CP Violation and all that.

Brian Meadows University of Cincinnati

William and Mary, June 2012.

Lecture IV

- *CP* Violation and mixing for *D* vs. *B*.
- □ *TDCPV* measurement at a *D* factory too ?
 - Unitarity triangles
- Time-integrated and direct CPV evidence from LHCb.
- □ Is this evidence for *NP* ?

Lecture IV

- *CP* Violation and mixing for *D* vs. *B*.
- □ *TDCPV* measurement at a *D* factory too ?
 - Unitarity triangles
- Time-integrated and direct CPV evidence from LHCb.
- □ Is this evidence for *NP* ?

CPV in D's and B's

- The ability to search for CPV in the charm sector is distinguished sharply from that in B and B_s mesons in several important ways.
 - Weak phases in the charm quark sector of the CKM are small ($\sim \lambda^4$).

$$\begin{array}{c} V_{cd} \text{ acquires a} \\ phase at order \ \lambda^4 \end{array} \\ \begin{pmatrix} 1 - \lambda^2/2 - \lambda^4/8 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta})(1 + \lambda^2/2) \\ -\lambda + A^2\lambda^5 \boxed{1 - 2(\bar{\rho} + i\bar{\eta})]/2} & 1 - \lambda^2/2 - \lambda^4(1 + 4A^2)/8 & A\lambda^2 \\ A\lambda^3 [1 - \bar{\rho} - i\bar{\eta}] & -A\lambda^2 + A\lambda^4 [1 - 2(\bar{\rho} + i\bar{\eta})]/2 & 1 - A^2\lambda^4/2 \end{array} \right) + \mathcal{O}(\lambda^6).$$

 D^o mixing is also heavily suppressed and evidence for it has only recently been found (by BaBar and Belle).

$D^0 - \overline{D^0}$ mixing-induced oscillations

Mixing milestones

BABAR: PRL 98 211802 (2007)	$D^0 \rightarrow K^+ \pi^-$ decay time analysis	3.9 <i>σ</i>
BELLE: PRL 98 211803 (2007)	$D^0 \rightarrow K^+ K^-, \pi^+ \pi^- vs K^+ \pi^-$ lifetime difference analysis	3.2σ
BELLE: PRL 99 131803 (2007)	$D^0 \rightarrow K_s \pi^+ \pi^-$ time dependent Dalitz analysis	2.2σ
CDF: PRL 100, 121802 (2008)	$D^0 \rightarrow K^+ \pi^-$ decay time analysis	3.8 <i>0</i>
BABAR: arXiv:0712.2249 (2007), accepted by PRD-RC	$D^0 \rightarrow K^+ K^-, \pi^+ \pi^- vs K^+ \pi^-$ lifetime difference analysis	3σ
	all mixing results combined by HFAG:	6.7 <i>σ</i>

\Box Of all neutral mesons, the D^0 system exhibits the least mixing

System:	X:	у:	
<i>K</i> ⁰ (1956)	0.95	0.99	
<i>B_d</i> (1987)	0.78	≈0	
$B_{s}(2006)$	26	0.15	
<i>D</i> ⁰ (2007)	0.0098	0.0075	

• Short distance $\Delta C=2$ SM suppression:

D mixing loop involves d-type quarks ■ b quark loop suppressed: $|V_{ub}^*V_{cb}| \ll 1$ ■ s and d quark loops: GIM suppressed ■ Mass difference ampl. < O(10⁻⁵)

predominant but hard to quantify

Recent estimates are typically $|x| \leq 1\%, \ |y| \leq 1\%$ (consistent with current observation)

Signals for New Physics would be |x| >> |y| or Evidence for *CPV*

Golowich, Hewett, Pakvasa an Petrov, PR 76, 095009(2007)

William and Mary, June 2012.

