

Amplitude Analysis An Experimentalists View

Lectures at the "Extracting Physics from Precision Experiments Techniques of Amplitude Analysis"

GSI Darmstadt and GU Frankfurt Williamsburg, June 2012

The Course

4 Lectures

Introduction

Mission / Amplitude Analysis Concepts and Procedures / Use Cases

Kinematics and more

Dalitz-Plots / Observables / Coordinate Systems / Examples

K-Matrix

Derivation / Examples / Properties / Fitting / Interpretation

Experiments

Selection / Background / Numerical Issues / Goodness-of-Fit / Computers

The Course

6 Lectures

Introduction

Mission / Amplitude Analysis Concepts and Procedures / Use Cases

Kinematics and more

Dalitz-Plots / Observables / Coordinate Systems / Examples

Spin

. . .

Dynamics

. . .

K-Matrix

Derivation / Examples / Properties / Fitting / Interpretation

Experiments

Selection / Background / Numerical Issues / Goodness-of-Fit / Computers

Books

Dynamics

- J.M. Blatt & V.F. Weisskopf *Theoretical Nuclear Physics*
- J.R. Taylor *Scattering Theory*
- M.L. Goldberger & K.M. Watson *Collision Theory*
- J. Gillespie *Final State Interactions*
- H. Burkhardt *Dispersion Relation Dynamics*

Kinematics and more

- M. Nikolic Kinematics and Multiparticle Systems
- E. Byckling & K. Kajantie *Particle Kinematics*

Spin

M.E. Rose – *Elementary Theory of Angular Momentum*

Overview

D.V. Bugg (Edtitor) – Nato School on *Hadron Spectroscopy and the Confinement Problem*

Reviews and Articles

General

R.S. Longacre – *Techniques in Meson Spectroscopy*, BNL 49445 K. Peters – *A Primer on Partial Wave Analysis*, Int.J.Mod.Phys. A21 (2006) 5618-5624

Spin

S.U. Chung – *Spin Formalisms*, CERN Yellow Report 71-8

V. Filippini et al. – *Covariant Spin Tensors in Meson Spectroscopy,* PRD 51(1995) 2247

Dynamics

S.U. Chung et al. – *Partial wave analysis in K matrix formalism,* Annalen Phys. 4 (1995) 404-430

F.v. Hippel, C. Quigg – *Centrifugal-Barrier Effect in Resonance Partial Decay Widths, Shapes, and Production Amplitudes*, PRD 5 (1972) 624

I.J.R Aitchison – *K-matrix Formalism For Overlapping Resonances*, Nucl.Phys. A189 (1972) 417-423

Amplitude Analysis An Experimentalists View

K. Peters

Part I

Introduction

Introduction

Mission

Concepts

Procedures

Use Cases

What is the mission?

Particle physics at small distances is quite well understood

One Boson Exchange, Heavy Quark Limits

This is not true at large distances

Hadronization, Light mesons are barely understood compared to their abundance

Understanding interaction/dynamics of light hadrons will

improve our knowledge about non-perturbative QCD parameterizations will give provide toolkit to analyze heavy quark processes thus an important tool also for precise standard model tests

We need

Appropriate parameterizations for the multi-particle phase space A translation from the parameterizations to effective degrees of freedom for a deeper understanding of QCD

Intermediate State Mixing

Many states may contribute to a final state

not only ones with well defined (already measured) properties not only expected ones

Many mixing parameters are poorly known

K-phasesSU(3) phases

In addition

also D/S mixing $(b_1, a_1 \text{ decays})$

Isoscalar Mixing:

strong Int.: I^G und J^{PC} identical η - η' or f_2 - f_2 ' and/or Glueballs

I=0/I=1-Mixing:

elm. Int.: $\Delta l=1$: ρ - ω

Kaonmixing:

strong Int.: C undef., I^G and J^P identical K_{1A}-K_{1B}

The Need for Partial Wave Analysis

Example: Consider the reaction $\bar{p}p \rightarrow K^+K^-\pi^0$

What *really* happened...

