

Amplitude Analysis An Experimentalists View

K. Peters

Part II

Kinematics and More

Kinematics and More

Phasespace

Dalitz-Plots

Observables

Spin in a nutshell

Examples

Goal

For whatever you need the parameterization

of the *n*-Particle phase space

It contains the static properties of the unstable (resonant) particles within the decay chain like

mass

width

spin and parities

as well as properties of the initial state

and some constraints from the experimental setup/measurement

The main problem is, you don't need just a good description, you need the right one

Many solutions may look alike, but only one is right

n-Particle Phase space, n=3

Dalitz applied it first to K_L-decays

The former τ/θ puzzle with only a few events goal was to determine spin and parity And he never called them Dalitz plots

Scattering & decay regions

12

Dalitz plot

13

Phase space

visual inspection of the phase space distribution

- are the structures?
- structures from signal or background?
- are there strong interferences, threshold effects, potential resonances?

$\phi \to K^+ K^-$

Dalitz Plot – 2D Phase Space

How can resonances be studied in multi-body decays?

Consider 3 body decay $M \rightarrow m_1 m_2 m_3$ (all spin 0) Degrees of freedom

3 Lorentz-vectors	12
3 Masses	-3
Energy conserv.	-1
Momentum conserv.	-3
<u>3 Euler angles</u>	-3
Remaining d.o.f	2

Complete dynamics described by two variables!

Usual choice

$$m_{12}^2$$
 vs. m_{23}^2
 $m_{ij}^2 = (E_i + E_j)^2 - (\vec{p}_i + \vec{p}_j)^2$

Kinematics in the Dalitz-Plot

Kinematics in the Dalitz-Plot

Phasespace limits (example: s₁):

Pos 3: M rest system:

$$s_1 = (p - p_1)^2 = M^2 - 2EE_1 + m_1^2 = M^2 + m_1^2 - 2ME_1, \quad E_1 = \sqrt{m_1^2 + p_1^2} \ge m_1$$

 s_1 maximum, if E_1 is at minimum

$$S_{1,max} = M^2 + m_1^2 - 2Mm_1 = (M - m_1)^2$$

Pos 4: m_{23} rest system (= Jackson-Frame R_{23}), $p_2 = -p_3$ $s_1 = (p_2 + p_3)^2 = (\hat{E}_2 + \hat{E}_3) \ge (m_2 + m_3)^2$

 $s_{1,min} = (m_2 + m_3)^2$

full picture

$$s_{1} \in \left[(m_{2} + m_{3})^{2}, (M - m_{1})^{2} \right]$$

$$s_{2} \in \left[(m_{1} + m_{3})^{2}, (M - m_{2})^{2} \right]$$

$$s_{3} \in \left[(m_{1} + m_{2})^{2}, (M - m_{3})^{2} \right]$$

but:
not the whole
cube is accessible!

Example: need $s_{2,\pm}(s_1)$; calculate in Restsystem R_{23} ($p_2=-p_3$, $p_1=p$)

 $s_{2,\pm} = m_1^2 + m_3^2 + \frac{1}{2s_1} \left[(s - s_1 - m_1^2)(s_1 - m_2^2 + m_3^2) \pm \lambda^{\frac{1}{2}}(s_1, s, m_1^2) \lambda^{\frac{1}{2}}(s_1, m_2^2, m_3^2) \right]$

Density distribution in the Dalitz Plot given by

Dynamics is contained by the matrix element \mathcal{M}

non-resonant processes $\Rightarrow \mathcal{M} = \text{const.}$, uniform distribution resonant processes \Rightarrow bands (horizontal, vertical, diagonal) spins \Rightarrow Density distribution along the bands 19

Possible decay patterns:

Non-Resonant (or background) flat (homogeneous) distribution

Resonance R in m_{12} , m_{13} , m_{23}

Band Structures Position: Mass of R Density: Spin of R

Dalitz-Plot Tool (Root) Examples....

