Amplitude Analysis An Experimentalists View

K. Peters

Part II

Kinematics and More

Kinematics and

Phasespace
Dalitz-Plots
Observables
Spin in a nutshell
Examples

Goal

For whatever you need the parameterization
of the n-Particle phase space
It contains the static properties of the unstable (resonant) particles within the decay chain like
mass
width
spin and parities
as well as properties of the initial state and some constraints from the experimental setup/measurement

The main problem is, you don't need just a good description, you need the right one

Many solutions may look alike, but only one is right

Phase Space Plot - Dalitz Plot

$$
d N \sim\left(E_{1} d E_{1}\right)\left(E_{2} d E_{2}\right)\left(E_{3} d E_{3}\right) /\left(E_{1} E_{2} E_{3}\right)
$$

Energy conservation $\quad E_{3}=E_{\text {tot }}-E_{1}-E_{2}$
Phase space density $\quad \rho=d N / d E_{\text {tot }} \sim d E_{1} d E_{2}$

Kinetic energies
Plot

$$
Q=T_{1}+T_{2}+T_{3}
$$

$$
x=\left(T_{2}-T_{1}\right) / \sqrt{ } 3
$$

$$
y=T_{3}-Q / 3
$$

Flat, if no dynamics is involved

The first plots $\rightarrow \tau / \theta$-Puzzle

Dalitz applied it first to K_{L}-decays
The former τ / θ puzzle with only a few events goal was to determine spin and parity
And he never called them Dalitz plots

Scattering \& decay regions

7

Scattering regions

Decay region

Decay region

Decay region

Dalitz plot

Phase space

visual inspection of the phase space distribution are the structures?
structures from signal or background? are there strong interferences, threshold effects, potential resonances?

Dalitz Plot - 2D Phase Space

How can resonances be studied in multi-body decays?
Consider 3 body decay $M \rightarrow m_{1} m_{2} m_{3} \quad$ (all spin 0)
Degrees of freedom

3 Lorentz-vectors	12
3 Masses	-3
Energy conserv.	-1
Momentum conserv.	-3
3 Euler angles	-3
Remaining d.o.f	2

Complete dynamics described by two variables!

Usual choice

$$
\begin{aligned}
& m_{12}^{2} \quad \text { vs. } \quad m_{23}^{2} \\
& m_{i j}^{2}=\left(E_{i}+E_{j}\right)^{2}-\left(\vec{p}_{i}+\vec{p}_{j}\right)^{2}
\end{aligned}
$$

$$
\begin{array}{cl}
s=p^{2}=M^{2} & s_{1}=\left(p-p_{1}\right)^{2}=\left(p_{2}+p_{3}\right)^{2} \\
\sum s_{i}=M^{2}+\sum m_{i}^{2} & s_{2}=\left(p-p_{2}\right)^{2}=\left(p_{1}+p_{3}\right)^{2} \\
s_{3}=\left(p-p_{3}\right)^{2}=\left(p_{1}+p_{2}\right)^{2}
\end{array}
$$

1. $0 \longleftarrow 0 \longrightarrow 0 S_{3, \max }$
2.

3. $\bullet \longleftarrow \mathbf{O} \longrightarrow 0 \quad s_{1, \max }$
4.
 $S_{1, \text { min }}$
5.

6.

Phasespace limits (example: s_{1}):
Pos 3: M rest system:
$s_{1}=\left(p-p_{1}\right)^{2}=M^{2}-2 E E_{1}+m_{1}^{2}=M^{2}+m_{1}^{2}-2 M E_{1}, \quad E_{1}=\sqrt{m_{1}^{2}+p_{1}^{2}} \geq m_{1}$
s_{1} maximum, if E_{1} is at minimum

$$
s_{1, \max }=M^{2}+m_{1}^{2}-2 M m_{1}=\left(M-m_{1}\right)^{2}
$$

Pos 4: m_{23} rest system ($=$ Jackson-Frame R_{23}), $\mathrm{p}_{2}=-\mathrm{p}_{3}$

