Dalitz Plot Analysis of Heavy Quark Mesons Decays (4). The question of Z^+ resonances.

> Antimo Palano INFN and University of Bari

Jefferson Lab Advanced Study Institute Extracting Physics From Precision Experiments: Techniques of Amplitude Analysis College of William Mary Williamsburg, Virginia, USA Wed., May 30 - Wed., June 13, 2012

1

Introduction.

□ Belle Experiment claims for the discovery of exotic charged charmonium states in B decays. $Z^+(4430) \rightarrow \psi(2S)\pi^+$ observed the decay $B \rightarrow \psi(2S)K\pi$ (Phys. Rev. Lett. 100, 142001, (2008)),(Phys. Rev. D 80, 031104(R) (2009)) □ Further $Z_1(4050)^+$ and $Z_2(4250)^+$ observed in the decay to $\chi_{c1}\pi^+$ in $B \rightarrow \chi_{c1}K\pi$ (Phys.Rev.D 78, 072004, (2008))

 \square BaBar published the search for $Z^+(4430) \rightarrow \psi(2S)\pi^+$ with negative results (Phys. Rev. D 79, 112001 (2009)).

 \square BaBar published the search for $Z_1(4050)^+$ and $Z_2(4250)^+$ in $B \to \chi_{c1} K \pi$ with negative results (Phys. Rev. D.

 \Box No signal was also observed in the $J/\psi\pi$ system in the study of the $B \to J/\psi K\pi$ decay.

 \Box A lot of theoretical and experimental discussion. A charged charmonium state is not a simple $q\bar{q}$ meson.

Introduction.

\Box Main points of discussion are:

• Interference effects between amplitudes in 3-body B decay Dalitz plots produce peaks in quasi-two-body mass projections which may not be due to real states. A dramatic demonstration comes from charm decays. Dalitz plot of $D^0 \to \bar{K}^0 K^+ K^-$ and projection along the $\bar{K}^0 K^+$ axis: structures are not due to resonances.

• The angular structures in $B \to \psi(2S)K\pi$ and $B \to \chi_{c1}K\pi$ decays are very complex and cannot be described by only two variables as it is done in a simple Dalitz plot analysis See BaBar analysis of $B \to J/\psi Kpi$ (arXiv:hep-ex/0411016).

Belle observation of $Z^+(4430)$.

□ They select events of the type $B \to K\pi^+\psi'$, where the ψ' decays either to $\ell^+\ell^-$ or $\pi^+\pi^- J/\psi$ with $J/\psi \to \ell^+\ell^-$ ($\ell = e$ or μ). Both charged and neutral ($K_S^0 \to \pi^+\pi^-$) kaons are used. □ Dalitz plot and $\pi^+\psi'$ mass spectrum with K^* veto.

 \Box Some clustering of events in a horizontal band is evident in the upper half of the Dalitz plot near $M^2(\pi\psi') \simeq 20 \text{ GeV}^2$.

 \Box To study these events with the effects of the known $K\pi$ resonant states minimized, they restrict the analysis to the events with $|M(K\pi) - m_{K^*(890)}| \ge 0.1$ GeV and $|M(K\pi) - m_{K^*_2(1430)}| \ge 0.1$ GeV $(K^*$ veto).

 \Box Fitting the resulting $\pi^+\psi'$ mass spectrum with a Breit-wigner they obtain the following parameters

$$M = (4433 \pm 4(\text{stat}) \pm 2(\text{syst})) \text{ MeV}, \ \Gamma = (45^{+18}_{-13}(\text{stat})^{+30}_{-13}(\text{syst})) \text{ MeV}$$

 \Box commenting that Γ is too narrow to be caused by interference effects in the $K\pi$ channel. \Box The statistical significance of the observed peak is 6.5σ . Belle observation of $Z^+(4430) \rightarrow \psi(2S)\pi^+$. Dalitz analysis

□ Belle re-analyzed the $B \to \psi(2S)K\pi$ data using a Dalitz analysis (arXiv:0905.2869). □ They confirm the signal for $Z^+(4430) \to \psi(2S)\pi^+$ with a mass:

 $M = (4443^{+15}_{-12}{}^{+19}_{-13}) \,\mathrm{MeV}/c^2, \ \Gamma = (107^{+86}_{-43}{}^{+74}_{-56}) \,\mathrm{MeV}$

 \Box A somewhat larger width.