21

Properties of Dalitz Plots

For the process $M \rightarrow Rm_3$, $R \rightarrow m_1m_2$ the matrix element can be expressed like

$\mathcal{M}_{R}(L, m_{12}, m_{23}) = Z(L, \vec{p}, \vec{q}) \cdot B_{I}^{M}(p) \cdot B_{I}^{R}(q) \cdot T_{R}(m_{12})$

Winkelverteilung (Legendre Polyn.) Formfaktor

Resonanz-Fkt. (Blatt-Weisskopf-F.) (z.B. Breit Wigner)

7

 $| \rightarrow L+|$

Z(L, p, q)	decay angular distribution	$0 \rightarrow 0 + 0$	1
	of $R \longrightarrow$	$0 \rightarrow 1 + 1$	$\cos^2\theta$
$B_{L}^{M}(p)$	Form-(Blatt-Weisskopf)-Factor for	$0 \rightarrow 2 + 2$	$[\cos^2\theta - 1/3]^2$
	$M \rightarrow Rm_3, p = p_3 \text{ in } R_{12}$	spin 0	spin 1 /
$B_{i}^{R}(q)$	Form-(Blatt-Weisskopf)-Factor for		
	$R \rightarrow m_1 m_2, q = p_1 \text{ in } R_{12}$		
$T_{R}(m_{12})$	Dynamical Function	spin 2	iθ cosθ
	(Breit-Wigner, K-Matrix, Flatté)		
			/

density distribution along the band = decay angular distribution of *R*

results from Spin of *R*, the spin configuration and polarization of initial and final state(s)

Compare $R = \rho$ and ϕ (both 1⁻⁻) angular distributions are different !!

Dalitz-Plot-Analysis

Simultaneous fit of all resonant structures in a Dalitz-Plot Takes into account interference between resonances!

The Ingredients

Mode Parameter	Model I2 (B-W for κ)	Model I2	QMIPWA
$\overline{K}^{*}(892)\pi^{+}$ a	1 - fixed	1 - fixed	1 - fixed
φ (°)	0 - fixed	0 - fixed	0 - fixed
FF (%) 2×	5.15 ± 0.24	$5.27{\pm}0.08{\pm}0.15$	$4.94{\pm}0.23$
$m (MeV/c^2)$	²) 895.4±0.2	$895.7 {\pm} 0.2 {\pm} 0.3$	895.7 - fixed
$\Gamma (MeV/c^2)$	(44.5 ± 0.7)	$45.3 {\pm} 0.5 {\pm} 0.6$	45.3 - fixed
$\overline{K}^{*}(1680)\pi^{+}$ a	$4.45 {\pm} 0.23$	$3.38{\pm}0.16{\pm}0.78$	$2.88 {\pm} 0.84$
φ (°)	43.3 ± 3.6	$68.2 \pm 1.6 \pm 13$	113 ± 14
FF (%) 2×	$0.238 {\pm} 0.024$	$0.144{\pm}0.013{\pm}0.12$	$0.098 {\pm} 0.059$
$\overline{K}_{2}^{*}(1430)\pi^{+}$ a	0.866 ± 0.030	$0.915{\pm}0.025{\pm}0.04$	$0.794{\pm}0.073$
φ (°)	$-17.4{\pm}3.5$	$-17.4{\pm}2.3{\pm}2.0$	$14.8 {\pm} 9.0$
FF (%) 2×	0.124 ± 0.011	$0.145{\pm}0.009{\pm}0.03$	$0.102 {\pm} 0.020$
$\overline{K}_{0}^{*}(1430)\pi^{+}$ a	3.97 ± 0.15	$3.74{\pm}0.02{\pm}0.06$	3.74 - fixed
φ (°)	$45.1 {\pm} 0.9$	$51.1 \pm 0.3 \pm 1.6$	51.1 - fixed
FF (%) 2×	$7.53 {\pm} 0.65$	$7.05 {\pm} 0.14 {\pm} 0.55$	$6.65 {\pm} 0.31$
$m (MeV/c^2)$	$^{2})$ 1461.1±1.0	$1466.6 {\pm} 0.7 {\pm} 3.4$	1466.6 – fixed
$\Gamma (MeV/c^2)$	177.9 ± 3.1	$1742 \pm 10 \pm 32$	174 2 – fixed

