Dalitz Plot Analysis of Heavy Quark Mesons Decays (2).

Antimo Palano INFN and University of Bari

Jefferson Lab Advanced Study Institute Extracting Physics From Precision Experiments: Techniques of Amplitude Analysis College of William Mary Williamsburg, Virginia, USA Wed., May 30 - Wed., June 13, 2012

1

Uncertain Amplitudes.

 \Box Dalitz analyses have to deal heavily with light meson spectroscopy where there are regions having controversial properties and parameterizations.

 \Box Since the aim is to have a very accurate description of the Dalitz plot, these uncertain regions need to be discussed.

□ From past hadronic experiments we gained information on the structure of the light mesons. □ With the availability of large samples of charmed and B mesons decays, we can obtain new information, which complement or supersede past measurements.

 \Box In particular, D mesons decays are more coupled to $u\bar{u}$, $d\bar{d}$ states, while D_s^+ and B_s mesons are more coupled to $s\bar{s}$ mesons.

Scalar mesons.

□ This is the sector where many problems still exist.□ The table of the scalar mesons.

Two	noi	nets?	4-	quar	·k	state	$\mathbf{s}?$	Gluoi	nium?
Are	the	k(800) (and	σ	true	res	onano	$\cos?$

I = 1/2	I = 1	$\mathbf{I}=0$
k(800)		σ
	$a_0(980)$	$f_0(980)$
		$f_0(1370)$
$K_0^*(1430)$	$a_0(1490)$	$f_0(1500)$
		$f_0(1700)$
$K_0^*(1950)$		

Exotic mesons.

□ Within these states may hide exotic mesons such as gluonium or molecular states. □ Glueballs Spectrum frpm Lattice QCD (see arXiv:0708.4016,hep-ph/0601110) and possible exotic mesons from A. Polosa (CHARM2012).

The $K\pi$ S-wave amplitude.

 \Box The $K\pi$ S-wave amplitude and phase has been studied by LASS experiment in the reaction: $K^-p\to K^-\pi^+n$

at 11 GeV/c (see for example (SLAC - PUB - 5236)).

□ The figure also evidences the I=3/2 contribution. □ This is the only existing accurate measurement.

 \Box It is understood in terms of a scattering length contribution+the $K_0^*(1430)$ resonance.

The $K\pi$ S-wave amplitude.

 \Box This S-wave contribution is described using the I = 1/2 amplitude for S-wave $K^-\pi^+$ elastic scattering.(arXiv:0811.0564)

 \Box For $m_{K\pi^-} > 1.5$ GeV, $|A_S|$ is obtained by interpolation from the measured values. For lower mass values, A_S is a pure-elastic amplitude (within error) and is parameterized as

$$A_{S} = \frac{1}{\cot \delta_{B} - i} + e^{2i\delta_{B}} \left(\frac{1}{\cot \delta_{R} - i}\right)$$

where the first term is non-resonant, and the second is a resonant term rotated by $2\delta_B$ in order to maintain elastic unitarity.

$$q\cot\delta_B = \frac{1}{a} + \frac{1}{2}rq^2$$

with $a = 1.94 \text{ GeV}^{-1}$ and $r = 1.76 \text{ GeV}^{-1}$

$$\cot \delta_R = \frac{m_S^2 - m_{K\pi}^2}{m_S \Gamma_S}$$

with

$$\Gamma_S = \Gamma_S^0 \left(\frac{q}{q_S}\right) \frac{m_S}{m_{K\pi}}$$

 m_S (= 1.435 GeV) is the mass of the $K_0^*(1430)$ resonance and Γ_S^0 (= 0.279 GeV) is its width. \Box This parameterization corresponds also to a K-matrix approach describing a rapid phase shift coming from the resonant term and a slow rising phase shift governed by the non-resonant term. The evidence for $\kappa(800)$ from E791.

 \Box New information came from experiment E791 at Fermilab (hep-ex/0204018) which studied ≈ 15000 events from the decay:

$$D^+ \to K^- \pi^+ \pi^+$$

 \Box Mass spectrum and Dalitz plot.

□ Symmetrized Dalitz plot. The plot evidences strong S-P interferences and large scalar contribution.

The evidence for $\kappa(800)$ from E791.

□ In order to fit the Dalitz plot (isobar model) a large Non Resonant contribution is needed.
□ This is rather unusual for charm decays.

Mode	Model A	Model B	Model C
NR	90.9 ± 2.6	89.5 ± 16.1	$13.0 \pm 5.8 \pm 4.4$
	1.0 (fixed)	2.72 ± 0.55	$1.03 \pm 0.30 \pm 0.16$
	$0^{\circ}(fixed)$	$(-49 \pm 3)^{\circ}$	$(-11 \pm 14 \pm 8)^{\circ}$
	—	_	$47.8 \pm 12.1 \pm 5.3$
$\kappa \pi^+$	—	_	$1.97 \pm 0.35 \pm 0.11$
	—	—	$(187 \pm 8 \pm 18)^{\circ}$
	13.8 ± 0.5	12.1 ± 3.3	$12.3 \pm 1.0 \pm 0.9$
$\bar{K}^{*}(892)\pi^{+}$	0.39 ± 0.01	1.0 (fixed)	1.0 (fixed)
	$(54 \pm 2)^{0}$	0° (fixed)	0° (fixed)
	30.6 ± 1.6	28.7 ± 10.2	$12.5 \pm 1.4 \pm 0.5$
$\bar{K}_{0}^{*}(1430)\pi^{+}$	0.58 ± 0.01	1.54 ± 0.75	$1.01 \pm 0.10 \pm 0.08$
	$(54 \pm 2)^{\circ}$	$(6 \pm 12)^{\circ}$	$(48 \pm 7 \pm 10)^{\circ}$
	0.4 ± 0.1	0.5 ± 0.3	$0.5\pm0.1\pm0.2$
$\bar{K}_{2}^{*}(1430)\pi^{+}$	0.07 ± 0.01	0.21 ± 0.18	$0.20 \pm 0.05 \pm 0.04$
-	$(33 \pm 8)^{\circ}$	$(-3 \pm 26)^{\circ}$	$(-54 \pm 8 \pm 7)^{\circ}$
	3.2 ± 0.3	3.7 ± 1.9	$2.5 \pm 0.7 \pm 0.3$
$\bar{K}^{*}(1680)\pi^{+}$	0.19 ± 0.01	0.56 ± 0.48	$0.45 \pm 0.16 \pm 0.02$
	$(66 \pm 3)^{\circ}$	$(36 \pm 25)^{\circ}$	$(28 \pm 13 \pm 15)^{\circ}$
χ^2/ν	167/63	126/63	46/63

The evidence for $\kappa(800)$ from E791.

 \Box A better fit is obtained introducing a new low mass $K\pi$ scalar resonance: $\kappa(800)$.

 \Box The analysis by E791 achieved good agreement with their data by including a low-mass $K^-\pi^+$ scalar resonance κ that significantly redistributed all fit fractions (FF) observed by earlier experiments.

 \Box This particular model, even though it is based on the largest data set, greatly disagrees with previous analyses.

Model Independent Amplitude Analysis (MIPWA).

 \Box Charmed mesons decay to light hadrons, therefore a fundamental laboratory for studying light meson spectroscopy, especially for spin 0 and spin 1 mesons.

 \Box The method assumes an isobar model: the dacay proceedes through a flat Non Resonant contribution + intermediate resonance production:

 \Box In some cases some of the decay channels can be switched off by physics.

 \Box From a Brian Meadows idea: extract the amplitude and phase of complicated waves from the Dalitz analysis of charm decays (hep-ex/0507099).

 \Box Examples are $D^+ \to K^- \pi^+ \pi^+$ and $D_s^+ \to \pi^- \pi^+ \pi^+$.

 \square Two identical particles, therefore one open decay channel only but combinatorial issue.

Model Independent Amplitude analysis.

 \Box For $D^+ \to K^- \pi^+ \pi^+$, the two identical pions in the final state should obey Bose symmetry. Assuming that the three-body decay is dominated by two-body intermediate states, there would be two identical $K^- \pi^+$ waves interfering with each other.