Goal

For whatever you need the parameterization of the *n*-Particle phase space

It contains the static properties of the unstable (resonant) particles within the decay chain like

mass width spin and parities

as well as properties of the initial state and some constraints from the experimental setup/measurement

The main problem is, you don't need just a good description, you need the right one

Many solutions may look alike, but only one is right

n-Particle Phase space, n=3

But...

the mission is way more general,

...there are many more questions, which can only be answered with a correct phase space description

whenever states mix and an need to be unambiguously disentangled

the focus then moves away from masses and line shapes to yields and phases

$$D^0 o h^+h^-\pi^0$$
, $h=K,\pi$

$$D^0 o \pi^-\pi^+\pi^0$$

$$D^0 o K^-K^+\pi^0$$

search for asymmetry in production cross section or in branching fractions

example: D⁰D 0-Mixing and CPV

Data from BaBar

$$D^0 \to \pi^- \pi^+ \pi^0$$

$$D^0 \to K^- K^+ \pi^0$$

 χ^2 -distribution shows: no observed CP-violation

not enough statistics to verify SM prediction

example: CKM Angle γ in B⁻ \rightarrow D⁰K⁻ (+c.c.)

Direct *CP* violation in interference between $b \rightarrow c\bar{u}s$, $u\bar{c}s$

$$B^- o \widetilde{D}^{(*)0} K^{(*)-}$$

Interference, if $D^0 o f \leftarrow \overline{D}^0$

$$\frac{\mathcal{A}(B^- \to \overline{D}^0 K^-)}{\mathcal{A}(B^- \to D^0 K^-)} = r_B e^{i(\delta_B - \gamma)}, \quad \frac{\mathcal{A}(B^+ \to D^0 K^+)}{\mathcal{A}(B^+ \to \overline{D}^0 K^+)} = r_B e^{i(\delta_B + \gamma)}$$

r_B Ratio of magnitudes of amplitudes, small

 δ_B *OP* invariant strong phase

Most sensitive channel to date: $\widetilde{D}^0 \to K_s^0 \pi^+ \pi^-$:

GGSZ, Phys. Rev. D 68, 054018 (2003), BP, Eur. Phys. Jour. 47, 347 (2006)

Requires a detailled understanding of the D^0 decay as input

Quality

High Quality is needed

and achievable...

this lecture is basically about how to model the input for such fits

to reveal all the physics of a multi-particle reaction

How to obtain this in an effective way?

Important aspects...

General considerations

Course of action

Phase space

Observables

Hypotheses

Background

Fitting

Mathematical problems

Quality Assurance

Experimental Techniques

Scattering Experiments

πN - N* measurement
 πN - meson spectroscopy
 E818, E852 @ AGS, GAMS
 Compass, VES
 pp meson threshold production
 WASA @ Celsius, COSY
 pp or πp in the central region
 WA76, WA91, WA102
 γN - photo production
 Cebaf, Mami, Elsa, Graal

"At-rest" Experiments

pN @ rest at LEAR

Asterix, Obelix, Crystal Barrel
PANDA

J/ψ decays

MarkIII,DM2,BES,CLEO-c

φ(1020) decays

Kloe @ Dafne, VEPP

D and D_s decays

FNAL, Babar, Belle, Belle-II

Experimental Techniques

Scattering Experiments

"At-rest" Experiments

partial waves decomposition

→ via moment analysis

systematic studies to limit

#waves

dynamics appear as amplitude variations

resonance parameters from fits to amplitudes

ad-hoc introduction of waves

ad-hoc introduction of dynamic amplitudes ("resonances") systematic studies to limit #waves and #resonances resonance parameters appear as fit parameters

Experimental Techniques

Scattering Experiments

"At-rest" Experiments

exchange model needed

ad−hoc intermediate resonances

→ parameters fixed for wave
decomposition

independent of production modelintermediate resonances treated→ identically to final stateresonances

crossing bands may provide high resolution interferometer

Momentum Analysis in a Dalitz Plot

see M. Pappagallo, Charm06

$$\begin{cases} \sqrt{4\pi} \left\langle Y_0^0 \right\rangle = S^2 + P^2 \\ \sqrt{4\pi} \left\langle Y_1^0 \right\rangle = 2|S||P|\cos\varphi_{SP} \\ \sqrt{4\pi} \left\langle Y_2^0 \right\rangle = \frac{2}{\sqrt{5}}P^2 \end{cases}$$

In some cases it's possible if no sharp bands overlap

General considerations (I)

Which processes take place?

Interactions?

Basic processes – scattering vs. decay – which scattering (Physics of) Initial State – recoils – inclusive/exclusive Physics background Leading effects

Scales?