Current World Averages (HFAG)

Parameter	Value
x(%)	$0.63\substack{+0.19 \\ -0.20}$
$oldsymbol{y}(\%)$	0.75 ± 0.12
q/p	$0.88\substack{+0.18\\-0.16}$
$\phi_{\scriptscriptstyle M}$	$-10.1\substack{+9.5\-8.9}$

William and Mary, June 2012.

Lecture IV

- *CP* Violation and mixing for *D* vs. *B*.
- □ *TDCPV* measurement at a *D* factory too ?
 - Unitarity triangles
- Time-integrated and direct CPV evidence from LHCb.
- □ Is this evidence for *NP* ?

A "B factory" for D's Too ?

Bevan, Inguglia, BM, Phys.Rev. D84 (2011) 114009

- The SM predicts any weak phase to be tiny a TDCPV analysis is a way to see if this is actually.
- We explore the potential to study the "*cu*" triangle at the LHCb at SuperB/Belle2 at Y(4S) or SuperB at $\psi(3770)$.
 - It is unlikely we can measure β_c (<0.1 degrees) to high precision
 - However, a larger value could signify evidence for new physics.
- SuperB in Italy is planning to include an option to run ~1 ab⁻¹ at psi(3770) with a CM boost.

The triangles

See Bigi and Sanda, hep-phy/9909479 (1999)

Bigi and Sanda:

In addition to α , β and γ , the angles, β_c and β_s should be measured also, if possible.

LHCb is working on β_s using $B_s \rightarrow \psi \phi(f^0)$ decays.

SuperB and Belle2 should also be able to study $B_{s} \rightarrow \psi \eta^{(1)}$ at Y(5S)

William and Mary, June 2012.

Unitarity Triangles from CKM Fits

William and Mary, June 2012.

Constraint on cu Triangle ?

 \rightarrow BUT some measurement of β_c is needed to test CKM

Decays to CP eigenstates

For decays to CP eigenstates, strong phase
δ_f in
λ_f
is zero

Phase of
$$\lambda_f$$
: $\phi_{MIX} - 2\phi_f^{weak}$

William and Mary, June 2012.

Decays of D mesons to CP eigenstates

• For decays to CP eigenstates, strong phase δ in λ_f is zero

Several amplitudes could, however, contribute to the decays.

• Some information on the magnitude of **P**, the penguin contribution can be obtained from an isospin analysis if all charge modes have well measured **BF**'s, including neutral modes $\pi^0\pi^0$, $\rho^0\rho^0$ and all the $\rho\pi$ modes too.

This could be done at the electron machines.

$D^0 \rightarrow f_{\rm CP}$ Decay Amplitudes

To order λ^6 these are: Four out of five are complex !

$$V_{cs}V_{us}^{*} = \lambda - \frac{\lambda^{3}}{2} - \left(\frac{1}{8} + \frac{A^{2}}{2}\right)\lambda^{5}$$
Real
Phase is $O(\lambda^{6})$

$$V_{cs}V_{ud}^{*} = 1 - \lambda^{2} - \frac{A^{2}\lambda^{4}}{2} + A^{2}\lambda^{6}\left[\frac{1}{2} - \bar{\rho} - (i\bar{\eta} - \bar{\eta}^{2} - \bar{\rho}^{2}\right]$$
Phase is $\Omega(\lambda^{6})$

$$V_{cd}V_{ud}^{*} = -\lambda + \frac{\lambda^{3}}{2} + \frac{\lambda^{5}}{8} + \frac{A^{2}\lambda^{5}}{2}[1 - 2(\bar{\rho} + i\bar{\eta})]$$
Phase is $\pi - \beta_{c}$ but $\sim \lambda^{6}$

$$V_{cd}V_{us}^{*} = -\lambda^{2} + \frac{A^{2}\lambda^{6}}{2}[1 - 2(\bar{\rho} + i\bar{\eta})]$$
Phase is $\pi - \beta_{c}$ but $\sim \lambda^{6}$

$$V_{cb}V_{ub}^{*} = A^{2}\lambda^{5}(\bar{\rho} + i\bar{\eta})$$
Phase is γ_{c} , but only found in penguin amplitude
 \rightarrow unlikely to be able to check that $\gamma_{c} = \gamma$

William and Mary, June 2012.