□ This two-fold symmetry significantly reduces the degrees of freedom in the regular Dalitz plot analysis and allows the application of a model-independent partial wave analysis.

 \Box We would also expect a small contribution from the isospin-two $\pi^+\pi^+$ S wave, which exhibits nontrivial dynamics as observed in scattering experiments.

 \Box In this case only one channel is open: $(K^-\pi^+)$.

• Method:

 \Box The scalar contribution is left free in the Dalitz plot analysis in terms of a complex number:

$$c_{m(K\pi)}e^{i\phi_{m(K\pi)}}$$

over a $K^-\pi^+$ mass greed which is related to the number of available events. \Box The fit measures amplitude and phase in each bin of the $K\pi$ mass. \Box The *P*-wave is described as the sum of a Breit-Wigner propagator term for the $K^*(892)$ resonance and the $K_1^*(1680)$. \Box The *D*-wave is described by a single Breit-Wigner term for the $K_2^*(1430)$ resonance, with a

I The *D*-wave is described by a single Breit-Wigner term for the $K_2(1430)$ resonance, with a further complex coefficient.

Results.

Resulting S- amplitude and phase. Comparison with LASS elastic data.
 Dashed curves are from the isobar model.

 \Box Compared with LASS elastic scattering phase, an overall shift in phase of $(-74.4 \pm 1.8 \pm 1.0)^{\circ}$ relative to the *P*-wave is still required.

 \Box These results do not conform, exactly, to the expectations of the Watson theorem which would require phases in each wave to match, apart from an overall shift, those for $K^-\pi^+$ scattering for invariant masses below $K\eta'$ threshold.

The problem of the multiple solutions

 \Box It is evident that both MIPWA and isobar fits are good and that no statistically significant distinction between these two descriptions of the data can be drawn with a sample of this size. \Box The fitting procedure allows a great deal of freedom to the *S*-wave amplitude. Consequently, ambiguities in solutions are anticipated. To study possible ambiguities in the MIPWA solution, fits with random starting values for the c_i , γ_i parameters, and also with different $K^-\pi^+$ mass slices are made.

□ One other local maximum in the likelihood is found, and this is labelled solution B. Solution A is the only one with an acceptable χ^2/NDF and has the greatest likelihood value. So it is emphasized that solutions A is, in fact, unique.

□ Solution B provides a qualitatively reasonable description of the distribution of the data on the Dalitz plot.

 \Box However, this solution clearly exhibits retrograde motion around the unitarity circle as $K^-\pi^+$ invariant mass increases.

 \Box This violates the Wigner causality principle, thus eliminating it from further consideration.

CLEO Analysis.

 \Box CLEO selects 140793 $D^+ \to K^- \pi^+ \pi^+$ candidates for the Dalitz plot analysis obtaining a very clean sample with a background fraction of about 1.1% and 9 times larger than the data set used by E791 (arXiv:0802.4214).

 \Box They perform a slightly modified version of the MIPWA analysis.

 \Box They find that the total observed S wave magnitude in the $D^+ \to K^- \pi^+ \pi^+$ decay is essentially constant from $K\pi$ production threshold to 1.4 GeV/ c^2 .

 \Box The phase shows smooth variation from -80° to 40° in the same range.

 \Box At higher invariant mass $m_{K\pi} > 1.4 \text{ GeV}/c^2$, the S wave behavior is dominated by the $K_0^*(1430)$ resonance.

 \Box They find that the *P* wave contribution is dominated by $K^*(892)$ and $K^*(1680)$ Breit-Wigner resonances, and the *D* wave has only a contribution from $K_2^*(1430)$.

Mode	Parameter	Model I2 (B-W for κ)	Model I2	QMIPWA
$\overline{K}^{*}(892)\pi^{+}$	a	1 - fixed	1 - fixed	1 - fixed
	FF (%) $2 \times$	$5.15 {\pm} 0.24$	$5.27{\pm}0.08{\pm}0.15$	$4.94 {\pm} 0.23$
	$m~({ m MeV}/c^2)$	$895.4 {\pm} 0.2$	$895.7 {\pm} 0.2 {\pm} 0.3$	895.7 - fixed
	$\Gamma~({ m MeV/c^2})$	$44.5{\pm}0.7$	$45.3 {\pm} 0.5 {\pm} 0.6$	45.3 - fixed
$\overline{K}^*(1680)\pi^+$	a	$4.45 {\pm} 0.23$	$3.38 {\pm} 0.16 {\pm} 0.78$	$2.88 {\pm} 0.84$
	FF (%) $2\times$	$0.238 {\pm} 0.024$	$0.144{\pm}0.013{\pm}0.12$	$0.098 {\pm} 0.059$
$\overline{K}_{2}^{*}(1430)\pi^{+}$	a	$0.866 {\pm} 0.030$	$0.915 {\pm} 0.025 {\pm} 0.04$	$0.794 {\pm} 0.073$
-	FF (%) $2 \times$	$0.124 {\pm} 0.011$	$0.145 {\pm} 0.009 {\pm} 0.03$	$0.102 {\pm} 0.020$
$\overline{K}_{0}^{*}(1430)\pi^{+}$	a	$3.97{\pm}0.15$	$3.74{\pm}0.02{\pm}0.06$	$3.74 - { m fixed}$
U U U U U U U U U U U U U U U U U U U	FF (%) $2 \times$	$7.53 {\pm} 0.65$	$7.05 {\pm} 0.14 {\pm} 0.55$	$6.65 {\pm} 0.31$
	$m~({ m MeV}/c^2)$	1461.1 ± 1.0	$1466.6 {\pm} 0.7 {\pm} 3.4$	1466.6 - fixed
	$\Gamma ~({ m MeV}/c^2)$	$177.9 {\pm} 3.1$	$174.2 {\pm} 1.9 {\pm} 3.2$	174.2 - fixed
$\kappa \pi^+$	a	$5.69 {\pm} 0.17$	$10.80 {\pm} 0.05 {\pm} 0.35$	0
	FF (%) $2 \times$	$8.5 {\pm} 0.5$	$21.6 {\pm} 0.3 {\pm} 3.2$	0
Pole	$\Re m_0 ~({ m MeV}/c^2)$		$706.0 {\pm} 1.8 {\pm} 22.8$	
	$\Im m_0 \; ({ m MeV}/c^2)$		$-319.4{\pm}2.2{\pm}20.2$	
Breit-Wigner	$m~({ m MeV}/c^2)$	$888.0 {\pm} 1.9$		
	$\Gamma ~({ m MeV}/c^2)$	$550.4{\pm}11.8$		
NR	a	$17.1 {\pm} 0.4$	$23.3 {\pm} 0.1 {\pm} 1.6$	0
	FF (%)	$38.0 {\pm} 1.9$	$73.8 {\pm} 0.8 {\pm} 9.6$	0
Binned $K^-\pi^+$ S wave	FF (%) $2\times$	0	0	41.9 ± 1.9
$I = 2 \pi^+ \pi^+ S$ wave	a	$30.3 {\pm} 2.7$	$25.5 {\pm} 0.3 {\pm} 2.9$	33.1 ± 2.6
	FF(%)	$13.4{\pm}2.3$	$9.8 {\pm} 0.2 {\pm} 2.0$	$15.5 {\pm} 2.8$
	\sum FF _i (%)	94.4	152.0	122.8
Goodness	$\frac{\lambda}{\chi^2}/\nu$	426/385	416/385	359/347
	Probability (%)	7.4%	13.2%	31.5%

FOCUS Analysis.

 \Box Using data collected by the high energy photoproduction experiment FOCUS at Fermilab has performed a Dalitz plot analysis of the decay $D^+ \to K^- \pi^+ \pi^+$ using 53653 Dalitz-plot events with a signal fraction of ~ 97% (arXiv:0705.2248) (arXiv:0905.4846).

 \Box Within the K-matrix approach, they present the determination in D-decays of the two separate isospin contributions, I = 1/2 and I = 3/2, for the S-wave $K\pi$ system.

