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✬

✫

✩

✪
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✬

✫

✩

✪

Introduction

✷ The aim of these lectures is to give information on how to perform in practice a Dalitz analysis

which worth while to be published.

✷ Dalitz analyses are not simple. There are many unknown aspects. Some of them will remain

unresolved.

✷ Even the fitting model is a working approximation. Rather often it is impossible to obtain a

statistically good description of the data.

✷ One should be very careful on how to handle the introduction of new resonances.

✷ Sometime they can appear as adding extra terms to a polynomial fitting.

✷ It is possible that something new appears in the data. However before claiming for a new effect,

one should try to explain it in terms of what is already known.
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✬

✫

✩

✪

A Dalitz analysis program.

✷ If you like I can provide a Dalitz analysis program. The idea is that “doing things in practice”

helps much more than many words.

✷ Unfortunately this program is written in FORTRAN, but it should not be difficult to use.

✷ It is set-up for D0 → K0
Sπ

+π− but it can be modified easily.

✷ It performs Monte Carlo simulations and fits Monte Carlo data, but it can be easily modified to

run on data.

✷ It only needs MINUIT data cards for the free parameters.

✷ At the end, you can look at the output either using PAW++ or ROOT by converting:

h2root hbookfile rootfile

✷ It also needs the CERN library, I can supply it if needed.

✷ The program is stored at:

http://www.ba.infn.it/˜palano/dalitz.tar.gz

✷ Notice that files such as mc dummy.car, mc data.car are dummy files and will be replaced during

the execution.

✷ To run the program:

g77 -O2 -fno-automatic -g daly k0spipi.f -L ˜/cern/2005/lib -lgrafX11 -lmathlib -lpawlib -lkernlib

-lgraflib -lgeant321 -lphtools -lpacklib noshift -v

./a.out
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✬

✫

✩

✪

Main Recent Experiments on Heavy Flavours

✷ The Data which will be presented are coming from several experiments.

✷ A short summary is given.

5



✬

✫

✩

✪

Main Experiments

• Fermilab Experiment E791: Study of production and decay of charmed particles produced

using a 500 GeV π− beam on Pt and C targets at the Fermilab Tagged Particle Spectrometer.

Data-Taking from June 1988 to January 1992.

Good particle identification and displaced vertex for studying charm decays to charged tracks.

(http://ppd.fnal.gov/experiments/e791/welcome.html)
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✬

✫

✩

✪

• FOCUS (E831), is a heavy-flavor photoproduction experiment located in the Wide Band Area

of Fermilab. It was an upgraded version of its predecessor, E687. The experiment accumulated

data during the 1996-1997 fixed target run and has fully reconstructed more than one million

charm particles.

(http://www-focus.fnal.gov/)
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✬

✫

✩

✪

• CLEO. e+e− annihilations. After about twenty successful years of B physics, CLEO and

CESR (Cornell) have entered a new phase by moving into the charm region. Data samples at

the Υ(5S), Υ(1 − 3S), 4170 GeV, 3770 GeV, and at the ψ(2S), complemented by nearby

continuum samples, have allowed us to perform many sensitive studies of weak and strong

physics.

(http://www.lepp.cornell.edu/Research/EPP/CLEO/)
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✬

✫

✩

✪

• e+e− annihilations. BaBar(SLAC) and Belle(KEK) physics results span a broad range of

topics, including B, charm, and τ physics; CP violation; precision CKM measurements;

charmonium and bottomonium states; hadron production; and searches for physics beyond the

standard model.

Data-taking from 1999 to 2008 (BaBar http://www.slac.stanford.edu/BFROOT/), 1999-2010 (Belle

(http://belle.kek.jp/)).

9



✬

✫

✩

✪

• Beijing Spectrometer (BES) is a general-purpose detector located in the interaction region at

the BEPC storage ring, where the electron and positron beams collide. Study of e+e−

interactions at the charmonium threshold. (http://bes.ihep.ac.cn/)

✷ e+e− experiments have the advantage of exploring a broader final states program which

includes the detection of K0
L, γ’s, π0, and η.

✷ Hadronic experiments have the advantage of higher statistics but sometime tight trigger

conditions and therefore more difficult efficiency evaluation.

10



✬

✫

✩

✪

Dalitz Analyses on Heavy Flavours decays

✷ Most of the Dalitz Analyses have been performed on charmed and B mesons

decays.

✷ New analyses are recently coming from charmonium decays.

✷ How to extract clean data samples useful for Dalitz analyses?
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✬

✫

✩

✪

B-factories: charm physics in the continuum.

✷ At e+e− → Υ(4S) B-factories, the Υ(4S) resonance sits on a consistent continuum background.

✷ Cross sections for different processes, at the Υ(4S):
e+e− → σ (nb)

bb̄ 1.05

cc̄ 1.30

ss̄ 0.35

uū 1.39

dd̄ 0.35

τ+τ− 0.94

µ+µ− 1.16

e+e− ≈ 40

✷ Inclusive Charm Physics is performed on

events selected from continuum e+e− → c̄c
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✬

✫

✩

✪

Study of D+
s in BaBar.

✷ Example from BaBar: mass distribution and p∗ momentum spectrum for D+
s → φπ+.

Filled/open points: normalized on/off peak data.
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✷ By using inclusive continuum events combinatorial background is strongly reduced.

✷ Kinematical selection: the center of mass momentum (p∗) > 2.5 GeV/c.

✷ To perform Dalitz analyses a high signal to background ratio is needed.
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✬

✫

✩

✪

Example of Charmed mesons reconstruction.

✷ BaBar has performed a Dalitz plot analysis of D+
s → π+π−π+

(arXiv:0808.0971) and

D+
s → K+K−π+

(arXiv:1011.4190).

✷ Initial π+π−π+ mass spectrum.
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✷ The three tracks are fitted to a common vertex, and the χ2 fit probability (labeled P1) must be

greater than 0.1 %.