Amplitudes for Decays to CP Eigenstates

mode	η_{CP}	T	CS	P_{a}	W_{EX}] ,	
$D^0 \rightarrow K^+ K^-$	+1	$V_{cs}V_{us}^*$	0.2	$\frac{1}{V_{cq}V_{uq}^*}$		-	Dominated by real T
$D^0 \to K^0_S K^0_S$	+1				$V_{cs}V_{us}^* + V_{cd}V_{ud}^*$		
$D^0 \to \pi^+ \pi^-$	+1	$V_{cd}V_{ud}^*$		$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$		Dominated
$D^0 \to \pi^0 \pi^0$	+1		$V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$		by T with
$D^0 \to \rho^+ \rho^-$	+1	$V_{cd}V_{ud}^*$		$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$		$\phi_{f} = \pi - \beta_{c}$
$D^0 \to \rho^0 \rho^0$	+1		$V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$		
$D^0 \to \phi \pi^0$	+1		$V_{cs}V_{us}^*$	$V_{cq}V_{uq}^*$			
$D^0 \to \phi \rho^0$	+1		$V_{cs}V_{us}^*$	$V_{cq}V_{uq}^{*}$			
$D^0 \to f^0(980)\pi^0$	-1		$V_{cs}V_{us}^* + V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$			
$D^0 \to \rho^0 \pi^0$	+1		$V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$		
$D^0 \to a^0 \pi^0$	-1		$V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$		
$D^0 \to K^0_S K^0_S K^0_S$	+1			_	$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$		
$D^0 \to K^0_L K^0_S K^0_S$	-1				$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$		
$D^0 \to K^{\bar{0}}_L K^{\bar{0}}_L K^{\bar{0}}_S$	+1				$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$		
$D^0 \to K^0_L K^0_L K^0_L$	-1				$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$		

William and Mary, June 2012.

Time-Dependent CP Asymmetry

• For *D* decay we measure CP asymmetry vs. decay time $A_{CP} = \frac{\bar{\Gamma} - \Gamma}{\bar{\Gamma} + \Gamma} = -\eta_{CP} \frac{(1 - |\lambda_f|^2) \cos(x\Gamma t) - 2\Im(\lambda_f) \sin(x\Gamma t)}{(1 + |\lambda_f|^2) \cosh(y\Gamma t) + \Re(\lambda_f) \sinh(y\Gamma t)}$

- The *D*⁰ asymmetry is much smaller than that for *B*⁰
- |A_{CP}| is almost linear in *t* while, for B⁰ it is sinusoidal
- Slope of line depends upon $φ = \text{Arg} \{λ\}$

Time-Dependent CP Asymmetry

• For *D* decay we measure CP asymmetry vs. decay time $A_{CP} = \frac{\bar{\Gamma} - \Gamma}{\bar{\Gamma} + \Gamma} = -\eta_{CP} \frac{(1 - |\lambda_f|^2) \cos(x\Gamma t) - 2\Im(\lambda_f) \sin(x\Gamma t)}{(1 + |\lambda_f|^2) \cosh(y\Gamma t) + \Re(\lambda_f) \sinh(y\Gamma t)}$

- Intercept of line depends upon |λ|
 Any asymmetry at t~0 is from direct CPV
- |A_{CP}| is small, but it grows and is largest at large |t|
- BUT, as |t| grows larger, the number of events falls off exponentially.