 \Box I=1/2, Total and I=3/2 contributions.

 \Box The isobar model with its Breit–Wigner representation for all states requires both a κ and a $K_0^*(1430)$ whose parameters are not what elastic scattering would require.

□ However, such Breit–Wigner parameters are effective rather than genuine pole positions.

 \Box In contrast, the *K*-matrix fit has built in consistency with $K\pi$ scattering.

 \Box These results indicate close consistency with $K\pi$ scattering data,

and consequently with Watson's theorem predictions for two-body $K\pi$ interactions in the low $K\pi$ mass region.

Scalar mesons: The σ .

 \Box The σ is a very wide amplitude extending from the $\pi\pi$ threshold up to 1.5 GeV. (arXiv:0708.4016) \Box The $\pi\pi$ amplitude and phase has been measured in:

 \Box Slowly moving phase: a broad resonance? $\sigma(500)$?

 \Box The spectrum can be understood in terms of a slowly moving phase with the presence of a narrow $f_0(980)$ resonance and a broader $f_0(1400)$ resonance.

 \Box Alternative proposal: The $\sigma(500)$ identified as the scalar glueball (**Red Dragon**) (hep-ph/9811518).

The evidence for $\sigma(500)$.

□ The existence of the $\sigma(500)$ has been recently triggered again by the Dalitz Plot analysis of $D^+ \rightarrow \pi^+ \pi^- (E791)$ (≈ 1200 events) (hep-ex/0007028). □ Dalitz plot. Fit without and with a $\sigma(500)$ resonance.

 \Box Amplitudes symmetrized because of the presence of two identical pions.

$$\mathcal{A}_n = \mathcal{A}_n[(\mathbf{12})\mathbf{3}] + \mathcal{A}_n[(\mathbf{13})\mathbf{2}]$$

 \Box In order to obtain a good fit of the Dalitz plot they need to introduce a scalar resonance close to threshold.

 \Box And they extract the following σ parameters.

$$m = 478 \pm 24 \pm 17 \quad MeV$$

$$\Gamma = 324 \pm 41 \pm 21 \quad MeV$$

Dalitz analysis.		
	Fit 1	Fit 2
mode	Fraction(%)	$\operatorname{Fraction}(\%)$
	Magnitude	Magnitude
	Phase	Phase
$\sigma \pi^+$	—	$46.3 \pm 9.0 \pm 2.1$
	_	$1.17 \pm 0.13 \pm 0.06$
	_	$(205.7 \pm 8.0 \pm 5.2)^{\circ}$
$\rho^{0}(770)\pi^{+}$	20.8 ± 2.4	$33.6 \pm 3.2 \pm 2.2$
	1(fixed)	1(fixed)
	0(fixed)	0(fixed)
NR	38.6 ± 9.7	$7.8 \pm 6.0 \pm 2.7$
	1.36 ± 0.20	$0.48 \pm 0.18 \pm 0.09$
	$(150.1 \pm 11.5)^{\circ}$	$(57.3 \pm 19.5 \pm 5.7)^{\circ}$
$f_{0}(980)\pi^{+}$	$7 4 \pm 1 4$	$6.2 \pm 1.3 \pm 0.4$
J((000) //	0.60 ± 0.07	$0.43 \pm 0.05 \pm 0.02$
	$(151.8 \pm 16.0)^{\circ}$	$(165.0 \pm 10.9 \pm 3.4)^{\circ}$
1	(101.0 ± 10.0)	(100.0 ± 10.0 ± 0.4)
$f_2(1270)\pi^+$	6.3 ± 1.9	$19.4 \pm 2.5 \pm 0.4$
	0.55 ± 0.08	$0.76 \pm 0.06 \pm 0.03$
	$(102.6 \pm 16.0)^{\circ}$	$(57.3 \pm 7.5 \pm 2.9)^{\circ}$
$f_0(1370)\pi^+$	$10.7~\pm~3.1$	$2.3\pm1.5\pm0.8$
	0.72 ± 0.12	$0.26 \pm 0.09 \pm 0.03$
	$(143.2 \pm 9.7)^{\circ}$	$(105.4 \pm 17.8 \pm 0.6)^{\circ}$
$\rho^0(1450)\pi^+$	22.6 ± 3.7	$0.7\pm0.7\pm0.3$
, ,	1.04 ± 0.12	$0.14\pm0.07\pm0.02$
	$(45.8 \pm 14.9)^{\circ}$	$(319.1 \pm 39.0 \pm 10.9)^{\circ}$
	. /	

 \Box Results from the Da<u>litz analysis.</u>

The evidence for $\sigma(500)$.

 \square BES: study of $J/\psi \to \omega \pi^+ \pi^-$ (hep-ex/0406038).

 \Box Large threshold scalar enhancement.

 \Box Several fitting models. From the mean of six analyses they obtain a pole position at:

$$m = (541 \pm 39) - i(252 \pm 42)MeV$$

Dalitz analysis of $D^+ \to \pi^+ \pi^+ \pi^-$ from CLEO.

□ Data collected at the $\psi(3770) \to D^+D^-$ resonance (arXiv:0704.3954). □ Presence of $K_S^0 \to \pi^+\pi^-$ removed by a mass cut. ≈ 2600 events.

□ They perform a Dalitz analysis using three different models: isobar, Schechter and Achasov. □ The isobar model includes the best description of the σ and the Flatté parameterization for the threshold effects on the $f_0(980)$.

$ ho(770)\pi^+$	1(fixed)	0(fixed)	$20.0{\pm}2.3{\pm}0.9$
$f_0(980)\pi^+$	$1.4 {\pm} 0.2 {\pm} 0.2$	$12\pm10\pm5$	$4.1 {\pm} 0.9 {\pm} 0.3$
$f_2(1270)\pi^+$	$2.1 {\pm} 0.2 {\pm} 0.1$	$-123\pm 6\pm 3$	$18.2{\pm}2.6{\pm}0.7$
$f_0(1370)\pi^+$	$1.3 {\pm} 0.4 {\pm} 0.2$	$-21 {\pm} 15 {\pm} 14$	$2.6{\pm}1.8{\pm}0.6$
$f_0(1500)\pi^+$	$1.1 {\pm} 0.3 {\pm} 0.2$	$-44{\pm}13{\pm}16$	$3.4{\pm}1.0{\pm}0.8$
σ pole	$3.7 {\pm} 0.3 {\pm} 0.2$	$-3{\pm}4{\pm}2$	$41.8 {\pm} 1.4 {\pm} 2.5$

 \Box The sum of all fit fractions is 90.1%, and the fit probability is $\simeq 28\%$ for 90 degrees of freedom.

K-matrix fits to $D^+ \rightarrow \pi^+ \pi^+ \pi^-$ Dalitz plot.

 \Box FOCUS: Analysis of $D^+ \to \pi^+ \pi^+ \pi^-$. 1527 ± 51 signal events (hep-ex/0312040).

 \Box Use of the K-matrix formalism for the description of the $\pi\pi$ S-wave.

 \Box The *K*-matrix treatment of the *S*-wave component of the decay amplitude modeled in terms of the five virtual channels considered: $\pi\pi$, $K\bar{K}$, $\eta\eta$, $\eta\eta'$ and 4π .

 $\Box \text{ Beside the } S\text{-wave component}, \text{ the decay appears to be dominated by the } \rho^0(770) \text{ plus a } f_2(1270)$ component.

 \Box The direct three-body non-resonant component was not necessary since the S-wave could reproduce the entire non-resonant portion of the Dalitz plot.

decay channel	fit fraction $(\%)$	phase (deg)	amplitude coefficient
$(S-\text{wave}) \pi^+$	$56.00 \pm 3.24 \pm 2.08$	0 (fixed)	1 (fixed)
$f_2(1270) \pi^+$	$11.74 \pm 1.90 \pm 0.23$	$-47.5 \pm 18.7 \pm 11.7$	$1.147 \pm 0.291 \pm 0.047$
$\rho^{0}(770) \pi^{+}$	$30.82 \pm 3.14 \pm 2.29$	$-139.4 \pm 16.5 \pm 9.9$	$1.858 \pm 0.505 \pm 0.033$
Fit C.L.	7.7~%		

 \square Good description of the data. No need for additional resonances.