$$
\begin{gathered}
s_{1}=\left(p_{2}+p_{3}\right)^{2}=\left(\hat{E}_{2}+\hat{E}_{3}\right) \geq\left(m_{2}+m_{3}\right)^{2} \\
s_{1, \text { min }}=\left(m_{2}+m_{3}\right)^{2}
\end{gathered}
$$

full picture

$$
\begin{array}{ll}
s_{1} \in\left[\left(m_{2}+m_{3}\right)^{2},\left(M-m_{1}\right)^{2}\right] & \text { but: } \\
s_{2} \in\left[\left(m_{1}+m_{3}\right)^{2},\left(M-m_{2}\right)^{2}\right] & \text { not the whole } \\
s_{3} \in\left[\left(m_{1}+m_{2}\right)^{2},\left(M-m_{3}\right)^{2}\right] & \text { cube is accessible! }
\end{array}
$$

Kinematics in the Dalitz-Plot

Example: need $s_{2, \pm}\left(s_{1}\right)$; calculate in Restsystem $R_{23}\left(p_{2}=-p_{3}, p_{1}=p\right)$

$$
\begin{aligned}
s_{1} & =\left(p-\hat{p}_{1}\right)^{2}=\left(\hat{E}-\hat{E_{1}}\right)^{2}=\left(\sqrt{M^{2}+\hat{p}_{1}^{2}}-\sqrt{m_{1}^{2}+\hat{p}_{1}^{2}}\right)^{2} \\
\Rightarrow \hat{p}_{1}^{2} & =\frac{1}{4 s_{1}}\left[s_{1}-\left(M-m_{1}\right)^{2}\right]\left[s_{1}-\left(M+m_{1}\right)^{2}\right] \\
& =\frac{1}{4 s_{1}} \lambda\left(s 1, M^{2}, m_{1}^{2}\right)
\end{aligned} \begin{aligned}
& \text { kinematical function } \\
& \lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x
\end{aligned}
$$

$$
s_{1}=\left(p_{2}+p_{3}\right)^{2}=\left(\hat{E}_{2}+\hat{E}_{3}\right)^{2} \quad \Rightarrow \hat{p}_{2}^{2}=\hat{p}_{3}^{2}=\frac{1}{4 s_{1}} \lambda\left(s_{1}, m_{2}^{2}, m_{3}^{2}\right)
$$

$$
s_{2}=\left(p_{1}+p_{3}\right)^{2}=m_{1}^{2}+m_{3}^{2}+2\left(\hat{E}_{1} \hat{E}_{3}-\hat{p}_{1} \hat{p}_{3} \cos \alpha\right) \quad \angle\left(\hat{p}_{1}, \hat{\vec{p}}_{3}\right) \in[-1,1]
$$

$$
s_{2}=\left(p_{1}+p_{3}\right)^{2}=m_{1}^{2}+m_{3}^{2}+2\left(\hat{E}_{1} \hat{E}_{3} \pm \hat{p}_{1} \hat{p}_{3}\right)
$$

with $\quad \hat{E}_{1}=\frac{1}{2 s_{1}}\left(s-s_{1}-m_{1}^{2}\right) \quad$ and $\quad \hat{E}_{3}=\frac{1}{2 s_{1}}\left(s_{1}+m_{3}^{2}-m_{2}^{2}\right)$

$$
s_{2, \pm}=m_{1}^{2}+m_{3}^{2}+\frac{1}{2 s_{1}}\left[\left(s-s_{1}-m_{1}^{2}\right)\left(s_{1}-m_{2}^{2}+m_{3}^{2}\right) \pm \lambda^{\frac{1}{2}}\left(s_{1}, s, m_{1}^{2}\right) \lambda^{\frac{1}{2}}\left(s_{1}, m_{2}^{2}, m_{3}^{2}\right)\right]
$$