✷ To help discriminate signal from background, an additional fit which uses the constraint that the

three tracks originate from the e+e− luminous region (beam spot) is performed. The χ2 probability

of this fit is labeled as P2, and it is expected to be large for background and small for D+
s signal

events, since in general the latter will have a measurable flight distance.
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✬

✫

✩

✪

Charmed mesons reconstruction: tagging

✷ The combinatorial background is reduced by requiring the D+
s to originate from the decay

D∗
s (2112)+ → D+

s γ

using the mass difference

∆m(D+
s γ) = m(π+π−π+γ) −m(π+π−π+)

✷ ∆m(D+
s γ) for the D+

s → K+K−π+ decay.

(The use of the ∆m instead of the invariant mass improves resolution, particularly in the

threshold region.)
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✬

✫

✩

✪

Charmed mesons reconstruction.

✷ Each D+
s candidate is characterized by three variables: the center of mass momentum p∗, the

difference in probability P1 − P2, and the signed decay distance dxy between the D+
s decay vertex

and the beam spot projected in the plane normal to the beam collision axis.

✷ The distributions for these variables for background are inferred from the D+
s → π+π−π+

invariant mass sidebands.

✷ Since these variables are (to a good approximation) independent of the decay mode, the

distributions for the three-pion invariant mass signal, are inferred from the D+
s → K+K−π+ decay.

✷ The distributions of these variables for the D+
s → K+K−π+ decay for signal and background.

0

0.01

0.02

0.03

0.04

0.05

3 4 5

p* (GeV/c)

Pr
ob

ab
ili

ty

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

-0.1 0 0.1 0.2 0.3

dxy (cm)

(b)

0

0.02

0.04

0.06

0.08

0 0.5 1

P1 - P2

(c)

✷ These normalized distributions are then combined in a likelihood ratio test.

L =

∏

i

(PDFsignal)i

(PDFbackground)i

where PDFsignal and PDFbackground are the Probability Density Function of the i − th variable

for the signal and the sideband regions respectively.
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✬

✫

✩

✪

Charmed mesons reconstruction.

✷ The cut on the likelihood ratio has been chosen in order to obtain the largest statistics with

background small enough to perform a Dalitz plot analysis.

✷ The scatter plot of the likelihood vs. mass for the selection of the D+
s → π+π−π+ decay.
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✷ Signal Purity: 80 %.

Purity = Signal
(Signal+Background)

✷ D+
s → π+π−π+ yields and Purities from different ezperiments.
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✬

✫

✩

✪

D0 reconstruction.

✷ The D∗ tagging works much better for D0.

✷ We want to study the following final state: D0 → K0
sh

+h− + c.c.

✷ Tagged with D∗. For example:

D
∗+ → D0π+

→ K̄0π+π−

D∗− → D̄0π−

→ K0π+π−

✷ The charge of the slow pion gives the flavor of the K0 and of the D0.

✷ Refitting of the slow pion. The momentum of the slow pion is usually below 500 MeV/c: badly

measured.

✷ Cartoon of one event:

✷ Using the event vertex in the fit of the slow pion

momentum improves the resolution.
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✬

✫

✩

✪

∆m selection:

✷ Example from BaBar. (arXiv:hep-ex/0507026)

✷ Plot of ∆m:

∆m = m(K0
sh

+h−π+) −m(K0
sh

+h−)

for: K̄0π+π− and K̄0K+K−

✷ Selecting events within 2σ in ∆m (σ = 300 KeV/c2) we obtain clean tagged D0 → K0
sh

+h−

decays.
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✬

✫

✩

✪

B mesons reconstruction from Υ(4S) decays.

✷ The selection of B mesons in Υ(4S) → BB̄ decays makes use of two variables: mES and ∆E.

∆E ≡ E
∗

B −
√
s/2

mES ≡
√

((s/2 + ~pi · ~pB)/Ei)2 − ~p 2
B

✷ (Ei, ~pi) is the initial state e+e− four-momentum vector in the lab. and
√
s is the c.m. energy.

✷ E∗
B is the B meson energy in the c.m., ~pB is its lab. momentum.

✷ Example from: (arXiv:0811.0564)

B
0 → J/ψK

+
π
−

✷ mES after ±2σ selection on ∆E.

✷ ∆E after ±2σ selection on mES .
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✬

✫

✩

✪

Selection of three-body Charmless B decays

✷ Charmless B decays have small branching fractions and, in e+e− machines are highly affected by

qq̄ continuum background.

✷ In many cases the Dalitz analysis is difficult because of the presence of a severe background

component.

✷ Need to make use of multivariate analyses which make use of combinations of shape variables

which are able to discriminate signal from continuum events.

✷ Backgrounds arise primarily from random combinations in continuum events.

✷ To enhance discrimination between signal and continuum, one method is given by a neural

network (NN) to combine several discriminating variables:

• the angle with respect to the beam axis of the B momentum;

• B thrust axis in the Υ(4S) frame. The thrust axis of an event, T̂ , is defined to be the

direction which maximizes the sum of the longitudinal momenta of the particles. Thrust, T , is

related to this direction by

T =

∑

i
T̂pi

∑

i
pi

The allowed range of T is (0.5, 1), where T≈ 1

corresponds to a highly directional event,

and T = 0.5 corresponds to an isotropic event.
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✬

✫

✩

✪

• the zeroth and second order monomials L0,2 of the energy flow about the B thrust axis. The

monomials are defined by Ln =
∑

i
pi × |cos θi|n, where θi is the angle with respect to the B

thrust axis of track or neutral cluster i and pi is the magnitude of its momentum. The sum

excludes the B candidate and all quantities are calculated in the Υ(4S) frame.