The $f_0(980)$ resonance.

 \Box The $f_0(980)$ resonance has been discovered many years ago but has still uncertain parameters and interpretations because is just sitting at the $K\bar{K}$ threshold and strongly coupled to the $\pi\pi$ and $K\bar{K}$ final states.

- \square Many good data exist on its $\pi\pi$ projection.
- \Box A few good data on its the $K\bar{K}$ projection, complicated by the presence of the $a_0(980)$ resonance. \Box The $f_0(980)$ lineshape is determined by:
 - Its coupling to the $K\bar{K}$ final state;
 - The interference with other wide scalar resonances;

J/ψ decays.

□ First analyses performed by MarkIII and DM2. Recent analysis from BES (hep-ex/0411001). □ Study of:

$$f = \frac{1}{M^2 - s - im_0(g_1 \rho_{\pi\pi} + g_2 \rho_{K\bar{K}})}.$$
(1)

 $\Box \rho$ is Lorentz invariant phase space, $2k/\sqrt{s}$, where k refers to the π or K momentum in the rest frame of the resonance.

□ Fitted $f_0(980)$ parameters. $M = 965 \pm 8 \pm 6 MeV/c^2$, $g_1 = 165 \pm 10 \pm 15 MeV/c^2$, $g_2/g_1 = 4.21 \pm 0.25 \pm 0.21$

Extracting the $f_0(980)$ parameters.

\Box Study of $B_s \to J/\psi \pi^+ \pi^-$ at LHCb:

 \Box The largest component is the $f_0(980)$ that is described by a Flatté function. The data are best described by adding the $f_0(1370)$, the $f_2(1270)$ and a non-resonance contribution.

Components	3R+NR	3R+NR+ ho	$3R+NR+f_0(1500)$	$3R+NR+f_0(600)$
$f_0(980)$	107.09 ± 3.51	104.84 ± 3.91	72.99 ± 5.82	115.24 ± 5.32
$f_0(1370)$	32.57 ± 4.10	32.30 ± 3.72	113.67 ± 13.57	34.47 ± 3.98
$f_0(1500)$	-	-	15.00 ± 4.83	-
$f_0(600)$	-	-	-	4.68 ± 2.46
NR	12.84 ± 2.32	12.16 ± 2.22	10.66 ± 2.06	23.65 ± 3.59
$f_2(1270),\lambda=0$	0.76 ± 0.25	0.77 ± 0.25	1.07 ± 0.37	0.90 ± 0.31
$f_2(1270), \lambda = 1$	0.33 ± 1.00	0.26 ± 1.12	1.02 ± 0.83	0.61 ± 0.87
Sum	153.6 ± 6.0	151.1 ± 6.0	214.4 ± 15.7	179.6 ± 8.0
Probability(%)	8.41	7.05	7.57	9.61

The $f_0(1370)$.

 \Box Due to its interference with the broad $\pi\pi$ S-wave and $f_0(1500)$, the $f_0(1370)$ (and can appear shifted in invariant mass spectra.

 \square Therefore, the application of simple Breit-Wigner forms arrive at slightly different resonance masses.

 \Box Since it does not show up prominently in the $\pi\pi$ spectra, its mass and width are difficult to determine.

 \Box Multichannel analyses of hadronically produced two- and three-body final states agree on a mass between 1300 MeV and 1400 MeV and a narrow $f_0(1500)$, but arrive at a somewhat smaller width for $f_0(1370)$.

The $f_0(1500)$.

 \Box The $f_0(1500)$ (M=1509±10, Γ = 116±17 MeV) was discovered by Crystal Barrel in $\bar{p}p$ annihilations at rest.

$$\bar{p}p \to \pi^0 \pi^0 \pi^0, \bar{p}p \to \eta \eta \pi^0, \bar{p}p \to \eta' \eta \pi^0, \bar{p}p \to K_L^0 K_L^0 \pi^0$$

 \Box Rates:

 $\pi\pi: K\bar{K}: \eta\eta: \eta\eta' = (5.1 \pm 2.0): (0.71 \pm 0.21): (1.0): (1.3 \pm 0.5)$

 \Box At moment little evidence for $f_0(1500)$ production in heavy flavors decays.

The $f_0(1700)$

□ The $f_0(1700)$ has been discovered in radiative $J/\psi \rightarrow \gamma K^+ K^-$ although its spin has been controversial for some time between $J^P = 0^+$ and $J^P = 2^+$. □ The $K^+ K^-$ mass spectrum from BES (arXiv:hep-ex/0209031), (hep-ex/0307058). Signals are due to $f'_2(1525)$ and $f_0(1700)$.

Dalitz analysis of $D^0 \to \overline{K}{}^0 \pi^+ \pi^-$ (Belle).

 \square The question of the scalar mesons came out again in the framework of the measurement of γ using the Dalitz analysis of D^0 decays. \Box To obtain a good fit it was necessary to introduce two scalar mesons, labeled as σ_1 and σ_2 .

Intermediate state	Amplitude	Phase $(^{\circ})$	Fit fraction
$K_S^0 \sigma_1$	1.43 ± 0.07	212 ± 3	9.8%
$K_{S}^{0}\rho^{0}$	1.0 (fixed)	0 (fixed)	21.6%
$K_{S}^{\widetilde{0}}\omega$	0.0314 ± 0.0008	110.8 ± 1.6	0.4%
$K_S^{\widetilde{0}}f_0(980)$	0.365 ± 0.006	201.9 ± 1.9	4.9%
$K_{S}^{\widetilde{0}}\sigma_{2}$	0.23 ± 0.02	237 ± 11	0.6%
$K_{S}^{ar{0}}f_{2}(1270)$	1.32 ± 0.04	348 ± 2	1.5%
$K_{S}^{ ilde{0}}f_{0}(1370)$	1.44 ± 0.10	82 ± 6	1.1%
$K_{S}^{ ilde{0}} ho^{0}(1450)$	0.66 ± 0.07	9 ± 8	0.4%
$K^{\tilde{*}}(892)^+\pi^-$	1.644 ± 0.010	132.1 ± 0.5	61.2%
$K^*(892)^-\pi^+$	0.144 ± 0.004	320.3 ± 1.5	0.55%
$K^*(1410)^+\pi^-$	0.61 ± 0.06	113 ± 4	0.05%
$K^*(1410)^-\pi^+$	0.45 ± 0.04	254 ± 5	0.14%
$K_0^*(1430)^+\pi^-$	2.15 ± 0.04	353.6 ± 1.2	7.4%
$K_0^*(1430)^-\pi^+$	0.47 ± 0.04	88 ± 4	0.43%
$\tilde{K_{2}^{*}(1430)}^{+}\pi^{-}$	0.88 ± 0.03	318.7 ± 1.9	2.2%
$\bar{K_{2}^{*}}(1430)^{-}\pi^{+}$	0.25 ± 0.02	265 ± 6	0.09%
$\bar{K^{*}(1680)}^{+}\pi^{-}$	1.39 ± 0.27	103 ± 12	0.36%
$K^*(1680)^-\pi^+$	1.2 ± 0.2	118 ± 11	0.11%
non-resonant	3.0 ± 0.3	164 ± 5	9.7%

\mathbf{Dalitz}	analysis	of <i>1</i>	$D^0 \rightarrow$	$\bar{K}^0 \pi^+$	π^{-}	(BaBar)).
-------------------	----------	--------------------	-------------------	-------------------	-----------	---------	----

\square BaBar followed a different method: K-matrix description of the $\pi\pi$ S-wave.

