta t) + \frac{2Im(\lambda_f)}{1+|\lambda_f|^2} \sin(x\Gamma\Delta t) \right]$$

The result is a <u>time-dependent</u> *CP* asymmetry

$$A_{CP}(t) = \frac{\overline{\Gamma} - \Gamma}{\overline{\Gamma} + \Gamma} = \frac{(1 - |\lambda_f|^2)\cos(x\Gamma t) - 2Im(\lambda_f)\sin(x\Gamma t)}{(1 + |\lambda_f|^2)\cosh(y\Gamma t) + 2Re(\lambda_f)\sinh(y\Gamma t)}$$

Time-dependent CPV analysis (TDCPV)

 $\hfill\square$ The parameter $\lambda_f\,$ encodes the weak and strong phases into this asymmetry

So measuring this $M^{0}-\overline{M}^{0}$ asymmetry as a function of time allows measurement of the weak phase $\phi_{W} = \phi_{M} - 2\phi_{f}$

BUT only if we know the strong phase δ_{f}

Time-dependent CPV analysis

• Three possibilities for measuring δ_f in a *TDCPV* analysis:

- 1. If *f* is a *CP* eigenstate f_{CP} (e.g. $\pi^+\pi^-$, ϕK_s , $J/\psi K_L$, etc.). strong phase of \mathcal{A}_f same as that of $\overline{\mathcal{A}}_f$ so $\delta_f = 0$
- 2. Similarly, if *f* is *CP* self conjugate (sum of *CP-even* and *CP-odd* states) *e.g.* $K_s \pi^+ \pi$, $\pi^+ \pi \pi^0$, *etc.* strong phases of \mathcal{A} are linked to those of $\bar{\mathcal{A}}$ so $\delta_f = 0, \pi$
- 3. If *f* is a <u>multi-hadron</u> system -

Amplitude analysis of hadrons allows measurement of δ_{1} but there may also be an unknown phase offset too.

William and Mary, June 2012.

From Dalitz Plot, etc.

Lecture I Outline

- CP Violation what it is, how it happens, what it is not.
- The CKM model for CPV
 - Unitarity triangles
- A role for hadrons and amplitude analysis
- Mixing and its role in CPV
- **B** factory measurements
- Pause for reflection

Application to B⁰ Decays at BaBar/Belle

□ For B^0 mesons, $y \approx 0$ so B^0 decay rates are:

 $d\Gamma/d\Delta t \propto e^{-\Gamma\Delta t} \left[1 + C\cos(x\Gamma\Delta t) - S\sin(x\Gamma\Delta t)
ight] \ dar{\Gamma}/d\Delta t \propto e^{-\Gamma\Delta t} \left[1 - C\cos(x\Gamma\Delta t) + S\sin(x\Gamma\Delta t)
ight]$

with time-dependent (TD) CP asymmetry

 $A_{CP}(t) = S \sin(x\Gamma\Delta t) - C \cos(x\Gamma\Delta t)$ where $S = \frac{2Im(\lambda_f)}{1 + |\lambda_f|^2} ; C = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}$ (Belle chose to use "A"=-C)
(Belle chose to use to

• CPV analyses at the *B* factories focus on measuring *C* (direct CPV) and *S* (to extract the *weak* phase of λ_f).

Original B Factory goals

- Use Y(4S) decays to B⁰-B⁰ pairs – one is "flavour tagged" as either B⁰ or B⁰ and other B⁰ decays in a CP eigenstate.
- Measure <u>At</u> between the two decays and the <u>CP</u> asymmetry at each <u>At</u>.
- Figure shows ideal case for $J/\psi K_s$
 - no experimental effects.
 - Asymmetry is large.

$$\begin{array}{ll} \textit{\textit{B}} \text{ mix phase:} & \phi_{M}^{\textit{B}} = \arg \left\{ \frac{V_{td}V_{tb}^{*}}{V_{td}^{*}V_{tb}} \right\} & \text{Penguin phase } \phi_{\textit{P}} \\ \text{Tree phase:} & 2\phi_{T} = \arg \left\{ \frac{V_{ub}V_{ud}^{*}}{V_{ub}^{*}V_{ud}} \right\} & \checkmark & \text{Is NOT the same!} \\ \text{Needs to be} \\ \text{measured} \end{array}$$

$$V_{\text{tb}} \approx V_{\text{ud}} \approx 1$$
; Arg{ V_{td} } = $\pi - \beta$; Arg{ V_{ub} } = γ

ightarrow Weak phase: $\phi_w = 2lpha$

William and Mary, June 2012.

Brian Meadows, U. Cincinnati

<u>Many</u> other modes were actually used, including:

- those where penguin contributions were important or even dominant
- some requiring the invocation of SU(2) symmetry (I, U and V-spin)
- non CP-eigenstates
- multi-hadron hadron systems requiring *TD* Dalitz plot amplitude analyses.
- various vector-vector modes (separating out the longitudinal helicity components (CP=+1)

• A credible set of methods to determine γ that did not involve *TD* studies of B_s mesons were also developed.

Lecture I Outline

- CP Violation what it is, how it happens, what it is not.
- The CKM model for CPV
 - Unitarity triangles
- A role for hadrons and amplitude analysis
- Mixing and its role in CPV
- □ *B* factory measurements
- Pause for reflection

We might expect ...

- Even more modes (LHCb and SuperB / Belle2)
- Multi-hadron modes with 4-body (or higher dimension) amplitude analyses separating out the CP-odd or CP-even helicity components (LHCb and SuperB/Belle2)
- Full use of more precise strong phase measurements from charm threshold data (BES3 and SuperB)
- TD studies of B_s mesons (LHCb).
- Much information on direct or time-integrated CPV (mostly BES3/Panda but also LHCb/SuperB/Belle2).
- □ *CPV* studies of the charm triangle and further understanding of the origin for LHCb evidence of *direct CPV* in $D^0 \rightarrow \pi^+ \pi^-$ and $D^0 \rightarrow K^+ K^-$ decays (*LHCb and SuperB/Belle2*).

Next time, we will cover some of the B factory methods and results in these CPV measurements.