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Formalisms – an overview (very limited)

Non-relativistic Tensor formalisms
in non-relativistic (Zemach)  or covariant flavor
Fast computation, simple for small L and S

Spin-projection formalisms
where a quantization axis is chosen and proper rotations are used to 
define a two-body decay
Efficient formalisms, even large L and S easy to handle

Relativistic Tensor Formalisms based 
on Lorentz invariants (Rarita-Schwinger)

where each operator is constructed from 
Mandelstam variables only
Elegant, but extremely difficult for large L and S
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Zemach Formalism

For particle with spin S
traceless tensor of rank S

with indices

Similar for orbital angular 
momentum L
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Example: Zemach – p (0-+)→ f2π0

Construct total spin 0 amplitude

A=Af2π x Aππ
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Example: Zemach – p (0-+)→ f2π0

Angular distribution (Intensity)
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The Original Zemach Paper 8



Spin-Projection Formalisms

Differ in choice of quantization axis

Helicity Formalism
parallel to its own direction of motion

Transversity Formalism
the component normal to the scattering plane is used

Canonical (Orbital) Formalism
the component m in the incident z-direction is diagonal
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How To Construct a Formalism

Key steps are

Definition of single particle states of given momentum and spin 
component (momentum-states),

Definition of two-particle momentum-states in the s-channel 
center-of-mass system and of amplitudes between them,

Transformation to states and amplitudes of 
given total angular momentum (J-states),

Symmetry restrictions on the amplitudes,

Derive Formulae for observable quantities.
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Generalized Single Particle State

In general all single particle states
are derived from a lorentz transformation 
and the rotation of the basic state

with the Wigner rotation

12



Properties 13

Helicity Transversity Canonical

property possibility/simplicity

partial wave expansion simple complicated complicated

parity conservation no yes yes

crossing relation no good bad

specification of 
kinematical constraints no yes yes



Rotation of States

Canonical System Helicity System

14
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Rotations 

Single particle states

Rotation R
Unitary operator U

D function represents the 
rotation in the angular 
momentum space

Valid in an inertial system

Relativistic state

 

   
   

 

     
 

' '

,

2 1 2 1

*
',

'

' '
'

*
'

1

,

' '

1

, ,

, , ' ,

, , '

,

,

, ,

, ,

yz z

jj mm

j m

iβJiαJ iγJ

J
m m

m

im α

J
m m

j
mλ

j im γ
m m

z

D α β γ jm

j m jm δ δ

jm jm

U R R U R U R

U R α β γ e e e

U R α β γ jm jm D α β γ

e d β e

p jm U R Ω L β

U R α β γ jm

R

p jλ D Ω p jm

Ω jm

 

 



   





          
   

   



   






15



Single Particle State

Canonical

1) momentum vector is 
rotated via z-direction. 

2) absolute value of the 
momentum is Lorentz 
boosted along z

3) z-axis is rotated to the 
momentum direction
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Two-Particle State

Canonical
constructed from two 
single-particle states
(back-to-back)

Couple s and t to S

Couple L and S to J

Spherical Harmonics
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Single Particle State 18

Helicity

1) z-axis is rotated to the 
momentum direction 

2) Lorentz Boost
Therefore the new z-axis, 
z’, is parallel
to the momentum



Two-Particle State

Helicity
similar procedure

no recoupling needed

normalization
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Completeness and Normalization

Canonical

completeness

normalization

Helicity

completeness

normalization
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Canonical Decay Amplitudes

Canonical
From two-particle state

LS-Coefficients
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Helicity Decay Amplitudes

Helicity
From two-particle state

Helicity amplitude
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Spin Density and Observed # of Events

To finally calculate the intensity
i.e. the number of events
observed

Spin density of the initial state

Sum over all unobserved states

taking into account
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Relations Canonical ⇔ Helicity

Recoupling coefficients

Start with

Canonical to Helicity

Helicity to Canonical
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Clebsch-Gordan Tables

Clebsch-Gordan Coefficients are usually tabled in a graphical form
(like in the PDG)

Two cases

coupling two initial particles 
with |j1m1⟩ and |j2m2⟩ 
to final system ⟨JM|

decay of an initial system |JM⟩ 
to ⟨j1m1| and ⟨j2m2|

j1 and j2 do not explicitly appear in the tables

all values implicitly contain a square root

Minus signs are meant to be used in front of the square root
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Using Clebsch-Gordan Tables, Case 1 26
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Using Clebsch-Gordan Tables, Case 2 27
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Parity Transformation and Conservation

Parity transformation
single particle

two particles

helicity amplitude relations (for P conservation)
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f2 → ππ (Ansatz)

Initial: f2(1270) IG(JPC) = 0+(2++)
Final: π0 IG(JPC) = 1-(0-+)