Component	Amplitude	Phase (rad)	Fit fraction $(\%)$
$K^{*}(892)^{-}$	1.735 ± 0.005	2.331 ± 0.004	57.0
$ ho(770)^{m 0}$	1	0	21.1
$K_0^*(1430)^-$	2.650 ± 0.015	1.497 ± 0.007	6.1
$K_2^{*}(1430)^{-}$	1.303 ± 0.013	2.498 ± 0.012	1.9
$\omega(782)$	0.0420 ± 0.0006	2.046 ± 0.014	0.6
$K^{*}(892)^{+}$	0.164 ± 0.003	-0.768 ± 0.019	0.6
$K^*(1680)^-$	0.90 ± 0.03	-2.97 ± 0.04	0.3
$f_2(1270)$	0.410 ± 0.013	2.88 ± 0.03	0.3
$K_0^*(1430)^+$	0.145 ± 0.014	1.78 ± 0.10	< 0.1
$K_{2}^{*}(1430)^{+}$	0.115 ± 0.013	2.69 ± 0.11	< 0.1
$\pi\pi$ S-wave			15.4

The $\rho(770)$ description.

 \Box The description of the $\rho(770)$ has to take into account the presence of broad ρ' high mass resonances and the presence of the ρ/ω interference.

 \Box For $\pi\pi$ vector resonances ($\rho(770)$ and $\rho(1450)$) standard method is the use Gounaris-Sakurai (GS) Breit-Wigner parametrization (G.J. Gounaris, J.J. Sakurai, Phys. Rev. Lett. **21**, 24 (1968).

Dalitz Plot Analysis of three-body D_s^+ decays $D_s^+ \to \pi^+\pi^-\pi^+$

□ BaBar has performed a Dalitz plot analysis of $D_s^+ \to \pi^+ \pi^- \pi^+$ (arXiv:0808.0971). □ D_s^+ mesons are strongly coupled to $s\bar{s}$ mesons, therefore it is possible to extract the $\pi\pi$ S-wave coupled to $s\bar{s}$.

 \Box The resulting D_s^+ signal region contains 13179 events with a purity of 80%.

 \square Dalitz plot, symmetrized along the two axes.

 \Box We observe a clear $f_0(980)$ signal, evidenced by the two narrow crossing bands. We also observe a broad accumulation of events in the 1.9 GeV region.

Dalitz Plot Analysis of three-body D_s^+ decays $D_s^+ \to \pi^+ \pi^- \pi^+$

 \Box The efficiency is found to be almost uniform as a function of the $\pi^+\pi^-$ invariant mass with an average value of ≈ 1.6 %.

□ In the Dalitz plot analysis spin-1 and spin-2 resonances are described by relativistic Breit-Wigner. □ For the $\pi^+\pi^- S$ -wave amplitude, a different approach is used because:

- Scalar resonances have large uncertainties. In addition, the existence of some states needs confirmation.
- Modelling the S-wave as a superposition of Breit-Wigners is unphysical since it leads to a violation of unitarity when broad resonances overlap.

□ To overcome these problems, the Model-Independent Partial Wave Analysis has been used. □ Instead of including the S-wave amplitude as a superposition of relativistic Breit-Wigner functions, the $\pi^+\pi^-$ mass spectrum is divided into 29 slices and the S-wave is parametrized by an interpolation between the 30 endpoints in the complex plane:

$$A_{\mathcal{S}-\text{wave}}(m_{\pi\pi}) = \text{Interp}(c_k(m_{\pi\pi})e^{i\phi_k(m_{\pi\pi})})_{k=1,..,30}.$$
 (2)

□ The amplitude and phase of each endpoint are free parameters. The width of each slice is tuned to get approximately the same number of $\pi^+\pi^-$ combinations ($\simeq 13179 \times 2/29$). □ Interpolation is implemented by a Relaxed Cubic Spline. The phase is not constrained in a specific range in order to allow the spline to be a continuous function.

Dalitz Plot Analysis of three-body D_s^+ decays $D_s^+ \to \pi^+ \pi^- \pi^+$

Dalitz plot projections together with the fit results.
The hatched histograms show the background distribution.

 \Box S-wave amplitude and phase compared to the FOCUS (K-matrix) and E791 (isobar) amplitudes.

$$a_0(980)/f_0(980) \to K\bar{K}.$$

 \Box $a_0(980)$ and $f_0(980)$ resonances are close to the $K\bar{K}$ threshold. \Box The $a_0(980)$ decays mostly to $\eta\pi$.

□ The best measurements of the $a_0(980)$ parameters come from Crystal Barrel experiment in in $\bar{p}p \rightarrow K_L^0 K^+ \pi^-$ annihilations (http://www-meg.phys.cmu.edu/cb/papers/KlKpi.ps.gz). □ It has been described by a coupled channel Breit Wigner of the form:

$$BW_{ch}(a_0)(m) = \frac{g_{\bar{K}K}}{m_0^2 - m^2 - i(\rho_{\eta\pi}g_{\eta\pi}^2 + \rho_{\bar{K}K}g_{\bar{K}K}^2)}$$

where $\rho(m) = 2q/m$ while $g_{\eta\pi}$ and $g_{\bar{K}K}$ describe the $a_0(980)$ couplings to the $\eta\pi$ and $\bar{K}K$ systems respectively.

 \Box They obtain:

$$m_0 = 999 \pm 2 \text{ MeV}/c^2, \ g_{\eta\pi} = 324 \pm 15 \ (\text{MeV})^{1/2}, \ \frac{g_{\eta\pi}^2}{g_{\bar{K}K}^2} = 1.03 \pm 0.14, \ g_{\bar{K}K} = 329 \pm 27 \ (\text{MeV})^{1/2}$$

Partial Wave Analysis of the K^+K^- system.

□ BaBar has performed a Dalitz analysis of $D^0 \to \overline{K}^0 K^+ K^-$ (arXiv:hep-ex/0507026). □ Due to the uncertain parameters of the scalar mesons close to threshold, where both $a_0(980)/f_0(980)$ can contribute, their lineshape has been extracted directly from the data. □ Assume, in the K^+K^- threshold region, a diagram:

Partial Wave Analysis of the K^+K^- system.

□ S, P waves and relative phase can be extracted using: $\sqrt{4\pi}Y_0^0 = S^2 + P^2$ $\sqrt{4\pi}Y_1^0 = 2SPcos\phi$ $\sqrt{4\pi}Y_2^0 = 0.894P^2$ □ Correcting for phase space a simultaneous fit has been performed using also the \bar{K}^0K^+ projection:

Partial Wave Analysis of the K^+K^- system.

 \Box The distributions have been fitted using the following model:

- The P-wave is entirely due to the $\phi(1020)$ meson.
- The scalar contribution in the K^+K^- mass projection is entirely due to the $a_0(980)^0$.
- The $\overline{K}{}^{0}K^{+}$ mass distribution is entirely due to $a_{0}(980)^{+}$.
- The angle ϕ_{SP} is obtained fitting the S, P waves and $\cos \phi_{SP}$ with:

$$c_{a_0}BW_{a_0} + c_{\phi}BW_{\phi}e^{i\alpha}$$

Here BW_{a_0} and BW_{ϕ} are the Breit-Wigner describing the $a_0(980)$ and $\phi(1020)$ resonances.

□ The $a_0(980)$ has been described by the coupled channel Breit Wigner. □ Fixing m_0 and $g_{\eta\pi}$ to the Crystal Barrel measurements it is possible to measure:

 $g_{\bar{K}K} = 464 \pm 29 \; (\text{MeV})^{1/2}.$

 \Box The figure shows also the residual $a_0(980)$ phase, obtained by first computing ϕ_{SP} in the range $(0,\pi)$ and then subtracting the known phase motion due to the $\phi(1020)$ resonance. It is almost constant, as expected for the tail of a Breit-Wigner.

Little $f_0(980)$ contribution.

 \Box Since $f_0(980)$ has I=0, it cannot decay to $\bar{K}^0 K^+$.

 \Box Therefore the $\bar{K}^0 K^+$ projection contains only $a_0(980)^+$.

 \Box Superposition of the two normalized projections, phase space corrected:

 \Box Cosistent with little $f_0(980)$ contribution.

Dalitz Analysis of the $D^0 \to K^+ K^- \pi^0$ system.