Mis-Tagging

- Effect of mis-tagging probability ω is to reduce the $D^0 - \overline{D^0}$ asymmetry
- Effect of *CP* asymmetry in ω is to shift the asymmetry.
 - Direct CPV asymmetry is measured at t=0 ! So shift can be particularly serious in this case.

$$\mathcal{A}^{\text{Phys}}(\Delta t) = \frac{\bar{\Gamma}^{\text{Phys}}(\Delta t) - \Gamma^{\text{Phys}}(\Delta t)}{\bar{\Gamma}^{\text{Phys}}(\Delta t) + \Gamma^{\text{Phys}}(\Delta t)}$$
$$= -\Delta \omega + (1 - 2\omega + \Delta \omega)\mathcal{A}(\Delta t)$$
$$\mathcal{\Delta}\omega \text{ is difference}$$
In ω for \mathcal{D}^{0} vs. $\overline{\mathcal{D}}^{0}$

Mis-Tagging

- Effect of mis-tagging probability ω is to reduce the D⁰-D⁰ asymmetry
- Effect of *CP* asymmetry in ω is to shift the asymmetry.
 - Direct CPV asymmetry is measured at t=0 ! So shift is particularly serious in this case.

Results - "as good as (they) get"

 A toy MC study was made to study how well we might measure φ=Arg{λ}

- Events were generated with the distributions Γ(Δ t) and Γ(Δ t)
- Perfect time resolution was assumed

 Unbinned likelihood fits were made to study σ(φ).

Results – "as good as (they) get"

The K⁺K⁻ mode is dominated by a tree diagram that is real.
 Therefore, this mode can be used to find arg (q/p) = \$\overline{\mathcal{M}}\$
 Then \$\pi^+\pi^-\$ mode (for which arg(\$\lambda_{\mathcal{F}}\$) = \$\overline{\mathcal{M}}\$, end for a give \$\beta_{\mathcal{C},eff}\$) can give \$\beta_{\mathcal{C},eff}\$

		$\operatorname{Super} B$		LHCb
Parameter	SL	SL + K	$\Upsilon(4S)$	
$\phi(\pi\pi) = \arg(\lambda_{\pi\pi})$	8.0°	3.4°	2.2°	2.3°
$\phi(KK) = \arg(\lambda_{KK})$	4.8°	2.1°	1.3°	1.4°
$\phi_{CP} = \phi_{KK} - \phi_{\pi\pi}$	9.4°	3.9°	2.6°	2.7°
$\beta_{c,eff}$	4.7°	2.0°	1.3°	1.4°

William and Mary, June 2012.

Lecture IV

- *CP* Violation and mixing for *D* vs. *B*.
- □ *TDCPV* measurement at a *D* factory too ?
 - Unitarity triangles
- Time-integrated and direct CPV evidence from LHCb.
- □ Is this evidence for *NP* ?

Time-Integrated CPV in D decays

- For many years, it has been (almost) axiomatic that direct
 CPV in charm particle decays would be a sure sign of NP.
- In November 2011, such evidence (3.5σ significance) was found by the LHCb collaboration, supported by results from the CDF collaboration, but with only 2.6σ significance
- Despite this, doubts now exist about whether details of SM physics are the real source of this CPV arising from the presence of penguin contributions to SCS decays.
- □ If so, evidence for NP has yet to be found.

□ In the SM, *CPV* in the charm sector is due to SM penguin tree interference, and should be at about the 0.1% level.

- New insights on systematics, improve uncertainties $\rightarrow \sim (0.2-0.4)\%$.
 - Previous asymmetries were ~0% with uncertainties ~(1-10)%

William and Mary, June 2012.

An experimental milestone

- Until 2007, precision of *D* decay asymmetry measurements were limited to ~1% by two main factors:
 - Charge asymmetry in the efficiencies of "slow pion" tags $(D^{\pm} \rightarrow D^{0} \pi^{\pm})$, estimated from MC studies, were unreliable.
 - D(D) production asymmetries were not well predicted by theory.
- □ In 2007, BaBar set out to measure $D^0 \rightarrow K^+K^-$ and $\pi^+\pi^-$ decay asymmetries. They
- introduced a way to measure tagging efficiencies from data rather than MC.
 - The asymmetry in the target h⁺h⁻ channels, subject only to the tagging efficiency, was then measured.
- were able to separate azimuthal asymmetry into odd and even to distinguish forward-backward from CP components.