Only even angular momenta, since ηf = ηπ2(-1)l

Total spin s =2sπ =0

Ansatz
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f2 → ππ (Rates)

Amplitude has to be 
symmetrized because 
of the final state particles
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ω → π0γ (Ansatz)

Initial: ω IG(JPC) = 0-(1--)
Final: π0 IG(JPC) = 1-(0-+)

γ IG(JPC) = 0(1--)
Only odd angular momenta, since ηω= ηπηγ(-1)l

Only photon contributes to total spin s = sπ+sγ

Ansatz
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ω → π0γ (Rates)

λγ=±1 do not interfere, λγ=0 does not exist for real photons
Rate depends on density matrix
Choose uniform density matrix as an example
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f0,2 → γγ (Ansatz)

Initial: f0,2 IG(JPC) = 0+(0,2++)
Final: γ IG(JPC) = 0(1--)

Only even angular momenta, since ηf = ηγ2(-1)l

Total spin s = 2sγ =2, l=0,2 (f0), l=0,2,4 (f2)

Ansatz
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f0,2 → γγ (cont‘d)

Ratio between a00 and a22 is not measurable
Problem even worse for J=2
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f0,2 → γγ (cont‘d)

Usual assumption J=λ=2
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p (2++) → ππ

Proton antiproton in flight into two pseudo scalars
Initial: p J,M=0,±1
Final: π IG(JPC) = 1-(0-+)

Ansatz

Problem: d-functions are not orthogonal, if φ is not observed
ambiguities remain in the amplitude – polarization is needed
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p → π0ω

Two step process

First step p	→ π0ω - Second step ω → π0γ
Combine the amplitudes

helicity constant aω,11 factorizes and is unimportant for angular 
distributions
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p (0-+) → f2π0

Initial: p IG(JPC) = 1-(0-+)
Final: f2(1270) IG(JPC) = 0+(2++)

π0 IG(JPC) = 1-(0-+)
is only possible from L=2

Ansatz
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General Statements

Flat angular distributions

General rules for spin 0
initial state has spin 0

0 any
both final state particles have spin 0

J 0+0

Special rules for isotropic density matrix and unobserved azimuth 
angle

one final state particle has spin 0 and the second carries the same 
spin as the initial state

J J+0
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Moments Analysis

Consider reaction

Total differential cross section

expand H

leading to

40



Moments Analysis cont‘d

Define now a density tensor

the d-function products
can be expanded in spherical harmonics 

and the density matrix gets absorbed in a 
spherical moment
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Example: Where to start in Dalitz plot anlysis

Sometimes a moment-analysis can help to find important contributions
best suited if no crossing bands occur
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E791: D+ → K-π+π+ Dalitz 

Striking K*(892) bands

asymmetry implies strong S-wave interference (in Kπ)

Dalitz plot analysis as an Interferometer

Model-independent
analysis by using
interference to fix the S-wave
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Recipe

Create slices in m2(K-π+)
S-wave is than a binned
function with parameters ck and γk

S = ckeiγk

Model well known 
P- and D-wave (K*, K1 and K*

2)

add form factors and
put this into the fit

main uncertainty from K* and K1
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phase

Comparison with Data 45
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Proton-Antiproton Annihilation @ Rest

Atomic initial system
formation at high n, l (n~30)
slow radiative transitions
de-excitation through 
collisions 
(Auger effect)
Stark mixing of l-levels 
(Day, Snow, Sucher‚ 1960)

Advantages
JPC varies with target density
isospin varies with n (d) or p 
target
incoherent initial states
unambiguous PWA possible

Disadvantages
phase space very limited
small kaon yield
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Annihilation

S P D F

n=4

n=3

n=2

n=1



p Initial States @ Rest

Quantumnumbers 

G=(-1)I+L+S

P=(-1)L+1

C=(-1)L+S CP=(-1)2L+S+1

I=0

I=1

JPC IG L S

1S0 0-+ pseudo scalar 1-;0+ 0 0

3S1 1-- vector 1+;0- 0 1

1P1 1+- axial vector 1+;0- 1 0

3P0 0++ scalar 1-;0+ 1 1

3P1 1++ axial vector 1-;0+ 1 1

3P2 2++ tensor 1-;0+ 1 1
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Proton-Antiproton Annihilation in Flight

Annihilation in flight
scattering process:
no well defined initial state
maximum angular momentum 
rises with energy

Advantages
larger phase space
formation experiments

Disadvantages
many waves interfere 
with each other
many waves due 
to large phase space

0.5 1.0 1.5 2.0 2.5 3.0

10

1

P  [GeV/c]lab

l=4

l=3

l=2
l=1

ang. mom.
 ~ /0.2 GeV/

 l
l p ccms

 ann= l l

  l(p)=(2l+1) [1-exp(- (p))] / p l
2

l(p)=N(p) exp(-3l(l+1)/4p R ) 2 2
100

 l
 [m

b]
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Scattering Amplitudes in p in Flight (I)