□ Using 385 fb⁻¹ of e^+e^- collisions, BABAR has performed a Dalitz analysis of the singly Cabibbo-suppressed decay $D^0 \to K^- K^+ \pi^0$ (arXiv:0704.3593). □ Similar PWA performed in the threshold $K^+ K^-$ region.

 \Box Similar results as for the $D^0 \to \overline{K}^0 K^+ K^-$ decay.

□ BABAR has performed a Dalitz analysis of $D_s^+ \to K^+ K^- \pi^+$ decays (arXiv:1011.4190). □ Dalitz plot.

Dalitz Analysis of $D_s^+ \to K^+ K^- \pi^+$

Partial Wave Analysis of the K^+K^- threshold region for $D_s^+ \to K^+K^-\pi^+$

 \Box The *S*-wave profile from this analysis is compared with the *S*-wave intensity values extracted for Dalitz plot analyses of $D^0 \to \overline{K}{}^0 K^+ K^-$ and $D^0 \to K^+ K^- \pi^0$.

 \Box The four distributions are normalized in the region from threshold up to 1.05 GeV and show a substantial agreement.

 \Box As the $a_0(980)$ and $f_0(980)$ mesons couple mainly to the $u\bar{u}/d\bar{d}$ and $s\bar{s}$ systems respectively, the former is favoured in $D^0 \to \overline{K}{}^0K^+K^-$ and the latter in $D_s^+ \to K^+K^-\pi^+$. Both resonances can contribute in $D^0 \to K^+K^-\pi^0$. We conclude that the *S*-wave projections in the $K\bar{K}$ system for both resonances are consistent in shape.

 \Box It has been suggested that this feature supports the hypothesis that the $a_0(980)$ and $f_0(980)$ are 4-quark states. (arXiv:hep-ph/0703272)

 \Box Comparison between the *S*-wave profile from this analysis with the $\pi^+\pi^-$ *S*-wave profile extracted from *BABAR* data in a Dalitz plot analysis of $D_s^+ \to \pi^+\pi^-\pi^+$. The observed agreement supports the argument that only the $f_0(980)$ is present in this limited mass region.

Four-Body charm decays

□ Four-Body Dalitz analyses of charm decays have been performed for the first time by MarkIII experiment at SLAC (SLAC-PUB-5447, Sept. 1991).

 \Box Much later FOCUS collaboration made an amplitude analysis of $D^0 \to K^+ K^- \pi^+ \pi^-$ (2669 events) without separating D^0 from $\overline{D^0}$ (hep-ex/0411031).

 \Box Recently, CLEO collaboration performed a similar analysis, separating D^0 from $\overline{D^0}$ using ≈ 3000 events (arXiv:1201.5716.

 \Box The spin formalism can be derived either using the Zemach tensors or using the Lorentz-invariant helicity amplitudes.

 \Box The decay chain, in the isobar formalism can go through intermediate one-resonance or two-resonances.

Four-Body charm decays

 \Box We are studying the decay:

$$D^0 \to K^+ K^- \pi^+ \pi^-$$

 \Box We define with $p_{K^+},\,p_{K^-},\,p_{\pi^+},\,p_{\pi^-}$ the momenta of the four particles in the D^0 center of mass system.

The method is the following:

- We use a symmetric and traceless tensor of rank-L made with p^i to describe orbital angular momenta.
- We use a symmetric and traceless tensor of rank-S made with t^i to describe the spin of intermediate resonances. For a resonace decaying as $R \to a + b$, the t^i are defined as:

$$t_{R}^{i} = p_{a}^{i} - p_{b}^{i} - (p_{a}^{i} + p_{b}^{i}) \frac{m_{a}^{2} - m_{b}^{2}}{m_{ab}^{2}}$$

• The tensors are then contracted to obtain a scalar, the spin of the D^0 .

$\phi(1020)\rho(770)$

 \square This final state can occur in S, P, or D wave.

1) S-wave.

 $t^i_{K^+K^-}$ and $t^i_{\pi^+\pi^-}$ describe the spin of the $\phi(1020)$ and $\rho(770)$ respectively. $t^i_{K^+K^-} = p^i_{K^+} - p^i_{K^-}$ $t^i_{\pi^+\pi^-} = p^i_{\pi^+} - p^i_{\pi^-}$

The amplitude is the following:

$$A_1 = BW_{\phi}BW_{\rho}(\mathbf{t}_{K^+K^-} \cdot \mathbf{t}_{\pi^+\pi^-})$$

2) P-wave

 $p_{K^+K^-}^i$ describes the angular momentum L=1 between the K^+K^- and $\pi^+\pi^-$. $p_{K^+K^-}^i = p_{K^+}^i + p_{K^-}^i$

$$A_2 = BW_{\phi}BW_{\rho}(\mathbf{t}_{K^+K^-} \times \mathbf{p}_{K^+K^-}) \cdot \mathbf{t}_{\pi^+\pi^-}$$

$\phi(1020)\rho(770)$

3) D-wave

 $p_{K^+K^-}^{ij}$ describes the angular momentum L=2 between the K^+K^- and $\pi^+\pi^-$. $p_{K^+K^-}^{ij} = p_{K^+K^-}^i p_{K^+K^-}^j - \delta^{ij} p_{K^+K^-}^2/3$

The amplitude is the following:

$$A_{3} = BW_{\phi}BW_{\rho}(t_{K+K-}^{i}p_{K+K-}^{ij})t_{\pi+\pi-}^{j}$$

where indices contraction is implied.

$K^*(890)^0 \overline{K}^*(890)^0$

 \square This final state can occur in S, P, or D wave.

1) S-wave.

$$\begin{split} t^{i}_{K^{+}\pi^{-}} & \text{and} \ t^{i}_{K^{-}\pi^{+}} \ \text{describe the spin of the } K^{*}(890)^{0} \ \text{and} \ \overline{K}^{*}(890)^{0} \ \text{respectively.} \\ t^{i}_{K^{+}\pi^{-}} &= p^{i}_{K^{+}} - p^{i}_{\pi^{-}} - (p^{i}_{K^{+}} + p^{i}_{\pi^{-}}) \frac{m^{2}_{k} - m^{2}_{\pi}}{m^{2}_{K^{+}\pi^{-}}} \\ t^{i}_{K^{-}\pi^{+}} &= p^{i}_{K^{-}} - p^{i}_{\pi^{+}} - (p^{i}_{K^{-}} + p^{i}_{\pi^{+}}) \frac{m^{2}_{k} - m^{2}_{\pi}}{m^{2}_{K^{-}\pi^{+}}} \end{split}$$

The amplitude is the following:

$$A_4 = BW_{K^*}BW_{\bar{K}^*}(\mathbf{t}_{K^+\pi^-}\cdot\mathbf{t}_{K^-\pi^+})$$

2) P-wave

 $p_{K^+\pi^-}^i$ describes the angular momentum L=1 between the $K^+\pi^-$ and $K^-\pi^+$. $p_{K^+\pi^-}^i = p_{K^+}^i + p_{\pi^-}^i$ The amplitude is the following:

$$A_5 = BW_{K^*}BW_{\bar{K}^*}(\mathbf{t}_{K^+\pi^-} \times \mathbf{p}_{K^+\pi^-}) \cdot \mathbf{t}_{K^-\pi^+}$$

3) D-wave

 $p_{K^+\pi^-}^{ij}$ describes the angular momentum L=2 between the $K^+\pi^-$ and $K^-\pi^+$. $p_{K^+\pi^-}^{ij} = p_{K^+\pi^-}^i p_{K^+\pi^-}^j - \delta^{ij} p_{K^+\pi^-}^2/3$

$$A_6 = BW_{K^*}BW_{\bar{K}^*}(t^i_{K^+\pi^-}p^{ij}_{K^+\pi^-})t^j_{K^-\pi^+}$$

$K_1^+(1270)K^-$

 \Box The $K_1^+(1270)$ is described by a simple Breit-Wigner.

□ First we describe the $K_1^+(1270)$ decay which is a spin-1 particle decaying to $K^+\pi^+\pi^-$. □ We label with p' the momenta of the particles in the $K^+\pi^+\pi^-$ rest frame.