 $D^0 \rightarrow K^+ K^-$, $K^+ K^- \pi^0$, $\pi^+ \pi^-$ and $\pi^+ \pi^- \pi^0$

- D⁰'s produced in e⁺e⁻ collisions at B factories are tagged by the sign of the slow pion from D^{*} decay
 - □ Efficiencies for π_s^+ and π_s^- are not the same (low energy $\sigma_{\pi N}$, etc). So, use DATA rather than MC to find the asymmetry:
 - Use (several x10⁶) untagged $K^{-}\pi^{+}$ to map (4-dimensional) efficiency asymmetry for K^{-} and for π^{+} momenta and azimuth.
 - Use this efficiency on tagged $K^-\pi^+$ to map isolated π_s asymmetry
 - *D*^θ's are produced with asymmetry in θ^{*} (relative to beam axis) and efficiency depends on θ^{*} (from Z⁰/γ, higher order or QCD effects)
 Take average of each cosθ^{*} range for |cosθ^{*}| > 0 and < 0 → A_{CP}
 Take difference of each cosθ^{*} range for |cosθ^{*}| > 0 and < 0 → A_{FB}

$D^0 \rightarrow K^+K^-$ and $\pi^+\pi^-$

- No evidence for CPV
- Systematic uncertainties ~ 0.1% (Likely scale with luminosity^{1/2})!!
- No significant difference between KK and $\pi\pi$

$D^0 \rightarrow \pi^- \pi^+ \pi^0$ and $K^- K^+ \pi^0$

 For comparison, results on the CPV asymmetry measurement, integrated over the 3-body phase space for these channels are:

Phys.Rev. D78 (2008) 051102 384 fb⁻¹

$$A_{CP}^{\kappa\kappa\pi^{0}} = [1.00 \pm 1.67(\text{stat.}) \pm 0.25(\text{syst.})]\%$$
$$A_{CP}^{\pi\pi\pi^{0}} = [-0.31 \pm 0.41(\text{stat.}) \pm 0.17(\text{syst.})]\%$$

Babar used the technique described to correct for tracking asymmetries.

Phys.Lett.B662 (2008) 102-110 532 fb⁻¹

$$A_{CP}^{\pi\pi\pi^0} = [-0.43 \pm 0.41 (\text{stat.}) \pm (1.23 (\text{syst.}))]\%$$

Belle's (earlier paper), did not do this.

- No evidence for CPV
- Systematic uncertainties ~ 0.2% (Likely scale with luminosity^{1/2})!!
- No significant difference between $KK \pi^0$ and $\pi\pi\pi^0$
- See Ryan White's talk on other more recent 3-body CPV measurements.

William and Mary, June 2012.

Example at charm threshold - $D^+ \rightarrow K^- K^+ \pi^+$

Phys.Rev. D78 (2008) 072003 818 pb⁻¹

- CLEO-c used 818 pb⁻¹ e^+e^- at the $\psi(3770)$ near $D^+D^$ threshold. $D^+ \rightarrow K^+ K^- \pi^+$
- One D^{\pm} (self-tagged) identifies the other one
 - no asymmetry from D^{*} tagging!
 - no production asymmetry.
- **Overall asymmetry**

 $A_{_{CP}} = (-0.03 \pm 0.84 \pm 0.29)\%$

Amplitude analysis of Dalitz plot – integrated asymmetry

 $A_{\scriptscriptstyle CP} = (-0.4 \pm 2.0^{+0.2+0.6}_{-0.5-0.3})\%$

William and Mary, June 2012.