Belle observation of $Z_1(4050)^+$ and $Z_2(4250)^+$. Dalitz analysis

□ Belle reconstructed the decay $B \to K^- \pi^+ \chi_{c1}$ with the χ_{c1} reconstructed in the $J/\psi\gamma$ decay mode and the J/ψ reconstructed in the $\ell^+\ell^-$ decay mode. □ Dalitz plot and $M(\pi^+\chi_{c1})$ showing the new Z resonances.

□ In the Dalitz analysis the decay $B \to K^- \pi^+ \chi_{c1}$ is described by six variables. □ They take these to be $M(\pi^+ \chi_{c1})$, $M(K^- \pi^+)$, the χ_{c1} and J/ψ helicity angles $(\theta_{\chi_{c1}} \text{ and } \theta_{J/\psi})$, and the angle between the χ_{c1} (J/ψ) production and decay planes $\phi_{\chi_{c1}}$ $(\phi_{J/\psi})$. □ Then they analyze the $B \to K^- \pi^+ \chi_{c1}$ decay process after integrating over the angular variables $\theta_{\chi_{c1}}$, $\theta_{J/\psi}$, $\phi_{\chi_{c1}}$ and $\phi_{J/\psi}$. □ They perform a **binned likelihood fit** to the Dalitz plot distribution. □ The angular function T_{λ} is obtained using the helicity formalism. □ For the $B \to K^*(\to K^- \pi^+)\chi_{c1}$ decay

$$T_{\lambda} = d^J_{\lambda 0}(\theta_{K^*}), \tag{1}$$

where J is the spin of the K^* resonance; θ_{K^*} is the helicity angle of the K^* decay. \Box For the $B \to K^- Z^+ (\to \pi^+ \chi_{c1})$ decay

$$T_{\lambda} = d_{0\,\lambda}^{J}(\theta_{Z^{+}}), \tag{2}$$

where J is the spin of the Z^+ resonance and θ_{Z^+} is the helicity angle of the Z^+ decay. \Box The resulting expression for the signal event density function is

$$S(s_{x}, s_{y}) = \sum_{\lambda = -1, 0, 1} \left| \sum_{K^{*}} a_{\lambda}^{K^{*}} e^{i\phi_{\lambda}^{K^{*}}} A_{\lambda}^{K^{*}}(s_{x}, s_{y}) + \sum_{\lambda' = -1, 0, 1} d_{\lambda'\lambda}^{1}(\theta) a_{\lambda'}^{Z^{+}} e^{i\phi_{\lambda'}^{Z^{+}}} A_{\lambda'}^{Z^{+}}(s_{x}, s_{y}) \right|^{2},$$

$$(3)$$

where a_{λ}^{R} and ϕ_{λ}^{R} are the normalizations and phases of the amplitudes for the intermediate resonance R and χ_{c1} helicity λ . The phase $\phi_{0}^{K^{*}(892)}$ is fixed to zero.

BABAR analysis of $B \rightarrow \psi(2S)K\pi$

□ Babar made use of a different approach (arXiv:0811.0564).
 □ First we observe that BABAR and Belle data are consistent.

BABAR analysis of $B \rightarrow \psi(2S)K\pi$ $\Box K\pi$ mass spectra and Y_L^0 Legendre polynomials for $B \to \psi(2S)K\pi$ and $B \to \psi K\pi$. <P^U>/10 MeV/c² $B^{\text{-},0} \longrightarrow J/\psi\pi^{\text{-}}K^{0,+}$ $B^{-,0} \rightarrow \psi(2S)\pi K^{0,+}$ 200 -200 -1000 $(a) < P_1^U >$ $(c) < P_{1}^{U} >$.40 <P^U₂/10 MeV/c² 000 (a) $B \rightarrow J/\psi \pi K_S^0$ $B \rightarrow \psi(2S)\pi K_S^0$ ₆₀₀ (c) 2000 500 400 $Events/10 MeV/c^{2}$ 1000 200 $_{6000}$ (b) $B^0 \rightarrow J/\psi \pi K^+$ 1500 = (d) $B^0 \rightarrow \psi(2S) \pi K^+$ 4000 1000 $(b) < P_{a}^{U} >$ d) $< P^{\prime}$ 2000 500E 0.8 $m_{K\pi^{-}}^{1.2} (GeV/c^{2})^{1.4}$ 1.6 1.5 $m_{K\pi^{-}}^{1.5}$ (GeV/c²) $m_{K\pi^{-}}^{1.2}$ (GeV/c²)^{1.6} $m_{K\pi}$ (GeV/c²) 0.8