Fit Resu

It's All a Question of Statistics

100 events

1000 events

26

It's All a Question of Statistics

 $p\bar{p} \rightarrow 3\pi^0$ with

100 events 1000 events

10000 events

It's All a Question of Statistics

$p\bar{p} \rightarrow 3\pi^0$ with

 100 events

 1000 events

 10000 events

 100000 events

Observables, cont'd

are there symmetries in the phase space?

unique assignment of phase space coordinates is important to avoid double counting transformation necessary?

Most Dalitz plots are symmetric:

Problem: sharing of events Possible solution: transform DP

just a few words...

usually this is not part of your job

there are very many formalisms and packages

finally it's just a decomposition of the phase space which obeys all the necessary symmetries of the reaction

thus (in principle) straigth forward

and usually done by other people \odot

Formalisms – an overview (very limited)

Non-relativistic Tensor formalisms

in non-relativistic (Zemach) or covariant flavor Fast computation, simple for small *L* and *S*

Spin-projection formalisms

where a quantization axis is chosen and proper rotations are used to define a two-body decay Efficient formalisms, even large *L* and *S* easy to handle

Relativistic Tensor Formalisms based on Lorentz invariants (Rarita-Schwinger)

where each operator is constructed from Mandelstam variables only

Elegant, but extremely difficult for large L and S

Spin-Projection Formalisms

Differ in choice of quantization axis

Helicity Formalism

parallel to its own direction of motion

Transversity Formalism

the component normal to the scattering plane is used

Canonical (Orbital) Formalism

the component m in the incident z-direction is diagonal

For particle with spin *S* traceless tensor of rank *S*

Δ

Similar for orbital angular momentum *L*

$$l = 0 A^{0} = 1$$

$$l = 1 A^{1}(\vec{q}) = \vec{q}$$

$$l = 2 A^{2}(\vec{q}) = \frac{3}{2} \left[\vec{q} \cdot \vec{q}^{T} - \frac{1}{3} |\vec{q}|^{2} \right]$$
for tracelessness display= $\vec{q} \cdot \vec{p}^{T} = \begin{pmatrix} q_{1} \\ q_{2} \\ q_{3} \end{pmatrix} (p_{1} p_{2} p_{3}) = \begin{pmatrix} q_{1} p_{1} q_{1} p_{2} q_{1} p_{3} \\ q_{2} p_{1} q_{2} p_{2} q_{2} p_{3} \\ q_{3} p_{1} q_{3} p_{2} q_{3} p_{3} \end{pmatrix}$

with indices

$$l = 0 A^{0} = 1$$

$$l = 1 A^{1}_{i} = q_{i}$$

$$l = 2 A^{2}_{ij} = \frac{3}{2}q_{i}q_{j} - \frac{1}{2}|q_{i}|^{2}\delta_{ij}$$

The Original Zemach Paper

1

FIG. 2. Regions of the 3π Dalitz plot where the density must vanish because of symmetry requirements are shown in black. The vanishing is of higher order (stronger) where black lines and dots overlap. In each isospin and parity state, the pattern for a spin of J + even integer is identical to the pattern for spin J, provided $J \ge 2$. (Exception: vanishing at the center is not required for $J \ge 4$.)

Tensors revisited

The Zemach amplitudes are only valid in the rest frame of the resonance.