✷ The NN is trained using off-resonance data as well as simulated signal events, all of which passed

the selection criteria.
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✬

✫

✩

✪

Selection of Charmless B decays

✷ Example from B0 → K0
Sπ

+π−
(arXiv:0905.3615).

✷ The final sample of signal candidates is selected with a requirement on the NN output that

retains 90% of the signal and rejects 71% of the background.

✷ Resulting ∆E signal.
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✷ Example from B+ → K+K−K+ (BaBar).

E (GeV)∆
-0.1 -0.05 0 0.05 0.1

E
ve

nt
s/

(0
.0

05
 G

eV
)

0

100

200

300

400

500

600

700

800

900

E (GeV)∆
-0.1 -0.05 0 0.05 0.1

E
ve

nt
s/

(0
.0

05
 G

eV
)

0

100

200

300

400

500

600

700

800

900

23



✬

✫

✩

✪

Selection of Charmless B decays

✷ In the case of high energy hadronic colliders the power of the decay flight allows to obtain high

statistics clean samples. Small data samples from LHCb
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✬

✫

✩

✪

Dalitz Analysis of χc1 decays.

✷ CLEO has performed a Dalitz analysis of χc1 → ηπ+π− and χc1 → η′π+π−
(arXiv:1109.5843),

obtained from the decays:

ψ(2S) → γχc1
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✬

✫

✩

✪

Dalitz analysis

✷ Dalitz plot analysis has been extensively used in many hadron induced interactions.

✷ Example from K−p → K0
Sπ

−p at 11 GeV/c. (LASS experiment at SLAC, from B. Dunwoodie).

✷ Presence of complex structures.
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✬

✫

✩

✪

Other examples(2).

✷ Example from charm decays: D0 → K0
Sπ

+π− (BaBar), very complex structure.

✷ Scalar resonances appear as uniform bands.

✷ Spin-1 resonances appear with a two-lobes

structure,

Spin-2 resonances with three-lobes structures.

✷ Resonances may appear along three different

directions.

✷ Pattern complicated by the presence of interference

effects.

✷ Resonances may also appear as depletions.

✷ Understanding this Dalitz plot has taken

several years of work of many people.
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✬

✫

✩

✪

Other examples(3).

✷ Example from Bs decay: Bs → J/ψπ+π−
(LHCb, arXiv:1204.5643). In this case we have a very

simple physics.

✷ We observe only scalar resonances appearing as uniform bands centered at the f0(980) and

f0(1400) mass values.

f0(1400) →

f0(980) →
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✬

✫

✩

✪

Other examples(4).

✷ An artistic view of a Dalitz Plot from Tom Latham
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✬

✫

✩

✪

Dalitz plot Analysis

✷ Dalitz plot analysis is a powerful technique that involves studying the amplitude of a decay into a

three-body final state.

✷ Compared to two-body decays, the three-body decay has intrinsic degrees of freedom that allow

to obtain the amplitudes and relative phases of interfering amplitudes.

✷ Types of measurement that can take advantage of using the Dalitz plot analysis technique include:

• Searches for new states.

• Measurements of their properties masses, widths, quantum numbers.

• CP violation searches and measurements of related parameters.

• Partial Wave Analysis.

30



✬

✫

✩

✪

How to perform a Dalitz analysis

• Obtain a clean data sample. High signal to background ratio is an essential ingredient.

Residual background could be wrongly assigned to Non-Resonant background or S-wave

contributions. Remove peaking backgrounds as much as possible by studying all the possible

final states which could contribute. Remove only those which do not affect the efficiency

distribution on the Dalitz plot.

• Obtain an accurate efficiency distribution on the Dalitz plot using high statistics Monte Carlo

samples. Uniform efficiencies help but it is not a foundamental ingredient. Important not to

have strong efficiency depletions.

• Define the amplitudes in the fit. Several amplitudes are uncertain. Sometime it is necessary to

include different parameterizations. Sometime the shape of amplitudes can be obtained

directly from the data.
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✬

✫

✩

✪

Steps in a Dalitz analysis

• Read the data, 4-vectors to be converted in the resonance rest-frame.

• Integrate the amplitudes on efficiency biased Monte Carlo data.

• Fit the data by unbinned maximum likelihood including the background model.

• Obtain fractions and relative errors from the fit covariance matrix.

• Project the fit on the data using several methods: Dalitz projections, Legendre polynomials,

2-D χ2, likelihood distributions, etc.

• Rather often, several solutions are obtained. Report the best solutions.
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✬

✫

✩

✪

Dalitz plot Analysis

✷ Tree-body decay has internal degrees of freedom. After requiring the energy and momentum

conservation to the system of three final state particles, we are left with 5 degrees of freedom.

✷ In case the initial and final state particles all have spin zero, after taking into account arbitrary

rotations, two degrees of feedom remain.

✷ The amplitude of the decay can thus be represented as a function of two parameters; the scatter

plot of this pair of parameters is called Dalitz plot.

✷ There is a freedom in the choice of a pair of parameters describing the amplitude of a three-body

decay.

✷ Originally, the Dalitz plot was expressed as a function of kinetic energies of two final state

particles.

✷ Recent analyses often use squares of invariant masses of pairs of final state particles. This choice

has certain advantages: it allows for easy determination of masses of intermediate states, and the

stucture of the amplitude becomes apparent.

✷ Key information: The phase space term is flat in these variables.

33



✬

✫

✩

✪

Dalitz plot Analysis

✷ Comparison between simulated Dalitz plots from B and D decays.

✷ Huge difference in phase space. Some more problems in understanding the phase space term in B

decays.

✷ We know with some precision the light resonances spectrum up to about 2.5 GeV. What about

higher masses?

✷ How to model the high mass regions of the B dalitz plot?
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✬

✫

✩

✪

Dalitz plot Analysis

✷ Assume a particle with the mass M decays into three particles denoted as a, b and c. The

differential decay probability is:

dΓ =
1

(2π)3
1

32M3
|A|2dm2

abdm
2
bc

✷ Thus, any non-uniformity observed in the distribution of the variables m2
ab and m2

bc is due to

dynamic structure of the amplitude A.