Tag *D* -

CPV measurements at hadron machines

- Pretty soon, CDF and then LHCb devised ways to beat or finesse the slow pion tagging efficiency to reach precision in asymmetry measurements in the "per mille" range.
- □ LHCb also has a special problem with production asymmetry, since the uses $p+p \rightarrow D^0+X$ rather than $\overline{p}+p \rightarrow D^0+X$ interactions so that the BaBar odd-even trick will not work
- Both experiments can, however, finesse these problems by measuring

$$\Delta_{\scriptscriptstyle CP} = A_{\scriptscriptstyle CP}^{KK} - A_{\scriptscriptstyle CP}^{\pi\pi}$$

 Most interesting, was the observation by CDF that the asymmetry measured is of the form

$$\Delta^{f}_{_{CP}} = \frac{\Gamma^{_{(D^{0} \to f)}} - \Gamma^{(\bar{D}^{0} \to f)}}{\Gamma^{_{(D^{0} \to f)}} + \Gamma^{(\bar{D}^{0} \to f)}} \approx A^{\text{direct}}_{_{CP}} + \frac{\langle t \rangle}{\tau} A^{\text{indirect}}_{_{CP}}$$

and to note that CDF, LHCb and BaBar/Belle have different time integration periods over which <t> is computed.

William and Mary, June 2012.

William and Mary, June 2012.

Evidence for direct CPV in D decay LHCb

Jonas Rademacker (Bristol) talk at Moriond EW

Direct CPV in [ππ	0.62/fb, <u>arXiv:1112.0938</u> PRL 108, 111602 (2012)			
$A_{CP}(K^+K^-) \equiv \frac{\Gamma(D^0 \to K^+K^-)}{\Gamma(D^0 \to K^+K^-)}$ Tag initial state with	$ \begin{array}{c} \overline{\Gamma} & -\Gamma(\overline{D}^{0} \to K^{+}K^{-}) \\ \overline{\Gamma} & +\Gamma(\overline{D}^{0} \to K^{+}K^{-}) \end{array} \end{array} $ $ \begin{array}{c} \Gamma & \Gamma \\ D^{*} \colon D^{*-} \to \overline{D}^{0} \end{array} $	$A_{CP}(\pi^{+}\pi^{-}) \equiv \frac{\Gamma(D^{0} - D^{0})}{\Gamma(D^{0} - D^{0})}$ $\pi_{s}^{-}, D^{s} + \to D^{0}\pi_{s}^{+}$	$ \stackrel{\rightarrow}{\rightarrow} \pi^{+}\pi^{-}) - \Gamma(\overline{\mathbb{D}}^{0} \rightarrow \pi^{+}\pi^{-}) $ $ \stackrel{\rightarrow}{\rightarrow} \pi^{+}\pi^{-}) + \Gamma(\overline{\mathbb{D}}^{0} \rightarrow \pi^{+}\pi^{-}) $		
$A_{RAW}(f)^* =$ what we want	$A_{CP}(f) + A_{P}(f) + f's different difference for the symmetry.$	$(A_D(\pi_s)) + (A_P(D^{*+}))$ π_s detection asymmetry	Production asymmetry		

- Initial state subject to production and π_s detection asymmetry. Cancel in the difference: $\Delta A_{CP} = A_{CP}(KK) - A_{CP}(\pi\pi)$
- Nice: U-spin suggests that A_{CP}(KK) ≈ -A_{CP}(ππ) (Grossmann Kagan Nir <u>Phys Rev D75:036008.2007</u>)
- Measures CPV in decay only, other forms of CPV cancel (to very good approx)

$$\Delta A_{\scriptscriptstyle CP} = (-0.82 \pm 0.21 \pm 0.11)\%$$
 0.62 fb⁻¹ Needs confirmation

William and Mary, June 2012.

Lecture IV

- *CP* Violation and mixing for *D* vs. *B*.
- □ *TDCPV* measurement at a *D* factory too ?
 - Unitarity triangles
- Time-integrated and direct CPV evidence from LHCb.
- □ Is this evidence for *NP* ?

Direct CPV in SCS *D⁰* Decays

- □ In the *SM*, *CPV* comes from penguin amplitudes *P* interfering with tree amplitudes *T*.
- Large CP asymmetries ~1% could come from NP particles in penguin loops, new scalar exchanges, ... (many ideas!)