Properties of Dalitz-Plots

Density distribution in the Dalitz Plot given by

$$
\Gamma\left(m_{12}^{2}, m_{23}^{2}\right)=\frac{1}{(2 \pi)^{3} 32 M^{3}}|\mathcal{M}|^{2} d m_{12}^{2} d m_{23}^{2}
$$

for Spin-0 Particles M, m_{1}, m_{2}, m_{3}

Dynamics is contained by the matrix element \mathcal{M}
non-resonant processes $\Rightarrow \mathcal{M}=$ const., uniform distribution resonant processes \Rightarrow bands (horizontal, vertical, diagonal)
spins \Rightarrow Density distribution along the bands

Dalitz Plot - 2D Phase space

Possible decay patterns:

Non-Resonant (or background) flat (homogeneous) distribution

Resonance R in m_{12}, m_{13}, m_{23} Band Structures

Position: Mass of R
Density: Spin of R

Dalitz-Plot Tool (Root) Examples....

Properties of Dalitz Plots

For the process $M \rightarrow R \mathrm{~m}_{3}, R \rightarrow \mathrm{~m}_{1} \mathrm{~m}_{2}$ the matrix element can be expressed like

$$
\mathcal{M}_{R}\left(L, m_{12}, m_{23}\right)=Z(L, \vec{p}, \vec{q}) \cdot B_{L}^{M}(p) \cdot B_{L}^{R}(q) \cdot T_{R}\left(m_{12}\right)
$$

Winkelverteilung
(Legendre Polyn.) (Blatt-Weisskopf-F.) (z.B. Breit Wigner)

Angular Distributions

density distribution along the band $=$ decay angular distribution of R
results from Spin of R, the spin configuration and polarization of initial and final state(s)

Compare $R=\rho$ and ϕ (both 1^{--}) angular distributions are different !!

Dalitz-Plot-Analysis

Simultaneous fit of all resonant structures in a Dalitz-Plot Takes into account interference between resonances!

The Ingredients

Mode	Parameter	Model I2 (B-W for κ)	Model I2	QMIPWA
$\overline{\bar{K}}{ }^{+}(892) \pi^{+}$	a	1 - fixed	1 - fixed	1 - fixed
	$\phi\left({ }^{\circ}\right)$	0 - fixed	0 - fixed	0 - fixed
	FF (\%) $2 \times$	5.15 ± 0.24	$5.27 \pm 0.08 \pm 0.15$	4.94 ± 0.23
	$m\left(\mathrm{MeV} / c^{2}\right)$	895.4 ± 0.2	$895.7 \pm 0.2 \pm 0.3$	895.7 - fixed
	$\Gamma\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	44.5 ± 0.7	$45.3 \pm 0.5 \pm 0.6$	45.3 - fixed
$\overline{\bar{K}}{ }^{(1680)} \pi^{+}$	a	4.45 ± 0.23	$3.38 \pm 0.16 \pm 0.78$	2.88 ± 0.84
	$\phi\left({ }^{\circ}\right)$	43.3 ± 3.6	$68.2 \pm 1.6 \pm 13$	113 ± 14
	FF (\%) $2 \times$	0.238 ± 0.024	$0.144 \pm 0.013 \pm 0.12$	0.098 ± 0.059
$\overrightarrow{\overline{K_{2}}} \overrightarrow{ }(1430) \pi^{+}$	a	0.866 ± 0.030	$0.915 \pm 0.025 \pm 0.04$	0.794 ± 0.073
	$\phi\left({ }^{\circ}\right)$	-17.4 ± 3.5	$-17.4 \pm 2.3 \pm 2.0$	14.8 ± 9.0
	FF (\%) $2 \times$	0.124 ± 0.011	$0.145 \pm 0.009 \pm 0.03$	0.102 ± 0.020
$\overline{\overline{K_{0}}}{ }^{*}(1430) \pi^{+}$	a	3.97 ± 0.15	$3.74 \pm 0.02 \pm 0.06$	3.74 - fixed
	$\phi\left({ }^{\circ}\right)$	45.1 ± 0.9	$51.1 \pm 0.3 \pm 1.6$	51.1 - fixed
	FF (\%) $2 \times$	7.53 ± 0.65	$7.05 \pm 0.14 \pm 0.55$	6.65 ± 0.31
	$m\left(\mathrm{MeV} / c^{2}\right)$	1461.1 ± 1.0	$1466.6 \pm 0.7 \pm 3.4$	1466.6 - fixed
	$\Gamma\left(\mathrm{MaV} / r^{2}\right)$	$1770+31$	$1749+10+29$	1749 - fived