✷ The invariant masses of pairs of final state particles are related by the linear dependence:

m
2
ab +m

2
bc +m

2
ac = M

2
+m

2
a +m

2
b +m

2
c

✷ The range of invariant masses m2
bc depends on m2

ab:

(m2
bc)max = (E∗

b + E∗
c )2 − (p∗b − p∗c)2 ,

(m2
bc)min = (E∗

b + E∗
c )2 − (p∗b + p∗c)2 ,

(1)

where

E∗

b =
m2

ab −m2
a +m2

b

2mab

, E∗

c =
M2 −m2

ab −m2
c

2mab

(2)

are the energies of particles b and c in the ab rest frame and

p
∗

b =
√

E∗2
b

−m2
b
, p

∗

c =
√

E∗2
c −m2

c (3)

are the corresponding momenta.
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✬

✫

✩

✪

Dalitz plot Analysis

✷ The region of kinematically allowed phase space described by these constraints is here.

✷ Kinematic boundaries of the three-body decay phase space.

✷ In this example, B0 → D0K+π− phase space is shown. a = π−, b = D0, c = K+.
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✬

✫

✩

✪

Dalitz plot Analysis

✷ Non-leptonic B and D decays proceed predominantly through resonant two-body decays and this

is confirmed by the experiment.

✷ For three-body decays of a spin-0 particle (D or B meson) to all pseudo-scalar final state particles

abc, the baseline model adopted to describe the decay amplitude A(m2
ab,m

2
bc) consists of a coherent

sum of two-body amplitudes (subscript r) and a “non-resonant” (subscript NR) contribution:

A(m) =

∑

r

are
iφrAr(m) + aNRe

iφNR . (4)

✷ The parameters ar (aNR) and φr (φNR) are the magnitude and phase of the amplitude for

component r (NR).

✷ The function Ar is a Lorentz-invariant expression that describes the dynamic properties of the

decay into the multibody final state as a function of position in the Dalitz plane m ≡ (m2
ab,m

2
bc)

✷ See: (arXiv:hep-ex/0011065), (arXiv:hep-ex/0410014).
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✬

✫

✩

✪

Isobar formalism

✷ In the isobar formalism, the function Ar describes the decay through a single intermediate

resonance r and takes the form

Ar = FD × Fr × Tr ×Wr, (5)

where FD (Fr) is the Blatt-Weisskopf centrifugal barrier factor for the D or B meson (resonance)

decay vertex with radius R, Tr is the resonance propagator, and Wr describes the angular

distribution in the decay.

A

B

C

D0

FD FR
AB Resonance

Σλ ελ ελελ
ελ*

3111100-009

✷ The resonance propagator Tr is usually described using a relativistic Breit-Wigner (BW)

parameterization with mass-dependent width

Tr =
1

m2
r −m2

ab
− imrΓab
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✬

✫

✩

✪

Breit-Wigner Lineshape.

✷ Comparison between resonances lineshapes without (dashed) and with a mass-dependent Γ (solid

line).
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✬

✫

✩

✪

Blatt-Weisskopf penetration factors

✷ The expressions for the Blatt-Weisskopf penetration factors depend on spin J of the intermediate

resonance

F (0) = 1

F (1) =

√
1+z0√
1+z

F (2) =

√

z2
0
+3z0+9

√
z2+3z+9

F (3) =

√

z3
0
+6z2

0
+45z0+225

√
z3+6z2+45z+225

Here z = r2p2R where r is the hadron scale, and z0 = r2p2R0 where pR0 is the R resonance

daughter’s momentum calculated for the pole mass of the R resonance.

✷ The mass-dependent width is given by

Γab = Γr

(

pab

pr

)2J+1 (

mr

mab

)

F
2
r

where Γr is the width of the resonance.

✷ The value of R is unknown and ranges from 0 to 5.

It is usually included in the systematic errors evaluation.

✷ Blatt-Weisskopf factors.

40



✬

✫

✩

✪

Breit-Wigner with Blatt-Weisskopf penetration factors

✷ Breit-Wigner lineshape with different angular momentum factors.
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✬

✫

✩

✪

Discovery of X(3872).

✷ 2003: Belle discovers X(3872) in B decays (S.-K. Choi et al., Phys. Rev. Lett. 91, 262001 (2003)).

✷ Confirmed by CDF, D0, BaBar.

✷ BaBar: Observation of X(3872) → D∗D̄

(B. Aubert et al., Phys. Rev. D 77, 011102(R) (2008))
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✬

✫

✩

✪

An interesting physics result.

✷ BaBar study of:(arXiv:1005.5190)

B0,+ → K0,+J/ψω

✷ The J/ψω mass spectrum shows a signal of X(3872) whose spin-parity has still to be defined.
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✷ The X(3872) → J/ψω is close to threshold.
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✬

✫

✩

✪

An interesting physics result.

✷ MC simulation of a X(3872) → J/ψω with a Breit-Wigner with S − wave and P − wave

Blatt-Weisskopf factors.

✷ Plot of the expected π+π−π0 mass spectrum compared with the data.
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✷ One unit of orbital angular momentum creates a centrifugal

barrier factor q2/(1 + R2q2) in the description of the J/ψω final

state, where R = 3 GeV−1 is the P -wave Blatt-Weisskopf barrier

barrier factor radius.

✷ Values in the range 0 < R < 5 GeV−1 yield no difference.

✷ For the dashed histogram the χ2-distribution probability is

P = 7.1%, while for the solid histogram P = 61.9%.

✷ It follows that the observed distribution favors the P -wave

description both quantitatively and qualitatively.