1) $K_1^+(1270) \to K^*(890)^0 \pi^+$ $t_{K^+\pi^-}^{\prime i}$ describes the K^* spin: $t_{K^+\pi^-}^{\prime i} = p_{K^+}^{\prime i} - p_{\pi^-}^{\prime i} - (p_{K^+}^{\prime i} + p_{\pi^-}^{\prime i}) \frac{m_k^2 - m_\pi^2}{m_{K^+\pi^-}^2}$ This $t_{K^+\pi^-}^{\prime i}$ vector has to be combined with $p_{K^-}^i$ to obtain a spin 0. The amplitude is the following:

$$A_{7} = BW_{K_{1}(1270)}BW_{K^{*}}(\mathbf{t'}_{K^{+}\pi^{-}} \cdot \mathbf{p}_{K^{-}})$$

2) $K_1^+(1270) \to K^+ \rho(770)$ $t'^i_{\pi^+\pi^-}$ describes the $\rho(770)$ spin: $t'^i_{\pi^+\pi^-} = p'^i_{\pi^+} - p'^i_{\pi^-}$

$$A_8 = BW_{K_1(1270)}BW_{\rho}(\mathbf{t'}_{\pi^+\pi^-} \cdot \mathbf{p}_{K^-})$$

3) $K_1^+(1270) \to K^+\omega(770)$

$$A_{9} = BW_{K_{1}(1270)}BW_{\omega}(\mathbf{t'}_{\pi^{+}\pi^{-}} \cdot \mathbf{p}_{K^{-}})$$

4) $K_1^+(1270) \to K_0^*(1410)^0 \pi^+$

This decay is described by \mathbf{p}'_{π^+} . The amplitude is the following:

$$A_{10} = BW_{K_1(1270)}BW_{K_0^*}(\mathbf{p'}_{\pi^+} \cdot \mathbf{p}_{K^-})$$

$K_1^+(1400)K^-$

We use only the $K^*(890)$ mode and just replace the Breit-Wigner.

 $K_1^+(1400) \to K^*(890)^0 \pi^+$ $A_{15} = BW_{K_1(1400)} BW_{K^*}(\mathbf{t'}_{K^+\pi^-} \cdot \mathbf{p}_{K^-})$

 $\phi(\pi^+\pi^-)_{S-wave}$

In this case we have L=1, therefore the amplitude is:

$$A_{17} = BW_{\phi}(\mathbf{t}_{K^+K^-} \cdot \mathbf{p}_{\pi^+\pi^-})$$

 $\rho(770)(K^+K^-)_{S-wave}$

In this case we have L=1, therefore the amplitude is:

$$A_{18} = BW_{\rho}(\mathbf{t}_{\pi^+\pi^-} \cdot \mathbf{p}_{K^+K^-})$$

 $\omega(770)(K^+K^-)_{S-wave}$

In this case we have L=1, therefore the amplitude is:

$$A_{19} = BW_{\omega}(\mathbf{t}_{\pi^+\pi^-} \cdot \mathbf{p}_{K^+K^-})$$

 $K^*(890)(K^-\pi^+)_{S-wave}$

In this case we have L=1, therefore the amplitude is:

$$A_{20} = BW_{K^*}(\mathbf{t}_{K^+\pi^-} \cdot \mathbf{p}_{K^+\pi^-})$$

 $\bar{K}^{*}(890)(K^{+}\pi^{-})_{S-wave}$

In this case we have L=1, therefore the amplitude is:

$$A_{21} = BW_{\bar{K}^*}(\mathbf{t}_{K^-\pi^+} \cdot \mathbf{p}_{K^-\pi^+})$$

$K_1^*(1410)K$

The $K_1^*(1410)$ is described by a simple Breit-Wigner. $K_1^{*+}(1410)K^-$.

$$A_{22} = BW_{K_{1}^{*}(1410)}BW_{K^{*}}(\mathbf{t'}_{K^{+}\pi^{-}} \times \mathbf{p'}_{\pi^{+}}) \cdot \mathbf{p}_{K^{-}})$$

Table of the Aremach tensors ampl	itudes	Zemach tensor
1) $\phi(1020)\rho(770)$	0	$BW_{\phi}BW_{\rho}(\mathbf{t}_{K+K-}\cdot\mathbf{t}_{\pi+\pi-})$
2) $\phi(1020) ho(770)$	1	$BW_{\phi}BW_{\rho}(\mathbf{t}_{K+K-} \times \mathbf{p}_{K+K-}) \cdot \mathbf{t}_{\pi+\pi-}$
3) $\phi(1020) ho(770)$	2	$BW_{\phi}BW_{\rho}(t^{i}_{K+K-}p^{ij}_{K+K-})t^{j}_{\pi+\pi-}$
4) $K^*(890)^0 \overline{K}^*(890)^0$	0	$BW_{K^*}BW_{\bar{K}^*}(\mathbf{t}_{K^+\pi^-}\cdot\mathbf{t}_{K^-\pi^+})$
5) $K^*(890)^0 \overline{K}^*(890)^0$	1	$BW_{K^*}BW_{\bar{K}^*}(\mathbf{t}_{K^+\pi^-} \times \mathbf{p}_{K^+\pi^-}) \cdot \mathbf{t}_{K^-\pi^+}$
6) $K^*(890)^0 \overline{K}^*(890)^0$	2	$BW_{K^*}BW_{\bar{K}^*}(t^i_{K^+\pi^-}p^{ij}_{K^+\pi^-})t^j_{K^-\pi^+}$
7) $K_1^+(1270) \to K^*(890)^0 \pi^+$		${}^{BW}_{K_1(1270)}{}^{BW}_{K^*}({\mathbf{t'}_{K^+\pi^-}} \cdot {\mathbf{p}_{K^-}})$
8) $K_1^+(1270) \to K^+ \rho(770)$		${}^{BW}_{K_1(1270)}{}^{BW}_{\rho}({f t'}_{\pi^+\pi^-}\cdot{f p}_{K^-})$
9) $K_{1}^{+}(1270) \to K^{+}\omega(770)$		${}^{BW}_{K_{1}(1270)}{}^{BW}_{\omega}({\mathbf{t'}}_{\pi^{+}\pi^{-}}\cdot {\mathbf{p}}_{K^{-}})$
10) $K_1^+(1270) \to K_0^*(1410)^0 \pi^+$		${}^{BW}_{K_{1}(1270)}{}^{BW}_{K_{0}^{*}}(\mathbf{p'}_{\pi}+\cdot\mathbf{p}_{K^{-}})$
11) $K_1^-(1270) \to \bar{K}^*(890)^0 \pi^-$		${}^{BW}_{K_1(1270)}{}^{BW}_{\bar{K}^*}({\mathbf{t'}}_{K^-\pi^+} \cdot {\mathbf{p}}_{K^+})$
12) $K_1^-(1270) \to K^-\rho(770)$		$BW_{K_{1}(1270)}BW_{\rho}(\mathbf{t'}_{\pi^{+}\pi^{-}}\cdot\mathbf{p}_{K^{+}})$
13) $K_1^-(1270) \to K^-\omega(770)$		${}^{BW}_{K_{1}(1270)}{}^{BW}_{\omega}({\mathbf{t'}}_{\pi^{+}\pi^{-}}\cdot {\mathbf{p}}_{K^{+}})$
14) $K_1^-(1270) \to \bar{K}_0^*(1410)^0 \pi^-$		${}^{BW}_{K_1(1270)}{}^{BW}_{\bar{K}_0^*}({\mathbf{p'}}_{\pi^-}\cdot{\mathbf{p}}_{K^+})$
15) $K_1^+(1400) \to K^*(890)^0 \pi^+$		${}^{BW}_{K_1(1400)}{}^{BW}_{K^*}({\mathbf{t'}}_{K^+\pi^-}\cdot{\mathbf{p}}_{K^-})$
16) $K_1^-(1400) \to K^*(890)^0 \pi^-$		${}^{BW}_{K_1(1400)}{}^{BW}_{\bar{K}^*}({\mathbf{t'}}_{K^-\pi^+}\cdot{\mathbf{p}}_{K^+})$
17) $\phi(\pi^+\pi^-)_{S-wave}$	1	$BW_{\phi}(\mathbf{t}_{K+K-}\cdot\mathbf{p}_{\pi+\pi-})$
18) $\rho(770)(K^+K^-)_{S-wave}$	1	$BW_{ ho}(\mathbf{t}_{\pi^+\pi^-}\cdot\mathbf{p}_{K^+K^-})$
19) $\omega(770)(K^+K^-)_{S-wave}$	1	$BW_{\omega}(\mathbf{t}_{\pi^+\pi^-}\cdot\mathbf{p}_{K^+K^-})$
20) $K^*(890)(K^-\pi^+)_{S-wave}$	1	${}^{BW}K^*(\mathbf{t}_{K^+\pi^-}\cdot\mathbf{p}_{K^+\pi^-})$
21) $\bar{K}^*(890)(K^+\pi^-)_{S-wave}$	1	$BW_{\bar{K}^*}(\mathbf{t}_{K^-\pi^+}\cdot\mathbf{p}_{K^-\pi^+})$
22) $K_1^*(1410)^+ \to K^*(890)^0 \pi^+$	_	$BW_{K_{1}^{*}(1410)}BW_{K^{*}}(\mathbf{t'}_{K+\pi^{-}} \times \mathbf{p'}_{\pi^{+}}) \cdot \mathbf{p}_{K^{-}}$
23) $K_1^*(1410)^- \to \bar{K}^*(890)^0 \pi^-$	-	${}^{BW^*_{K_1(1410)}}{}^{BW_{\bar{K}^*}(\mathbf{t'}_{K^-\pi^+} \times \mathbf{p'}_{\pi^-}) \cdot \mathbf{p}_{K^+}}$