 $\Box K\pi$ mass spectra and Y_L^0 Legendre polynomials are similar between $B \to \psi K\pi$ and $B \to \psi(2S)K\pi$.

Fits to the $K\pi$ mass spectra.

 \Box Binned χ^2 fits to the background-subtracted and efficiency-corrected $K\pi$ mass spectra in terms of S, P, and D wave a mplitudes.

 \Box Fitting function:

$$\frac{dN}{dm_{K\pi}} = N \times \left[f_S \left(\frac{G_S}{\int G_S dm_{K\pi}} \right) + f_P \left(\frac{G_P}{\int G_P dm_{K\pi}} \right) + f_D \left(\frac{G_D}{\int G_D dm_{K\pi}} \right) \right]$$

 \Box where the fractions f are such that: $f_S + f_P + f_D = 1$.

□ The *P*- and *D*-wave intensities are expressed in terms of relativistic Breit-Wigner with parameters fixed to the PDG values f or $K^*(892)$ and $K_2^*(1430)$ respectively. □ For S-wave contribution has been described by the LASS parametrization.

 \Box Notice the Log. scale. Notice also a discrepancy between the the data and the LASS representation of the threshold region.

Description of the $\psi(2S)\pi$ mass spectrum.

 \Box A localized structure in the $\psi(2S)\pi$ mass spectrum shows its effect in high L Legendre polynomial moments $\langle Y_L^0 \rangle$.

 \Box The BaBar analysis attempts to describe the $\psi(2S)\pi$ mass distribution using the information from the $K\pi$ system only using Legendre polynomials from $B \to \psi K\pi$ or the $B \to \psi(2S)K\pi$ \Box They also limit L to its minimum possible value.

□ They generate a large number of MC events according to the following model.

- $B \to \psi(2S) K \pi$ events are generated according to phase-space.
- Label $w_{m(K\pi)}$ the weight corresponding to the fit to the $K\pi$ mass projection.
- Incorporate the measured $K\pi$ angular structure by giving weight w_L to each event according to the expression:

$$w_L = \sum_{i=0}^{L_{max}} \langle Y_i^N \rangle Y_i^0(\cos\theta)$$

where $Y_i^N = Y_i^0/n$ are the normalized moments. The Y_i^N are evaluated for the $m(K\pi)$ value by linear interpolation over consecutive $m(K\pi)$ mass intervals.

• The total weight is thus:

$$w = w_{m(K\pi)} \cdot w_L$$

Data-MC comparison.

 \Box The generated distributions, weighted by the total weight w, are then normalized to the number of data events after background-subtraction and efficiency-correction.

- \Box The simulation is performed using the $B \to J/\psi K\pi$ or $B \to J/\psi K\pi$ data.
- \square Both simulations describe the data well.
- \Box No need for additional Z resonances.
- □ Areas in color describe the spread due to the statistical uncertainty on the Legendre polynomials.

Study of $B \to \chi_{c1} K \pi$.

□ A slighly modified analysis was performed for the study of $\overline{B}{}^0 \to \chi_{c1} K^- \pi^+$ and $B^+ \to \chi_{c1} K^0_S \pi^+(arXiv:1111.5919)$ by BABAR. □ The fit to the $K\pi$ mass distributions in this case require a small P-wave contribution from $K^*(1680)$ (≈ 10 %), not present in the $B \to J/\psi K\pi$ decays or $B \to \psi(2S)K\pi$. □ S-wave contribution larger than in $B \to J/\psi K\pi$ decays, where is ≈ 16 %.

The $K\pi$ Legendre polynomial moments.