✷ This analysis therefore (together with the CDF analysis (JP = 1+ or JP = 2−) (hep-ex/0612053))

favor JP = 2− for the X(3872) meson.
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✬

✫

✩

✪

Angular dependence

✷ The angular dependence Wr is described using either Zemach tensors or the helicity formalism.

A

B

C

D0

FD FR
AB Resonance

Σλ ελ ελελ
ελ*

3111100-009

✷ In the helicity formalism, the expressions for scalar, vector and tensor states are:

W0 = 1

W1 = m2
ac −m2

bc +
(M2−m2

c)(m2
b
−m2

a)

m2
r

W2 =

[

m2
bc −m2

ac +
(M2−m2

c)(m2
b
−m2

a)

m2
r

]2

− 1
3

[

m2
ab − 2M2 − 2m2

c +
(M2−m2

c)2

m2
r

]

×
[

m2
ab − 2m2

a − 2m2
b +

(m2
a−m2

b
)2

m2
r

]

.
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✬

✫

✩

✪

Isobar formalism

✷ The figure shows how various intermediate two-body states appear in the Dalitz plot.

✷ Unlike the uniform distribution that the phase-space decay has , scalar resonances appear as

bands in the Dalitz plot plane.

Scalar in bc channel, Scalar in ac channel, Scalar in ab channel
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✬

✫

✩

✪

✷ Angular distributions for the vector and tensor intermediate states introduce the characteristic

non-uniformity of the event density.

✷ Finally, the region where the amplitudes of two resonances overlap is sensitive to the phase

difference between the two amplitudes.

Two scalars, ∆φ = 0, Two scalars, ∆φ = π
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✬

✫

✩

✪

Zemach tensors

✷ Non-relativistic Zemach tensors.

✷ Suppose we are studying the decay:

D0 → K0
Sπ

+π−

We define with p
K0

S
1 , pπ+

2 , pπ−

3 the momenta of the three particles in the D0 center of mass system.

✷ The method is the following:

• We use a symmetric and traceless tensor of rank-L made with pi to describe orbital angular

momenta.

• We use a symmetric and traceless tensor of rank-S made with ti to describe the spin of

intermediate resonances. For a resonace decaying as R → a+ b, the ti are defined as:

tiR = pi
a − pi

b − (pi
a + pi

b)
m2

a −m2
b

m2
ab

• The tensors are then contracted to obtain the spin of the D0, in this case 0.
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✬

✫

✩

✪

Zemach tensors

✷ If we consider the decay:

D
0 → RK

0
S

✷ For a spin 1 resonance R in the π+π− system: L=1, S=1.

✷ Dot product of two vectors.

W1 = t1 · p1

✷ For a spin 2 resonance R in the π+π− system: L=2, S=2.

✷ Dot product of two rank-2 tensors.

W2 = [pi
1p

j
1 − 1

3
p21δ

ij ][ti1t
j
1 − 1

3
t21δ

ij ]
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✬

✫

✩

✪

MC simulations of the two decays.

✷ Amplitude for D0 → K0
Sρ

0(770). Identical to that from the helicity formalism.
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✷ Amplitude for D0 → K0
Sf2(1270). Identical to that from the helicity formalism.
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✬

✫

✩

✪

Example: the ω spin.

✷ The ω(770) meson is a spin-1 resonance:

ω(770) → π+π−π0

✷ Using the Zemach formalism, the matrix element describing the ω decay is:

W1 = |pπ+ × pπ− |2

✷ Monte Carlo simulation of the ω decay:

✷ We define θ as the angle formed by the π+ with respect to the π0 in the π+π− rest frame.

✷ The distribution is of the form: (1 − cos2θ).
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✬

✫

✩

✪

Example: the ω spin.

✷ This distribution can be used to select events with an enhanced ω signal.

✷ A test on inclusive BaBar data.
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✬

✫

✩

✪

Example: the ω spin.

✷ Another way to use this information is to weight the events by the expression (Y 0
2 moment):

w(cosθ) =
5

2
(1 − 3 · cos2θ)

✷ The weighted distribution should project all the ω events and weight to zero all the background.

✷ A test from inclusive BaBar data.
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✬

✫

✩

✪

Resolution Smearing.

✷ The experimental resolution produces a smearing of the signal, therefore the edge of the Dalitz

plot becames smeared. Example of a D0 → KSπ+π− signal (somewhat exagerated).

✷ Imposing a mass constraint solves the problem. However in presence of important background

sidebands may be lost.

)-π+π
S

0m(K
1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1
0

100

200

300

400

500

600

700

800

900

=25 MeVσ

)-π+π(2m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

)+ π
S0

(K2
m

0.5

1

1.5

2

2.5

3

)-π+π(2m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

)+ π
S0

(K2
m

0.5

1

1.5

2

2.5

3

✷ Example from BaBar data. D0 → K−π+π0 signal.

In red are events which fit kinematically the D0 hypothesis.

)0π+π-m(K

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98
0

200

400

600

800

1000

54



✬

✫

✩

✪

Resolution Smearing.

✷ D0 → π+π−π0 Dalitz plot with overlined countours with the D0 spread in mass.
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✬

✫

✩

✪

Resolution Smearing.

✷ Effect of the bad handling of the resolution.

✷ Events generated with a D0 having a 25 MeV mass resolution but fitted without taking into

account the smearing.

Amplitude Generated Wrong Smearing Right Smearing

K0
S σ 9.3 4.8 9.3 ± 0.4

K0
S ρ(770) 42.9 49.3 44.4 ± 1.2

K0
S f2(1270) 16.9 19.4 16.6 ± 1.6

π− K∗(890) 45.2 46.1 43.3 ± 1.1

χ2/NDF 2.09 1.19

✷ The problem is solved at level of the normalization of the amplitudes.

✷ The amplitudes are normalized generating a large number of MC events

via “Phase Space” (with a uniform distribution on the Dalitz plot).