- Thus they are not covariant
- Retain covariance by adding the time component and use 4-vectors Behavior under spatial rotations dictates that the time component of the decay momentum vanishes in the rest frame
- This condition is called Rarita Schwinger condition
- For Spin-1 it reads $Su = S_{\mu}p^{\mu} = 0$

with $p = (p_a + p_b)/m$ the 4-momentum of the resonance

The vector $S_{\mu\mu}$ is orthogonal to the timelike vector p_{μ} and is therefore spacelike, thus $S^2 < 0$

Covariant Tensor Formalism

The most simple spin-1 covariant tensor with above properties is $S_{\mu}=q_{\mu}-(qp)p_{\mu}$ with $q = (p_a - p_b)$

The negative norm is assured by the equation

 $S^2 = q^2 - (qp)^2 = - |q_R|^2$

where q_R is the break-up three-momentum

the general approach and recipe is a lecture of its own and you should refer to the primary literature for more information

to calculate the amplitudes and intensities you may use qft++

qft++ = Numerical Object Oriented Quantum Field Theory
(by Mike Williams, Carnegie Mellon Univ.)

Calculation of the matrices, tensors, spinors, angular momentum tensors etc. with C++ classes

qft++ Class	Symbol	Concept
Matrix <t></t>	a_{ij}	matrices of any dimension
Tensor <t></t>	x_{μ}	tensors of any rank
MetricTensor	$g_{\mu u}$	Minkowski metric
LeviCivitaTensor	$\epsilon_{\mu ulphaeta}$	totally anti-symmetric Levi-Civita tensor
DiracSpinor	$u_{\mu_1\dots\mu_{J-1/2}}(p,m)$	half-integral spin wave functions
DiracAntiSpinor	v(p,m)	spin- $1/2$ anti-particle wave functions
DiracGamma	γ^{μ}	
DiracGamma5	γ^5	Dirac matrices
DiracSigma	$\sigma^{\mu u}$	
PolVector	$\epsilon_{\mu_1\mu_J}(p,m)$	integral spin wave functions
OrbitalTensor	$L^{(\ell)}_{\mu_1\dots\mu_\ell}$	orbital angular momentum tensors

qft++ Package

$$\mathcal{A} \propto \epsilon^*_{\mu}(p_{\omega}, m_{\omega}) L^{(3)\mu\nu\alpha}(p_{\omega K}) \epsilon_{\nu\alpha}(P, M)$$
 and \mathcal{I}

qft++: Declaration and Calculation

PolVector epso; // omega
PolVector epsx(2); // X
OrbitalTensor orb3(3); // L^3
Tensor<complex<double> > amp;
Vector4<double> p40,p4k,p4x;

$$figure for the second second$$

 $\propto \sum |\mathcal{A}|^2$

 $M = \pm 1 m_{\omega} = \pm 1.0$

Helicity Decay Amplitudes

Helicity

From two-particle state

$$A = \sum_{\lambda_s, \lambda_t} \langle \vec{p}_s, s\lambda_s | \langle -\vec{p}_s, t\lambda_t | \mathcal{M} | J M \rangle$$

$$\langle \Omega_{S}, s\lambda_{S}t\lambda_{t}|JM\lambda_{S'}\lambda_{t'}\rangle = N_{J}D_{M,\lambda_{S'}-\lambda_{t'}}^{J*}(\Omega_{S})$$

$$\begin{aligned} A_{\lambda_{s}\lambda_{t}}^{JM} &= \frac{4\pi}{\rho_{s}} \langle \Omega_{s}, s\lambda_{s}t\lambda_{t} | \mathcal{M} | \mathcal{M} \rangle \\ &= \sum_{\lambda_{s'},\lambda_{t'}} \langle \Omega_{s}, s\lambda_{s}t\lambda_{t} | \mathcal{M} \lambda_{s'}m_{t'} \rangle \frac{4\pi}{\rho_{s}} \langle \mathcal{M} \lambda_{s'}\lambda_{t'} | \mathcal{M} | \mathcal{M} \rangle \\ &= \sqrt{\frac{4\pi}{\rho_{s}}} (2J+1) \langle \mathcal{M} \lambda_{s}\lambda_{t} | \mathcal{M} | \mathcal{M} \rangle D_{\mathcal{M},\lambda_{s'}-\lambda_{t'}}^{J*}(\Omega_{s}) \\ A_{\lambda_{s}\lambda_{t}}^{JM} &= N_{J}f_{\lambda_{s}\lambda_{t}} D_{\mathcal{M},\lambda_{s'}-\lambda_{t'}}^{J*}(\Omega_{s}) \\ \text{Helicity amplitude} \qquad N_{J}f_{\lambda_{s}\lambda_{t}} = \sqrt{\frac{4\pi}{\rho_{s}}} (2J+1) \langle \mathcal{M} \lambda_{s}\lambda_{t} | \mathcal{M} | \mathcal{M} \rangle \end{aligned}$$