$p \bar{p} \rightarrow 3 \pi^{0}$ with

100 events

It's All a Question of Statistics

$p \bar{p} \rightarrow 3 \pi^{0}$ with

1000 events

It's All a Question of Statistics

$p \bar{p} \rightarrow 3 \pi^{0}$ with

100 events
1000 events
10000 events

$$
p \bar{p} \rightarrow 3 \pi^{0} \text { with }
$$

1000 events
10000 events
100000 events

are there symmetries in the phase space?
unique assignment of phase space coordinates
is important to avoid double counting
transformation necessary?

Most Dalitz plots are symmetric:
Problem: sharing of events
Possible solution: transform DP

Spin Part in a nutshell

just a few words...
usually this is not part of your job
there are very many formalisms and packages
finally it's just a decomposition of the phase space which obeys all the necessary symmetries of the reaction
thus (in principle) straigth forward
and usually done by other people \odot

Formalisms - an overview (very limited)

Non-relativistic Tensor formalisms
in non-relativistic (Zemach) or covariant flavor
Fast computation, simple for small L and S

Spin-projection formalisms
where a quantization axis is chosen and proper rotations are used to define a two-body decay
Efficient formalisms, even large L and S easy to handle

Relativistic Tensor Formalisms based
on Lorentz invariants (Rarita-Schwinger)
where each operator is constructed from
Mandelstam variables only
Elegant, but extremely difficult for large L and S

Spin-Projection Formalisms

Differ in choice of quantization axis

Helicity Formalism
parallel to its own direction of motion

Transversity Formalism the component normal to the scattering plane is used

Canonical (Orbital) Formalism the component m in the incident z-direction is diagonal

For particle with spin S
traceless tensor of rank S
$\begin{array}{ll}l=0 & A^{0}=1 \\ l=1 & A^{1}(\vec{q})=\vec{q}\end{array}$
$l=2 \quad A^{2}(\vec{q})=\frac{3}{2}[\vec{q} \cdot \vec{q}^{T}-\underbrace{\frac{1}{3}|\vec{q}|^{2}}_{\text {for tracelessness }}]$
$\vec{q} \cdot \vec{p}^{T}=\left(\begin{array}{l}q_{1} \\ q_{2} \\ q_{3}\end{array}\right)\left(\begin{array}{lll}p_{1} & p_{2} & p_{3}\end{array}\right)=\left(\begin{array}{lll}q_{1} p_{1} & q_{1} p_{2} & q_{1} p_{3} \\ q_{2} p_{1} & q_{2} p_{2} & q_{2} p_{3} \\ q_{3} p_{1} & q_{3} p_{2} & q_{3} p_{3}\end{array}\right)$
with indices

$$
\begin{array}{ll}
l=0 & A^{0}=1 \\
l=1 & A_{i}^{1}=q_{i} \\
l=2 & A_{i j}^{2}=\frac{3}{2} q_{i} q_{j}-\frac{1}{2}\left|q_{i}\right|^{2} \delta_{i j}
\end{array}
$$

Similar for orbital angular momentum L

The Original Zemach Paper

Spin	$I=0$	$\mathrm{I}=1$		2	$\mathrm{I}=1$
		lexcept $3 \pi 0$	$\pi^{+} \pi^{-} \pi^{2}$	other modes	($3 \pi^{0}$ anly) and $I=3$
0^{-}			\square	\cdots	\square
1^{+}	\square				\square
2^{-}	0				\square
3^{+}	σ	\square	\square	\square	
1^{-}	\square			0	
2^{+}			\square		\cdots
3^{-}	\square				\cdots

Fic. 2. Regions of the 3π Dalitz plot where the density must vanish because of symmetry requirements are shown in black. The vanishing is of higher order (stronger) where black lines and dots overlap. In each isospin and parity state, the pattern for a spin of $J+$ even integer is identical to the pattern for spin J, provided $J \geqq 2$. (Exception: vanishing at the center is not reguired for $J \geqq 4$.)