✷ Normalization integrals need to be computed on a MC simulation having

the same resolution as for the data.

✷ Example of a generated D0 mass.
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✬

✫

✩

✪

Resolution Smearing.

✷ Fit projections on a Monte Carlo simulation and Dalitz analysis without considering the effect of

the experimental resolution.
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✷ Fit projections obtained taking into account the experimental resolution.
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✬

✫

✩

✪

Efficiency.

✷ Two ways of handling the efficiency:

• In case of a limited sample of Monte Carlo events: fit a 2-D efficiency on the Dalitz plot;

• Use a large sample of Full Detector simulation signal events.

✷ The first method can only be used in a simple three-body Dalitz analysis.

• Generate a “Phase Space” large sample of MC events. Produce the “Generated” Dalitz plot.

• Reconstruct the events and apply all the selection criteria as for the real data and produce a

“Reconstructed” Dalitz plot.

• Obtain the efficiency using the ratio of the two 2-D distributions.
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✬

✫

✩

✪

Efficiency fitting.

✷ The standard way to fit the efficiency is to use the expression:

η(x, y) = a0 + a1x+ a2y + a3x
2 + a4y

2 + a5xy

+a6x
3

+ a7y
3

+ a8x
2
y + a9xy

2
(6)

where x = m2(ab), y = m2(bc).

✷ Example from BaBar: D+
s → K−K+π+.
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✷ Fit projections obtained without and with correction for the Dalitz plot phase space.
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✬

✫

✩

✪

Efficiency fitting.

✷ A detailed efficiency fitting has been performed in the search for Z+ resonances (see later).

(arXiv:0811.0564)

✷ The efficiency for B → J/ψKπ has been parameterized as a function of (m(Kπ), cosθ).

where θ is the K helicity angle.

✷ We first fit the efficiency as a function of cosθ in separate 50 MeV intervals of m(Kπ), in terms

of Legendre polynomials up to L = 12:

ǫ(cosθ) =

12
∑

L=0

aLY
0

L(cosθ)
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✬

✫

✩

✪

Efficiency fitting.

✷ For each value of L, we fit the aL(m) as a function of m(Kπ) using a 6th-order polynomial in

m(Kπ).

✷ Examples of a few fits.
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✬

✫

✩

✪

Efficiency fitting.

✷ Plots of the raw and the fitted efficiency.

✷ The events are weighted by:

w(m(Kπ), cosθ) = 1/ǫ(m(Kπ), cosθ)
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✬

✫

✩

✪

Background.

✷ To parametrize the background Dalitz distribution, a possible way is to use the data sample in

the sideband regions. An unbinned maximum likelihood is performed using the function:

L =
∏

events

[ ∑

i
k2

iBiB
∗
i

∑

i
k2

i IBiB∗
i

]

where:

• ki’s are real coefficients floated in the fit;

• Bi’s are the dynamical functions of background.

• Ii’s are the normalization integrals to be computed in the sidebands regions.

• The total amplitude is assumed an incoherent sum of intermediate processes.
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✬

✫

✩

✪

Background.

✷ Example from the D+
s → K+K−π+ Dalitz analysis.

✷ The Dalitz plot of sidebands events shows the presence of φ(1020) and K̄∗(892)0 contamination

in the background. The fit returns the presence of a large scalar contribution due mainly to a

non-resonant contribution.
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✷ Ad-hoc resonances have been included to obtain a good description of the sidebands.
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✬

✫

✩

✪

Background: sFit method.

✷ A new method has been recently developed (arXiv:0905.0724v1) which avoids to obtain full

information from the sidebands regions.
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✬

✫

✩

✪

Background: sFit method.

✷ Possible bias introduced by the method require to be studied.
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✬

✫

✩

✪

The Likelihood function.

✷ An unbinned maximum likelihood fit is performed using the function:

L =

∏

events

[

x(MD) · η(x, y)

∑

i,j
cic

∗
jAi(x, y)A

∗
j (x, y)

∑

i,j
cic∗j IAiA∗

j

+ [1 − x(MD)]

∑

i
k2

iBi(x, y)B
∗
i (x, y)

∑

i
k2

i IBiB∗
i

]

where:

• x is the fraction of signal, depending on the h+h−h+ invariant mass(MD) before the mass

constraint fit. It is defined as:

x(MD) =
G(MD)

G(MD) + P (MD)
(7)

where G and P are the Gaussian and the linear polynomial used for fitting the final mass

spectrum.

• η(x, y) is the efficiency, parametrized by 2-D 3rd order polynomial;

• Ai(x, y), Bi(x, y) describe signal and background amplitude contributions respectively;

• ki is the real amplitude of the i-th component for the background. They are computed by

fitting sideband regions;
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✬

✫

✩

✪

The Likelihood function.

• IAiA∗
j

=
∫

Ai(x, y)A
∗
j (x, y)η(x, y)dxdy and IBiB∗

i
=

∫

|Bi(x, y)
2|dxdy are the normalization

integrals. The amplitudes are normalized on a phase space Monte Carlo weighted by the

polynomial fitted efficiency. The events have been generated using a Phase-Space Monte-Carlo

program;

• ci is the complex amplitude of the i-th component for the signal. They are allowed to float

during the fit process.

✷ One of the coefficients ci is set to 1 (reference amplitude) and its phase is set to zero.
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✬

✫

✩

✪

Normalization integrals.

✷ It is easy to show that, having two complex numbers a = c1A1e
iφ1 and b = c2A2e

iφ2 , we can

write:

|a+ b|2 = |c1A1e
iφ1 + c2A2e

iφ2 |2 = c
2
1A

2
1 + c

2
2A

2
2

+c1 · c2 · [cos(φ2 − φ1)2Re(A1 · A∗

1) + sin(φ2 − φ1)Im(A1 · A∗

1)]

✷ The normalization is performed separately on the terms:

A2
1, A

2
2, Re(A1 · A∗

1), Im(A1 · A∗

1)

✷ Technically this can be performed using different methods.