Dynamics – range parameters

Approximations – low energy or threshold expansions

do scales differ for different sub-processes? factorization of dynamics, like in open-charm decays

General considerations (II)

What are conserved properties?

kinematics

energy/momentum conservation kinematicaly fitted data?

quantum numbers

quark/isospin conservation/symmetries good and bad quantum numbers (isospin, parity, CP) impact on spin formalisms interferences of Feynman graphs phase space full set of observables? integrate over part of the phase-space

Properties

	Helicity	Transversity	Canonical
property	possibility/simplicity		
partial wave expansion	simple	complicated	complicated
parity conservation	no	yes	yes
crossing relation	no	good	bad
specification of kinematical constraints	no	yes	yes

Example: Isospin Dependence

pp initial states differ in isospin

$$I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

 $I^{G}(J^{PC}) = 0^{+}(1^{--})$

Calculate isospin Clebsch-Gordan

$$\rho^{0}\pi^{0} \rightarrow (1010|00) = -\sqrt{\frac{1}{3}}$$

$$\rho^{0}\pi^{0} \rightarrow (1010|10) = 0$$

$$\rho^{\pm}\pi^{\mp} \rightarrow (1(\pm 1) \ 1(\mp 1)|00) = \sqrt{\frac{1}{3}}$$

$$\rho^{\pm}\pi^{\mp} \rightarrow (1(\pm 1) \ 1(\mp 1)|10) = \pm\sqrt{\frac{1}{2}}$$

 ${}^{1}S_{0}$ destructive interferences

 $^3S_1 \rho^0 \pi^0$ forbidden

General considerations (III)


```
What are the relevant parameters?
```

Order of magnitude

relevant for coding? leading terms?

[[Parameter too small, different formulation]]
[[Examples only smallest L]]

Relations

are the parameters related to each other? (D/S, phases, ...) which one is the master and which the slave?

Normalization/Constraints

```
[[ Example relations]]
[[ Example couplings normalized to 1]]
```

General considerations (IV)

Can the process be factorized or simplified? Whole tree needed? or is a leave sufficient

Rules

which rules/conditions can be used to formulate the model which rules/conditions have to be applied during the fit e.g. what is fixed by definitions

Course of action

Course of action (I)

Data analysis

Data

extract relevant data set(s) with appropriate statistics, high purity and high efficiency

MC

signal MC, may be mixed due to experimental conditions

Background

extract from data and/or generate via Monte Carlo data sets from potential background channels

Representation

represent the data in *n*-tupels of relevant (transformed?) observables for the fit and the visualization

Course of action (II)

Modelling

Data

Visual inspection of the data!!

Physics

create list of hypotheses (incl. production, spins, dynamics and if so, background)

Mathematics

optimize the mathematical form may improve speed and may reduce numerical instabilities

Reduced Amplitudes (I)

of parameters explodes with increasing number of initial and final states

forget about the tree, reduce amplitude to the final state of interest feed by many initial and several intermediate states spin density matrix ρ_{mn}

Reduced Amplitudes (II)

Caveat:

Two channels may interfere in one tree, but may not in another thus measured rate I has different formalisms

Coherent

$$I=|A+e^{i\phi}B|^2 = |A|^2+|B|^2 + 2[Re(AB^*)\sin\phi + Im(AB^*)\cos\phi]$$

Incoherent

$$I = |A|^2 + |B|^2$$

Effective coherence

$$I=|A|^2+|B|^2+C$$
 [Re(AB*)sin φ +Im(AB*)cos φ]

(C=-2,...,2)

Course of action (III)

Fitting

fit model(s) to the data

likelihood definition, what is to be minimized (max. Likelihood, Chi2,...)

needs a strategy to find the best solution

systematic studies for a variety of hypotheses vary initial stats, resonances, parameterizations

need a strategy for each fit

optimizer (gradient/random/genetic) sequence (different optimizers, fixation and release of parameters) criteria for convergence and termination

Course of action (IV)

Quality Assurance

Documentation

excellent documentation! is the key what was done? formulae! (intermediate) results!

Validation

validation of the result (for example with toy MC)

Significance

scrutinize the significance of new findings check various methods to investigate the goodness-of-fit

Errors

determination of statistical and systematic errors

Course of action (V)

Review and Publication

review

process which may lead to a reanalysis at various entry points

publication

publish only things you are confident about there is an undefined border where the experiment ends and the theoretical bias starts

Phase space

visual inspection of the phase space distribution

are the structures? structures from signal or background? are there strong interferences, threshold effects, potential resonances?