$f_2 \rightarrow \pi \pi$ (Ansatz)

Initial: $f_2(1270)$ $I^G(J^{PC}) = 0^+(2^{++})$ Final: π^0 $I^G(J^{PC}) = 1^-(0^{-+})$

Only even angular momenta, since $\eta_f = \eta_{\pi}^{2}(-1)^{t}$ Total spin $s = 2s_{\pi} = 0$

Ansatz

$$\begin{aligned} A_{\lambda_{1}\lambda_{2}}^{JM} &= N_{f}F_{\lambda_{1}\lambda_{2}}^{J}D_{M\lambda}^{J*}\left(\varphi,\theta\right) \\ \lambda &= \lambda_{1} - \lambda_{2} = 0 \\ J &= 2 \\ A_{00}^{2M} &= N_{2}F_{00}^{2}D_{M0}^{2*}\left(\varphi,\theta\right) \\ N_{2}F_{00}^{2} &= \sqrt{5}\left(20 \quad 00|20\right)\left(00 \quad 00|00\right) \\ a_{20} &= \sqrt{5}a_{20} \\ A_{00}^{2M} &= \sqrt{5}a_{20}D_{M0}^{2*}\left(\varphi,\theta\right) \end{aligned}$$

 $f_2 \rightarrow \pi \pi$ (Rates)

$$A_{00}^{1M} = \sqrt{5}a_{20}\begin{bmatrix} d_{(-2)0}^{2}(\theta)e^{-2i\varphi} \\ d_{(-1)0}^{2}(\theta)e^{-i\varphi} \\ d_{00}^{2}(\theta) \\ d_{10}^{2}(\theta)e^{i\varphi} \\ d_{20}^{2}(\theta)e^{2i\varphi} \end{bmatrix}$$
$$I(\theta) = \sum_{M,M'}A_{00}^{1M}\rho_{MM'}A_{00}^{1M'*}$$
$$\rho = \frac{1}{2J+1}\begin{bmatrix} 1 \\ \ddots \\ 1 \end{bmatrix}$$

Amplitude has to be symmetrized because of the final state particles

$$d_{(\pm 2)0}^{2}\left(\theta\right) = \frac{\sqrt{6}}{4}\sin^{2}\theta$$
$$d_{(\pm 1)0}^{2}\left(\theta\right) = -\sqrt{\frac{3}{2}}\sin\theta\cos\theta$$
$$d_{00}^{2}\left(\theta\right) = \left(\frac{3}{2}\cos^{2}\theta - \frac{1}{2}\right)$$

$$I(\theta) = |a_{20}|^2 \left(\frac{15}{4} \sin^4 \theta + 15 \sin^2 \theta \cos^2 \theta + 5 \left(\frac{3}{2} \cos^2 \theta - \frac{1}{2} \right)^2 \right)$$

$$\frac{15 \left(\frac{1}{4} \sin^4 \theta + \sin^2 \theta \cos^2 \theta + \frac{3}{4} \cos^4 \theta - \frac{1}{2} \cos^2 \theta + \frac{1}{12} \right)}{\left| = |a_{20}|^2 = const}$$

THANK YOU for today