• Generate a large number of phase-space Monte-Carlo events weighted by the efficiency on the

Dalitz plot. The integration is performed numerically. This method works well when the

integrals are computed only once.

• Analytically, when the integrals need to be computed at each step of the minimization process.
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✬

✫

✩

✪

Fractions.

✷ Fit fractions for the different amplitudes are computed as.

Fit Fraction =

∫
∣

∣are
iφrA(ABC|r)

∣

∣

2
dDP

∫
∣

∣

∑

j
aje

iφj A(ABC|j)
∣

∣

2
dDP

. (8)

✷ The errors on the fractions can be computed using the above expression through a Monte Carlo

technique.

✷ Random numbers are generated using the fitted amplitudes and phases and the fit covariance

matrix.

✷ For each generation we histogram the resulting fractions.

✷ Example from a MC simulation. The distributions are Gaussian and the σ give the error on the

fraction.
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✬

✫

✩

✪

Fractions.

✷ The sum of the fractions does not necessarily add to 100%, because of interferences.

✷ This effect becames critical in presence of broad overlapping scalar resonances.

✷ Example from the study of B+ → K+K−K+ from BaBar.
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φ(1020) 1.66 ± 0.06 2.99 ± 0.20 ± 0.06 11.8 ± 0.9 ± 0.8

f0(980) 5.2 ± 1.0 0.48 ± 0.16 ± 0.08 19 ± 7 ± 4

X0(1550) 8.2 ± 1.1 1.29 ± 0.10 ± 0.04 121 ± 19 ± 6

f0(1710) 1.22 ± 0.34 −0.59 ± 0.25 ± 0.11 4.8 ± 2.7 ± 0.8

χI
c0

0.437 ± 0.039 −1.02 ± 0.23 ± 0.10 3.1 ± 0.6 ± 0.2

χII
c0

0.604 ± 0.034 0.29 ± 0.20 6.0 ± 0.7

NR 13.2 ± 1.4 0 141 ± 16 ± 9
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✬

✫

✩

✪

Fit quality.

✷ Several methods have been developed to test the fit quality.

• χ2 on individual Dalitz plot projections;

• 2-D χ2 on the Dalitz plot;

• 2-D χ2 on the Dalitz plot with adaptive binning;

• Likelihood test;

• χ2 on Legendre polynomial moments;
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✬

✫

✩

✪

Fit quality, χ2.

✷ After fitting, a Monte Carlo simulation is performed using the fit results using a large sample of

simulated events.

✷ The MC data are normalized to the real data sample.

✷ The MC data are superimposed to the data and a χ2 can be computed on each distribution. ✷

Example from simulated data (20 000 events).
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✷ In this example χ2/NDF values are 40/46 and 45/47 for the two distributions, respectively.
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✬

✫

✩

✪

Fit quality, 2-D χ2.

A better estimator of the fit quality is the χ2 on the Dalitz plot.

✷ Using the same simulated data and using uniformly distributed 30 × 30 cells we obtain:
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Constant  1.21± 21.08 

Mean      0.04642± 0.04569 
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✷ The 2-D χ2/NDF in this case is 620/577.

✷ The figure also shows the Pulls distribution. For each Dalitz plot cell j:

Pull(j) = (data(j) −mc(j))/
√

mc(j)

✷ For a good fit the distribution of the Pulls should be centered at zero and have σ = 1.
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✬

✫

✩

✪

Fit quality, 2-D χ2 adaptive binning.

✷ Rather often, the distribution of events on the Dalitz plot has regions of strong accumulations of

events and depleted regions.

✷ For this reason, a better 2-D χ2 can be obtained using the method of “Adaptive Binning” where

the cells have variable sizes in order to have an almost uniform events distribution.

✷ Example from the D+
s → K+K−π+ Dalitz plot analysis. 2305 cells for 101 K events.
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✷ χ2 distribution with adaptive binning. Green: χ2 < 1, Yellow: 1 < χ2 < 3, Red:χ2 > 3

✷ χ2/NDF = 2843/2291 = 1.2.
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✬

✫

✩

✪

Fit quality, Likelihood.

✷ A confidence level can be calculated directly from the likelihood function by utilizing the best fit

parameters. This idea was described by ARGUS (ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B

308, 435 (1993)), and (arXiv:hep-ex/0011065) and is a direct application of the Central Limit Theorem

from statistics.

✷ Assuming the candidates are truly distributed according to the likelihood function which gives

the best fit, the average value is:

µ = 1
N

∑N

i=1
(−2 lnL) ≈

∫

L(−2 lnL)dDP

where N is the number of candidates.

• The variance is given by:

σ2
µ = 1

N

∑N

i=1
(−2 lnL − µ)2 ≈

∫

L(−2 lnL)2dDP − µ2

• Because we have a large number of candidates distributed according to this function, the Central

Limit Theorem tells us that the mean should follow a normal distribution.

• The sum of minus log likelihoods, which is the value minimized in the fit, has a mean of Nµ and

follows a normal distribution with a variance of Nσ2
µ. Thus, the minimal value will come from a

normal distribution with mean:

< −2
∑

lnL >= N
∫

L(−2 lnL)dDP − n

and standard deviation

σ
<−2

∑

ln L>
=

√

N
∫

L(−2 lnL)2dDP −Nµ2

where n is the number of parameters extracted from the fit.
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✬

✫

✩

✪

Fit quality, Likelihood.

• The confidence level for the fit is then just the area of a Gaussian with the above mean and width

which lies above the value obtained in our fit.

✷ Example from simulated events.
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✷ Fit probability: 7%.
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✬

✫

✩

✪

Legendre Polynomials Moments.

✷ E very important test makes use of the Legendre Polynomials Moments.