Kinematical Reflections

Kinematic situation can produce mass peaks not being true resonances → called Reflections

Example:

Dalitz plot of

$$D_s^+ \rightarrow K^+ K^- \pi^0$$

in this case "fakes" are simple to spot...

Kinematical Reflections, cont'd

... but it can be much less obvious!

Example: $D_s^+ \rightarrow K_S^0 \pi^+ \pi^-$

Obervables

Observables should be aligned with the problem/process

is polarization relevant?

is dynamics present in all particle pairs?

are there isolated structures or regions with strong correlations?

Typical observables are

m^2 (s)

invariant mass square,

Mandelstam s

T

kinetic energy

$\cos\theta$

decay angle of

resonances

cosψ

angle between decay places,

..... a.m.o.m.

Observables, cont'd

are there symmetries in the phase space?

unique assignment of phase space coordinates is important to avoid double counting transformation necessary?

Most Dalitz plots are symmetric:

Problem: sharing of events

Possible solution: transform DP

Hypotheses

Select basic model

usually isobar model, is not appropriate in all cases rescattering, t-channel and Deck effects may lead to artifacts

Select formalism to handle the spin

select basis (helicity reflectivity, canonical....)
or tensors (Zemach, covariant or Lorentz-invariant)
depends on the process and the goals

Select set of dynamical functions

which resonances and thresholds are known which do you guess from inspection how much freedom is needed, how well do I know the processes involved analysis of angular moments might be helpful as a start

Selection of parameters and optimization

First results may indicate that the assumptions are wrong and one has to start over

Isobar Model

Generalization

construct any many-body system as a tree of subsequent two-body decays the overall process is dominated by two-body processes

the two-body systems behave identical in each reaction

different initial states may interfere

We need

need two-body "spin"-algebra various formalisms

need two-body scattering formalism

final state interaction, e.g. Breit-Wigner

Interference problem

PWA

The phase space diagram in hadron physics shows a pattern due to interference and spin effects. This is the unbiased measurement What has to be determined?

Analogy Optics ⇔ PWA

lamps

level

slits

resonances

positions of slits

masses

sizes of slits

widths

but only if spins are properly assigned

bias due to hypothetical spin-parity assumption

Optics

$$I(x) = \left| A_1(x) + A_2(x)e^{i\varphi} \right|^2$$

Dalitz plot

$$I(m) = \left| A_1(m) + A_2(m)e^{i\varphi} \right|^2$$

Use Cases #1 of 4: Hadron Decays

Reactions (examples)

Typical Graphs

J/ ψ \rightarrow 3 hadrons (e.g. $\pi\pi\pi$) D_s \rightarrow 3 hadrons (e.g. K $\bar{K}\pi$)

Initial state has a well defined JPC

$$J/\psi$$
 $J^{PC} = 1^{--}$ $J^{PC} = 0^{-+}$

Focus/Mission/Goal

Properties of intermediate resonances (J^{PC}, mass, width, decay ratios) spin-parity of the decaying particle

Typical Experiments

Tau-Charm Factories, B-Factories

Use Cases #1 of 4: Hadron Decays (cont'd)

Procedure

Formulate spin-dependent amplitude using all available constraints hadronics decays conserve P, weak decays don't Formulate dynamics (resonance cocktail) with guesses for the properties (if not sufficiently well known)

Fit the parameters of the model to the data

Repeat for various hypothesis and identify the "best solution"

Use Cases #2 of 4: pp̄ annihilation

Reactions (examples)

 $p\bar{p} \rightarrow 3$ hadrons (at rest)

 $p\bar{p} \rightarrow 3$ hadrons (in flight)

Initial state is a mixture of well defined J^{PC}'s

Focus/Mission/Goal

Properties of intermediate resonances (JPC, mass, width, decay ratios)

Typical Experiments

Asterix and Crystal Barrel @ LEAR

Proton-Antiproton Annihilation @ Rest

Atomic initial system

formation at high *n*, *l* (*n*~30) slow radiative transitions de-excitation through collisions (Auger effect)
Stark mixing of *l*-levels (Day, Snow, Sucher, 1960)

Advantages

J^{PC} varies with target density isospin varies with n (d) or p target incoherent initial states unambiguous PWA possible