It is hard for the SM to account for asymmetries of ~1%, but not impossible. How can we tell if NP is required?

CPV in SCS decays in the SM

□ *SM* penguin and Tree contributions.

 The largest penguin amplitude comes from the *b* quark, so the SM ratio between tree and penguin amplitudes is

The magnitude r_P must include QCD power corrections, etc., that are notoriously difficult to compute.

William and Mary, June 2012.

Include (some kind of) NP

• There are differences in I and U-spin in each amplitude

• Decay amplitudes for D^0 and $\overline{D^0} \rightarrow \pi^+\pi^-$ are

[We choose: δ_T = 0]

SM weak phase $\sim \lambda^5$

SM phase $\gamma \sim 67^{0}$

NP contribution Weak phase ϕ

This leads to an asymmetry

 $\mathcal{A}_{CP} = \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}} \simeq 2r_P \sin \gamma \sin \delta_P + 2r_N \sin \phi \sin \delta_N$ $\Delta I = \frac{1}{2} \circ 10^{-3} \qquad \Delta I = \frac{1}{2} \text{ or } \frac{3}{2}$

William and Mary, June 2012.

I-spin Tests for NP

- It is hard for the SM to account for asymmetries of ~1%, but maybe not impossible. How can we tell if NP is required?
- □ In the SM, the CPV asymmetries come only from $\Delta I = \frac{1}{2}$ penguin amplitudes.
- So *CPV* symmetries from a $\Delta I = \frac{3}{2}$ decay amplitude would be a clear signal for NP.
- Recognizing that *I* spin breaking has similar magnitude to *CPV* asymmetries, *Grossman, Kagan and Zupan* (GKZ) recently proposed a number of sum rules that could, when sufficient data are available, expose any *CPV* effects in $\Delta I = \frac{3}{2}$ amplitudes.

http://arxiv.org/abs/1204.3557

William and Mary, June 2012.

$D^{0,+} \rightarrow \pi\pi$ and $\rho\rho$ (GZK)

■ Bose statistics requires only I = 0 or 2 in each of these final states so there are two reduced I-spin decay amplitudes A_1 $(\Delta I = \frac{1}{2})$ and A_3 $(\Delta I = \frac{3}{2})$ so that

$$egin{array}{rcl} A_{\pi^+\pi^-}&=&\sqrt{2}A_3+\sqrt{2}A_1\ A_{\pi^0\pi^0}&=&2A_3-A_1\ A_{\pi^+\pi^0}&=&3A_3 \end{array}$$

CP conjugate decays are similar with $A_f \rightarrow \overline{A}_{\overline{f}}$.

Split these amplitudes into SM (S) and NP (N) components:

$$A_k = S_k e^{i(\delta_k^S - \phi_k^S)} + N_k e^{i(\delta_k^N - \phi_k^N)}$$
 (k = 1 or 3)

□ In the SM, A_3 comes only from the tree diagram ($V_{cd}V_{ud}$) with weak phase ϕ_3 ^S~ 0

[Actually $\sim \lambda^4$]

William and Mary, June 2012.

CP Asymmetry in $D^+ \rightarrow \pi^+ \pi^0$

We can also choose the strong phase $\delta_3^s = 0$ so that $A_3 = S_3 \ + \ N_3 e^{i(\delta_3^N - \phi_3^N)}$ So, for $D^+ \rightarrow \pi^+ \pi^0$, the *CP* difference $\Delta_2\left(\pi^+\!\pi^0
ight) = \left(|A_{\pi^+\!\pi^0}|^2 - |ar{A}_{\pi^-\!\pi^0}|^2
ight) = 36S_3N_3\sin\delta_3^N\sin\phi_3^N.$ \vec{N}_3 $ec{A}_3$ $\delta^{\scriptscriptstyle N}_3$ $ec{S}_3$ (or $ec{S}_3$)

 \rightarrow <u>CP</u> asymmetry in D⁰ $\rightarrow \pi^+\pi^0$ requires <u>NP</u> !