Tensors revisited

The Zemach amplitudes are only valid in the rest frame of the resonance.

Thus they are not covariant
Retain covariance by adding the time component and use 4-vectors Behavior under spatial rotations dictates that the time component of the decay momentum vanishes in the rest frame

This condition is called Rarita Schwinger condition

For Spin-1 it reads $S u=S_{\mu} p^{\mu}=0$
with $p=\left(p_{a}+p_{b}\right) / m$ the 4-momentum of the resonance

The vector $S_{\mu \mu}$ is orthogonal to the timelike vector p_{μ} and is therefore spacelike, thus $S^{2}<0$

Covariant Tensor Formalism

The most simple spin-1 covariant tensor with above properties is

$$
\begin{aligned}
& S_{\mu}=q_{\mu}-(q p) p_{\mu} \\
& \text { with } q=\left(p_{a}-p_{b}\right)
\end{aligned}
$$

The negative norm is assured by the equation

$$
S^{2}=q^{2}-(q p)^{2}=-\left|q_{R}\right|^{2}
$$

where q_{R} is the break-up three-momentum
the general approach and recipe is a lecture of its own and you should refer to the primary literature for more information
to calculate the amplitudes and intensities you may use qft++
$\frac{3}{2}$
qft $++=$ Numerical Object Oriented Quantum Field Theory (by Mike Williams, Carnegie Mellon Univ.)
Calculation of the matrices, tensors, spinors, angular momentum tensors etc. with $\mathrm{C}++$ classes

qft++ Class	Symbol	Concept
Matrix<T>	$a_{i j}$	matrices of any dimension
Tensor<T>	x_{μ}	tensors of any rank
MetricTensor	$g_{\mu \nu}$	Minkowski metric
LeviCivitaTensor	$\epsilon_{\mu \nu \alpha \beta}$	
DiracSpinor	$u_{\mu_{1} \ldots \mu_{J-1 / 2}(p, m)}$	
DiracAntiSpinor	$v(p, m)$	hatally anti-symmetric Levi-Civita tensor
DiracGamma	γ^{μ}	Dintegral spin wave functions matrices
DiracGamma5	γ^{5}	
DiracSigma	$\sigma^{\mu \nu}$	integral spin wave functions
PolVector	$\epsilon_{\mu_{1} \ldots \mu_{J}}(p, m)$	orbital angular momentum tensors wave functions
OrbitalTensor	$L_{\mu_{1} \ldots \mu_{\ell}}^{(\ell)}$	

qft++ Package

Example: $X\left(2^{-}\right) \rightarrow \omega K \rightarrow \pi^{+} \pi^{-} \pi^{0} K$

Amplitude and Intensity given by

$$
\mathcal{A} \propto \epsilon_{\mu}^{*}\left(p_{\omega}, m_{\omega}\right) L^{(3) \mu \nu \alpha}\left(p_{\omega K}\right) \epsilon_{\nu \alpha}(P, M) \text { and } \mathcal{I} \propto \sum_{M= \pm 1} \sum_{m_{\omega}= \pm 1,0}|\mathcal{A}|^{2}
$$

qft++: Declaration and Calculation

```
PolVector epso; // omega
PolVector epsx(2); // X
OrbitalTensor orb3(3); // L^3
Tensor<complex<double> > amp;
Vector4<double> p4o,p4k,p4x;
double intensity = 0.;
for(Spinm = -1;m<= 1; m+=2){
    for(Spin mo = -1; mo <= 1; mo++){
        amp = conj(epso(mo))*orb3|epsx(m);
        intensity += norm(amp());
    }
}
```