Disadvantages

phase space very limited small kaon yield

	JPC		I G	L	S
¹ S ₀	0-+	pseudo scalar	1-;0+	0	0
³ S ₁	1	vector	1+;0-	0	1
¹ P ₁	1+-	axial vector	1+;0-	1	0
³ P ₀	0++	scalar	1-;0+	1	1
³ P ₁	1++	axial vector	1-;0+	1	1
³ P ₂	2++	tensor	1-;0+	1	1

Use Cases #2 of 4: pp̄ annihilation (cont'd)

Very similar to hadron decays for pp at rest

Procedure

Formulate spin-dependent amplitude
using all available constraints
but for a couple of possible initial states!
hadronics decays conserve P, weak decays don't
Formulate dynamics (resonance cocktail)
with guesses for the properties (if not sufficiently well known)

Fit the parameters of the model to the data

Repeat for various hypothesis and identify the "best solution"

Proton-Antiproton Annihilation in Flight

100

ട, [mb]

10

0.5 1.0

1.5

2.0 2.5

P_{lab} [GeV/c]

l=2

Annihilation in flight

scattering process: no well defined initial state maximum angular momentum rises with energy

Advantages

larger phase space formation experiments

Disadvantages

many waves interfere with each other many waves due to large phase space

with $R^2 = \langle r^2 \rangle$ (Baryon)

Scattering Amplitudes in pp in Flight (II)

$$H_{\nu_1\nu_2}^J = \sum_{L,S} \frac{\sqrt{2L+1}}{\sqrt{2J+1}} \Big(LOS\nu \Big| J\nu \Big) \Big(s_1 \nu_1 s_2 - \nu_2 \Big| S\nu \Big) \Big(JMLS \Big| M \Big| JM \Big)$$

using all constraints leads to 4 incoherent sets of coherent amplitudes

Singlett even L	JPC	L	S	H ₊₊	H ₊₋
¹ S ₀	0-+	0	0	Yes	No
¹ D ₂	2-+	2	0	Yes	No
¹ G ₄	4-+	4	0	Yes	No

Singlett odd L	J PC	L	S	H ₊₊	H ₊₋
¹ P ₁	1+-	1	0	Yes	No
¹ F ₃	3+-	3	0	Yes	No
${}^{1}G_{5}$	5+-	5	0	Yes	No

Triplett even L	J PC	L	S	H ₊₊	H ₊₋
³ S ₁	1	0	1	Yes	Yes
³ D ₁	1	2	1	Yes	Yes
$^{3}D_{2}$	2	2	1	Yes	Yes
$^{3}D_{3}$	3	2	1	Yes	Yes

Triplett odd L	JPC	L	S	H ₊₊	H ₊₋
${}^{3}P_{0}$	0++	1	1	Yes	No
³ P ₁	1++	1	1	No	Yes
³ P ₂ ♠	2++	1	1	Yes	Yes
³ F ₂	2++	3	1	Yes	No
³ F ₃	3++	3	1	No	Yes
³ F ₄	4++	3	1	Yes	Yes

and only 2 of them contribute to a particular exclusive final state

Use Cases #3 of 4: Diffractive Production

Reactions (examples)

 $\pi p \rightarrow 3$ hadrons p,n

unknown initial state
scattering process
expressed in terms of moments

Focus/Mission/Goal

Properties of X (J^{PC}, mass, width, decay ratios)

Typical Experiments

E852 at AGS (BNL) or COMPASS at CERN

Use Cases #3 of 4: Diffr. Production (cont'd)

Procedure

 π^{-} -beam and t-exchange produce X Partitioning in bins of m(3 π)
Potentially also binning in t.

Wave ~t^me^{-bt} → background as function of t Formulate spin-dependent amplitude and dynamics for the intermediate resonance cocktail

with best guesses for the properties

Mass dependent fits

performed for a fixed m(3pi) (and may be t) and all fits result in moments (and errors) per bin, which are then translated into wave content

The result of one slice is then input (start value) for the next slice to be fitted.

Use Cases #4 of 4: Photo-production

Reactions (examples)

 γ p \rightarrow 3 hadrons p,n

known initial states scattering process

finally expressed in terms of moments

→ very similar to diffractive production for high energies and multi-hadron final states

Focus/Mission/Goal

Properties of X (J^{PC}, mass, width, decay ratios)

Typical Experiments

Crystal Barrel at ELSA or Gluex/Clas12 @ Jlab12

Summary

Use cases are different

There **IS** a common aspect

and for each decay we need a proper formulation in our model

and we always have to fit our model to the data

THANK YOU for today