William and Mary, June 2012.

■ BUT absence of measurable *CP* asymmetry in $D^+ \rightarrow \pi^+ \pi^0$ does not eliminate need for a $\Delta I = \frac{3}{2}$ *NP* amplitude

 So GZK suggest testing
 Q₁ = Δ₂(π⁺π⁻)+Δ₂(π⁰π⁰) - ²/₃Δ₂(π⁺π⁰) = 3(|A₁|² - |Ā₁|²).

 If <u>Q₁ not zero</u>, there are Δ*I* = ¹/₂ contributions to *CPV* (Could be either *NP* or *SM*).

William and Mary, June 2012.

• BUT if $\begin{array}{ccc} \neq 0 & \neq 0 \\ Q_1 = \Delta_2(\pi^+\pi^-) + \Delta_2(\pi^0\pi^0) - \frac{2}{3}\Delta_2(\pi^+\pi^0) = 3(|A_1|^2 - |\bar{A}_1|^2). \end{array}$

Either the CP differences observed come from A₃

Evidence for NP

No need

for NP

• Or the $\Delta I = \frac{1}{2}$ amplitudes for T and P have the same strong phase but different weak phases (no CPV in $\Delta I = \frac{1}{2}$)

 Time-dependent CP asymmetry measurements are required to distinguish these.

Time-dependent CPV asymmetry

- □ The time-dependence of *CPV* asymmetry of weak decays of *D*⁰ to a *CP* eigenstate measures the phase $\phi_M 2\phi$ where ϕ_M is the mixing phase and ϕ is the weak decay phase.
- □ Differences between $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^-$ can, therefore, be used to measure ϕ .
- This can be useful in understanding the difference between SM and NP for the differential asymmetry observed by LHCb between these two modes.

NP: $\phi \sim ??$ TNP? PT

William and Mary, June 2012.

Prospects for Measuring $D^+ \rightarrow \pi^+ \pi^0$ **Asymmetry BaBar and CLEO measured this mode relative to** $D^+ \rightarrow K^- \pi^+ \pi^+$

 $A^{CP} = (2.9 \pm 2.9 \pm 0.3) \times 10^{-2}$

Phys.Rev. D81 (2010) 052013

Prospects for Measuring other $\pi\pi$ Asymmetries

William and Mary, June 2012.

Projections for A^{CP} Measurements

- LHCb CPV measures $A^{CP}(KK)-A^{CP}(\pi\pi)\sim 0.8\%$
 - So each mode has A^{CP}~0.4% (assuming U-spin symmetry).
 - \rightarrow Precision required to make GKZ tests is probably ~0.1%.
- □ For $D^0 \rightarrow \pi^0 \pi^0$ BaBar measures BF, not A^{CP} which we estimate.
- For A^{CP} measurements, we observe that most systematic uncertainties cancel except for uncertainties in signal and background shapes.
 - We assume these should shrink with the data size

		At	$\psi(3770)$	At $\boldsymbol{\Upsilon}(4S)$		
$A^{\scriptscriptstyle CP}(\%)$	LHCb	CLEOc	BES3	SuperB	BABAR	SuperB
	$5{ m fb}^{-1}$	$0.818{ m fb}^{-1}$	$10{ m fb}^{-1}$	$1 \mathrm{ab}^{-1}$	$481{ m fb}^{-1}$	$75\mathrm{ab}^{-1}$
$\pi^+\pi^0$	_	± 3.0	± 1.0	± 0.1	± 6	± 0.27
$\pi^+\pi^-$?	_	_	_	± 0.6	± 0.04
$\pi^0\pi^0$	_	_	_	_	± 1.2	± 0.10
$\Delta A^{\scriptscriptstyle CP}$	± 0.07					± 0.05

William and Mary, June 2012.