Angular distribution of $X \rightarrow \omega K$

Helicity Decay Amplitudes

Helicity

From two-particle state

$$
A=\sum_{\lambda_{s}, \lambda_{t}}\left\langle\vec{p}_{s}, s \lambda_{s}\right|\left\langle-\vec{p}_{s}, t \lambda_{t} \mid \mathcal{M} \cup M\right\rangle
$$

$$
\left\langle\Omega_{s}, s \lambda_{s} t \lambda_{t} U M \lambda_{s^{\prime}} \lambda_{t^{\prime}}\right\rangle=N_{J} D_{M, \lambda_{s^{\prime}}-\lambda_{t^{\prime}}}^{\prime *}\left(\Omega_{s}\right)
$$

$$
A_{\lambda_{s} \lambda_{t}}^{J M}=\frac{4 \pi}{\rho_{s}}\left\langle\Omega_{s}, s \lambda_{s} t \lambda_{t} \mid \mathcal{M} U M\right\rangle
$$

$$
A_{\lambda_{s} \lambda_{t}}^{J M}=N_{J} f_{\lambda_{s} \lambda_{t}} D_{M, \lambda_{s^{\prime}-\lambda_{t^{\prime}}}^{J *}\left(\Omega_{s}\right)}
$$

Helicity amplitude

$$
N f_{\lambda_{s} \lambda_{t}}=\sqrt{\frac{4 \pi}{\rho_{s}}}(2 J+1)\left\langle J M \lambda_{s} \lambda_{t} \mid \mathcal{M} \cup M\right\rangle
$$

$f_{2} \rightarrow \pi \pi$ (Ansatz)

Initial:
Final:

$$
\begin{array}{ll}
f_{2}(1270) & I^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right) \\
\pi^{0} & I^{G}\left(J^{P C}\right)=1^{-}\left(0^{-+}\right)
\end{array}
$$

Only even angular momenta, since $\eta_{f}=\eta_{\pi}{ }^{2}(-1)^{\prime}$
Total spin $s=2 s_{\pi}=0$

$$
\text { Ansatz } \quad \begin{aligned}
A_{\lambda_{1} \lambda_{2}}^{J M} & =N_{f} F_{\lambda_{1} \lambda_{2}}^{J} D_{M \lambda}^{J^{*}}(\varphi, \theta) \\
\lambda & =\lambda_{1}-\lambda_{2}=0 \\
J & =2 \\
A_{00}^{2 M} & =N_{2} F_{00}^{2} D_{M 0}^{2 *}(\varphi, \theta) \\
N_{2} F_{00}^{2} & =\sqrt{5} \underbrace{(20}_{1} 00 \mid 20) \\
A_{00}^{2 M} & =\sqrt{5} a_{20} D_{M 0}^{2 *}(\varphi, \theta)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
d_{(-2) 0}^{2}(\theta) e^{-2 i \varphi} \\
d_{(-1)}
\end{array} \quad\right. \text { Amplitude has to be }} \\
& \text { symmetrized because } \\
& \text { of the final state particles } \\
& d_{(\pm 2) 0}^{2}(\theta)=\frac{\sqrt{6}}{4} \sin ^{2} \theta \\
& I(\theta)=\sum_{M, M^{\prime}} A_{00}^{1 M} \rho_{M M} \cdot A_{00}^{1 M^{*} *} \\
& \rho=\frac{1}{2 J+1}\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right) \\
& I(\theta)=\left|a_{20}\right|^{2\left(\frac{15}{4} \sin ^{4} \theta+15 \sin ^{2} \theta \cos ^{2} \theta+5\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)^{2}\right)} \\
& 15\left(\frac{1}{4} \sin ^{4} \theta+\sin ^{2} \theta \cos ^{2} \theta+\frac{3}{4} \cos ^{4} \theta-\frac{1}{2} \cos ^{2} \theta+\frac{1}{12}\right) \\
& =\left|a_{20}\right|^{2}=\text { const }
\end{aligned}
$$

THANK YOU
 for today