 \Box Add \overline{B}^0 and B^+ data. Weight the events by the $Y_L^0(\cos\theta)$ Legendre polynomials. \Box Efficiency-corrected and background-subtracted distributions.

□ We observe the S-P interference in the $\langle Y_1^0 \rangle$ moment. □ Significant enhancement in Y_1^0 at ≈ 1.7 GeV

indicating the presence of a P-wave.

 \square We observe the presence of the spin-1 $K^*(890)$ in the $\langle Y_2^0 \rangle$ moment.

 \Box We have evidence for the spin-2 $K_2^*(1430)$ resonance in the $\langle Y_4^0 \rangle$ moment.

 $\Box < Y_6^0 >$ is consistent with zero.

MC simulations: $B \rightarrow J/\psi K\pi$

 \Box We test the method on $B \to J/\psi \pi K$ where there is no evidence for narrow or broad Z resonances. \Box We vary L_{max} between 4 and 6 and obtain the best description of the data with $L_{max} = 5$.

L_{max}	χ^2/NDF
4	223/152
5	162/152
6	180/152

 \Box MC/data comparison, the dotted line shows the effect of removing the angular w_L weight.

MC simulations: $B \rightarrow \chi_{c1} K \pi$

 \Box Similar results are obtained for the $B \to \chi_{c1} K \pi$ channel.

L_{max}	χ^2 / NDF
4	53/58
5	46/58
6	49/58
"mixed"	63/58

 $\Box \ B \to J/\psi K\pi \ and \ B \to \chi_{c1}K\pi \ data \ can \ be \ described$ using a similar approach. $\Box \ This \ indicates \ that \ there \ is \ no \ need \ for$ additional resonant structure in order to describe the $\chi_{c1}\pi$ mass distribution.

□ We also use a "mixed" Legendre polynomial composition, using $L_{max} = 3$ for $m(K\pi) < 1.2$ GeV and $L_{max} = 4$ above. □ This is justified by the fact that only spin 0 and spin 1 resonances are present in the low mass region.

 \Box This representation also gives an excellent description of the $\overline{B}^0 \to \chi_{c1} K \pi$ data.

 \square We will use this "mixed" representation for computing upper limits on Z production.

How would a Z resonance show up?

 \Box We artificially add a $\approx 25\%$ contribution of a scalar $Z_2(4250)^+ \to \chi_{c1}\pi$ resonance in the $\overline{B}^0 \to \pi^+ K^- \chi_{c1}$ data.

 \Box These MC toy events are obtained from MC data, weighted by a Breit-Wigner.

□ We then compute Legendre polynomial moments for the whole sample and predict the $\chi_{c1}\pi$ mass spectrum using the same algorithm as for real data. □ Using the "mixed" method, the resulting MC simulation does not describe the MC data well: $\chi^2/NDF = 140/58$

□ In (a) The dashed curve shows a simulation with $L_{\text{max}} = 15$. $\overset{\frown}{\overset{\frown}{\overset{\frown}{\overset{\frown}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}}}}$ □ In (b) the fit incorporates a Breit-Wigner lineshape describing the $Z_2(4250)^+$.

□ The dashed curve represents the background model from the "mixed" simulation.

Search for Z resonances.

 \Box We now fit the $\chi_{c1}\pi$ mass spectrum using the following model:

 \Box Assume the prediction from the MC simulation ("mixed") as background.

□ Include two scalar Breit-Wigner with parameters fixed to the Belle measurements. □ Fit the full data set (Total).

Search for Z in $B \rightarrow J/\psi Kpi$.

 \Box Belle experiment has recently performed a more complete Dalitz analysis of $B \to J/\psi Kpi$ (K. Chilikin, Talk at CHARM2012, 16 May 2012).

 \Box No significant signal of Z^+ is found.

Not the end of the story.

 \Box New results from Belle:

Observation of two charged bottomonium-like resonances in $\Upsilon(5S)$ **decays**. arXiv:1110.2251 \Box As we have seen previously confirmation of results is an essential ingredient of science and scientific method.

 \square However, the BaBar/Belle competition is broken here because BaBar has no data on $\Upsilon(5S)$ decays.

 \Box In April 2008 the B - factory program at SLAC has been sharply interrupted and closed.

 \Box Much later in time: Super-B factories?