The Lorentz invariant helicity amplitudes

Channel	\mathbf{L}	Amplitude		
$D \rightarrow V_1 V_2, \ V_1 \rightarrow P_1 P_2,$	0	$q^{\mu}_{V_{1}} (g^{\mu\nu} - p^{\mu}_{V_{1}} p^{\nu}_{V_{1}} / M^{2}_{V_{1}}) (g^{\nu\sigma} - p^{\nu}_{V_{1}} p^{\sigma}_{V_{1}} / M^{2}_{V_{2}}) q^{\sigma}_{V_{2}}$		
$V_2 \rightarrow P_3 P_4$				
$D \rightarrow V_1 V_2, \ V_1 \rightarrow P_1 P_2,$	1	$\epsilon_{lphaeta\gamma\delta}p^{lpha}_Dq^{eta}_Dq^{eta}_Vq^{eta}_{V_1}q^{\delta}_{V_2}$		
$V_2 \rightarrow P_3 P_4$				
$D \rightarrow V_1 V_2, \ V_1 \rightarrow P_1 P_2,$	2	$q^{\mu}_{V_{1}}(g^{\mu\nu} - p^{\mu}_{V_{1}}p^{\nu}_{V_{1}}/M^{2}_{V_{1}})p^{\nu}_{V_{2}} \times q^{\mu}_{V_{2}}(g^{\mu\nu} - p^{\mu}_{V_{2}}p^{\nu}_{V_{2}}/M^{2}_{V_{2}})p^{\nu}_{V_{1}}$		
$V_2 \rightarrow P_3 P_4$				
$D \to AP_1, \ A \to VP_2,$	1	$p^{\mu}_{P_1} (g^{\mu\nu} - p^{\mu}_A p^{\nu}_A / M^2_A) (g^{\nu\sigma} - p^{\nu}_V p^{\sigma}_V / M^2_V) q^{\sigma}_V$		
$V \rightarrow P_3 P_4$		-		
$D \rightarrow AP_1, A \rightarrow SP_2,$	1	$p^{\mu}_{P_1} (g^{\mu u} - p^{\mu}_A p^{ u}_A / M^2_A) q^{ u}_A$		
$S \rightarrow P_3 P_4$		_		
$D \rightarrow PP_1, P \rightarrow VP_2,$	0	$p^{\mu}_{P_2}(g^{\mu u} - p^{\mu}_V p^{ u}_V / M^2_V)q^{ u}_V$		
$V \rightarrow P_3 P_4$				
$D \to VS, V \to P_1 P_2,$	1	$p^{\mu}_{S}(g^{\mu u}-p^{\mu}_{V}p^{ u}_{V}/M^{2}_{V})q^{ u}_{V}$		
$S \rightarrow P_3 P_4$		2		
$D \rightarrow V_1 P_1, \ V_1 \rightarrow V_2 P_2,$	1	$\epsilon_{lphaeta\gamma\delta}p^{lpha}_{V_1}Dq^{eta}_{V_1}q^{\gamma}_{P_1}q^{\delta}_{V_2}$		
$V_2 \rightarrow P_3 P_4$				
$D \to TP_1, \ T \to VP_2,$	2	$((p_{P_1} \cdot q_T) - (p_{P_1} \cdot p_T)(q_T \cdot p_T)/M_T^2) \times \epsilon_{\alpha\beta\gamma\delta} p_T^{\alpha} Dq_T^{\beta} q_V^{\gamma} p_{P_1}^{\delta}$		
$V \rightarrow P_3 P_4$		_		
Three-body NR		Replace $1/p^2$ for $1/M^2$		
Four-body NR		Constant		

Results from CLEO

\Box Amplitude, phase, and fit fraction for each component.

Amplitude	$ a_i $	ϕ_i (rad)	Fit Fraction (%)
$K_1(1270)^+(K^{*0}\pi^+)K^-$	1.0	0.0	$7.3 \pm 0.8 \pm 1.9$
$K_1(1270)^{-}(\overline{K^{*0}}\pi^{-})K^{+}$	$0.35 \pm 0.06 \pm 0.03$	$1.10 \pm 0.22 \pm 0.23$	$0.9\pm0.3\pm0.4$
$K_1(1270)^+(ho^0K^+)K^-$	$5.86 \pm 0.77 \pm 2.03$	$0.80 \pm 0.13 \pm 0.08$	$4.7 \pm 0.7 \pm 0.8$
$K_1(1270)^-(ho^0K^-)K^+$	$6.90 \pm 0.59 \pm 3.07$	$0.03 \pm 0.16 \pm 0.23$	$6.0 \pm 0.8 \pm 0.6$
$K^*(1410)^+(K^{*0}\pi^+)K^-$	$6.18 \pm 0.64 \pm 0.75$	$0.73 \pm 0.11 \pm 0.33$	$4.2 \pm 0.7 \pm 0.8$
$K^*(1410)^-(\overline{K^{*0}}\pi^-)K^+$	$6.78 \pm 0.65 \pm 1.25$	$1.18 \pm 0.13 \pm 0.48$	$4.7 \pm 0.7 \pm 0.7$
$K^{*0}\overline{K^{*0}}$ S wave	$0.34 \pm 0.04 \pm 0.14$	$0.39 \pm 0.12 \pm 0.18$	$6.1 \pm 0.8 \pm 0.9$
$\phi ho^0 S$ wave	$1.04 \pm 0.10 \pm 0.31$	$1.89 \pm 0.14 \pm 0.35$	$38.3 \pm 2.5 \pm 3.8$
$\phi ho^0 D { m wave}$	$1.44 \pm 0.19 \pm 0.38$	$1.43 \pm 0.22 \pm 0.48$	$3.4\pm0.7\pm0.6$
$\phi \left\{ \pi^+ \pi^- \right\}_S$	$6.17 \pm 0.52 \pm 1.58$	$1.85 \pm 0.13 \pm 0.37$	$10.3 \pm 1.0 \pm 0.8$
$\left\{ K^{-}\pi^{+}\right\} \stackrel{\sim}{\underset{P}{\to}} \left\{ K^{+}\pi^{-}\right\}_{S}$	$83.4 \pm \ \ 6.8 \pm 29.3$	$0.14 \pm 0.12 \pm 0.28$	$10.9 \pm 1.2 \pm 1.7$

 \Box Two-body fit projections.