✷ Moments can be computed as functions of all the available three mass combinations.

✷ Moments are related to the resonances amplitudes and phases contributing to the decay.

✷ On a given mass projection we have a superposition of true physics along this mass as well as

reflections from the other mass combinations.

✷ Therefore usually it is not easy, except for particular cases, to give a physical significance to the

observed structures.

✷ On the other hand these distributions go deeply inside the angular distributions and interference

effects.

✷ Therefore it is important to obtain a good description of all the Moments along all the mass

combinations.

✷ Fits to the Dalitz plot can give good descriptions of the mass projections but bad descriptions of

the angular distributions.
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✬

✫

✩

✪

Legendre Polynomials Moments.

✷ Example from the D+
s → K+K−π+ Dalitz plot analysis.
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✷ Pulls distributions are below each figure.
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✬

✫

✩

✪

Legendre Polynomials Moments.

✷ The meaning of the moments can be understood by the following relations to the S, P and D

waves (spin 0, 1 and 2 resonances).

N = S2
0 + P 2

0 +D2
0

Y 0
1 = S0P0 cos(δS0 − δP0 ) + 2

√

2

5
P0D0 cos(δP0 − δD0 )

Y 0
2 =

√

2

5
P 2

0 +

√
10

7
D2

0 + {
√

2S0D0 cos(δS0
− δD0

)

Y 0
3 = 3

√

6

35
P0D0 cos(δP0 − δD0 )

Y 0
4 =

3
√

2

7
D

2
0

✷ The Si, Pi, and Di are amplitude magnitudes and i denotes the relevant helicity; the

corresponding phase angles are denoted by δ with the appropriate subscript.
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✬

✫

✩

✪

Legendre Polynomials Moments. Examples.

✷ D0 → K̄0K+K−. Definition of the helicity angle.

✷ Y 0
1 shows the S-P interference pattern.

✷ Y 0
2 shows the Spin 1 φ(1020) signal with no background.

✷ Fit to the Y 0
2 moment to obtain the φ(1020) parameters.
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✬

✫

✩

✪

Interference effects on the Dalitz plot.

✷ Monte Carlo simulation of D0 → K̄0K+K−.

✷ Dalitz plot, K0K− mass spectrum and Y 0
1 moment

for different value of the φ/a0(980) phase.
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✬

✫

✩

✪

Legendre Polynomials Moments. Examples.

✷ From B0 → J/ψK−π+.

✷ K∗(890) present in several distributions.

✷ Y 0
4 shows the P (K∗(890)) and

D waves K∗
2 (1430)).
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✬

✫

✩

✪

Measurement of resonances parameters.

✷ Some resonances parameters need to be extracted directly from the Dalitz analysis.

✷ The analysis does not change. Hawever the complication comes from the fact that normalization

integrals need to be re-computed at each minimization step.

✷ For large data samples and long list of parameters the fit can take very long.

✷ Example. For a model independent Dalitz analysis (see later) ≈ 80 parameters and 500K events:

2.5 days.

✷ Methods are being developed for parallel computing.
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✬

✫

✩

✪

Fit strategy.

✷ Insert amplitudes one by one and observe the likelihood increase and the χ2/NDF decrease.

✷ Study all the possible fit possibilities. Example from the D+
s → K+K−π+ Dalitz analysis.

Fit1 Fit2 Fit3 Fit4 Fit5 Fit6 Fit7 Fit8 Fit 9

Decay Fractions(%)

#Res 5 6 6 6 6 6 6 6 6

f0(980) 16.55 20.64 16.43 16.15 15.21 14.60 14.99 18.18 17.34

f0(1370) — — 1.06 — — — — — —

f0(1500) — — — 0.21 — — — — —

f0(1710) 1.69 0.60 1.15 2.27 1.82 1.81 1.75 1.74 1.63

φ(1020) 39.65 41.35 41.37 41.02 41.05 41.20 41.14 40.11 40.68

φ(1680) — — — — — — — — —

f2(1270) — — — — 0.03 — — — —

f2(1525) — — — — — 0.01 — — —

f2(1710) — — — — — — 0.16 — —

K∗
0
(1430) 1.90 0.60 2.36 1.57 1.93 1.63 1.66 0.95 1.03

LASS — — — — — — — — —

K∗(892) 46.82 48.49 47.85 47.20 47.04 47.32 46.77 47.16 46.48

K∗
1
(1410) — — — — — — — 0.29 —

K∗
1
(1680) — — — — — — — — 0.28

K∗
2
(1430) — — — — — — — — —

NR — 3.80 — — — — — — —

TOT 106.60 115.48 110.22 108.41 107.08 106.56 106.46 108.43 107.43

Likelihood -383412. -383884. -384344. -383765. -383678. -383655. -383710. -383787. -383741.

χ2/NDF 1.62 1.43 1.24 1.49 1.53 1.53 1.52 1.49 1.51
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✬

✫

✩

✪

Results from a Dalitz analysis.

✷ Results from the Dalitz analysis of Bs → J/ψπ+π−.

✷ χ2/ndf and −lnL of different resonance models.

Resonance model −lnL χ2/ndf Probability (%)

Single R 59269 1956/1352 0

2R 59001 1498/1348 0.25

3R 58973 1455/1345 1.88

3R+NR (preferred) 58945 1415/1343 8.41

3R+NR (alternate) 58946 1414/1343 8.70

3R+NR + ρ(770) (preferred) 58945 1418/1341 7.05

3R+NR + ρ(770) (alternate) 58944 1416/1341 7.57

3R+NR + f0(1500) (preferred) 58943 1416/1341 7.57

3R+NR + f0(1500) (alternate) 58941 1407/1341 10.26

3R+NR + f0(600) (preferred) 58935 1409/1341 9.60

3R+NR + f0(600) (alternate) 58937 1412/1341 8.69
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