     

    


 



 


1 2

1 2 2 1

1 1 2 2
,

2 1 0
2 1

1

J
ν ν

L S

JJ J
ν ν J ν ν

LH L Sν Jν s ν s ν Sν JMLS JM
J

H η H

M

p helicity amplitude

only H++ and H+- exist

C-Invariance
H++=0 if L+S-J odd

CP-Invariance
H+-=0 if S=0 and/or J=0

49

CP transform
CP=(-1)2L+S+1

S and CP directly correlated
CP conserved in strong int.
singlet and triplet decoupled

C transform
L and P directly correlated

C conserved in strong int.
(if total charge is q=0)
odd and even L decouples

4 incoherent sets of 
coherent amplitudes



Scattering Amplitudes in p in Flight (II)

Singlett 
even L JPC L S H++ H+-

1S0 0-+ 0 0 Yes No

1D2 2-+ 2 0 Yes No

1G4 4-+ 4 0 Yes No

50

Triplett
even L JPC L S H++ H+-

3S1 1-- 0 1 Yes Yes
3D1 1-- 2 1 Yes Yes
3D2 2-- 2 1 Yes Yes
3D3 3-- 2 1 Yes Yes

Singlett
odd L JPC L S H++ H+-

1P1 1+- 1 0 Yes No
1F3 3+- 3 0 Yes No
1G5 5+- 5 0 Yes No

Triplett 
odd L JPC L S H++ H+-

3P0 0++ 1 1 Yes No
3P1 1++ 1 1 No Yes
3P2 2++ 1 1 Yes Yes
3F2 2++ 3 1 Yes No
3F3 3++ 3 1 No Yes
3F4 4++ 3 1 Yes Yes



Tensors revisited

The Zemach amplitudes are only valid in the rest frame of the 
resonance.

Thus they are not covariant
Retain covariance by adding the time component and use 4-vectors
Behavior under spatial rotations dictates that the time component of 
the decay momentum vanishes in the rest frame  
This condition is called Rarita Schwinger condition

For Spin-1 it reads
with p = (pa+pb)/m the 4-momentum of the resonance

The vector Sμμ is orthogonal to the timelike vector pμ and is therefore 
spacelike, thus S2 < 0
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Covariant Tensor Formalism

The most simple spin-1 covariant tensor with above properties is
Sμ=qμ-(qp)pμ
with q = (pa - pb)

The negative norm is assured by the equation

where qR is the break-up three-momentum

the general approach and recipe is a lecture of its own and you 
should refer to the primary literature for more information

to calculate the amplitudes and intensities you may use qft++
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qft++ Package

qft++ = Numerical Object Oriented Quantum Field Theory
(by Mike Williams, Carnegie Mellon Univ.)
Calculation of the matrices, tensors, spinors, angular momentum 
tensors etc. with C++ classes
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qft++ Package

Example:
Amplitude and Intensity given by

qft++: Declaration and Calculation

54
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Angular distribution
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Differences to the Zemach formalism 55

it is possible to show, that

for γ =E/m for the resonant system formed by (a+b)



Comparison γ=1 and γ=∞

γ=1 (non-relativistic case) γ=∞ (ultra-relativistic)

the angular distributions can be radically different

it depends on the available phase space of a resonance,
if this effect is actually measurable
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Covariant extension of the helicity formalism 57

in non-covariant description we obtained to 
relationsship

where aLS is a constant for each J

in covariant description aLS depend on λs,λL !!!



Covariant extension of the helicity formalism 58

the formula for aLS reads then

with
n=1 if S+λs+L+λL=odd and n=0 otherwise
W = √s of the two-body system and W0 = W(m0)
q = two-body breakup momentum and q0 = q(m0)
BL = Form-factor
fλ(γ) = f-function for given daughter particle with Lorentz-factors γ

Definition

with



THANK YOU
for today
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Amplitude Analysis
An Experimentalists View

Part IV

Dynamics

2

K. Peters



Overview

Dynamics
3

Scattering

T-Matrix

Breit-Wigner

Blatt-Weisskopf



Properties of Dalitz Plots

For the process M → Rm3, R→ m1m2 the matrix element 
can be expressed like

4

Winkelverteilung
(Legendre Polyn.)

Formfaktor
(Blatt-Weisskopf-F.)

Resonanz-Fkt.
(z.B. Breit Wigner)

decay angular distribution 
of R

Form-(Blatt-Weisskopf)-Factor for
M  Rm3, p=p3 in R12

Form-(Blatt-Weisskopf)-Factor for
R  m1m2, q=p1 in R12

Dynamical Function 
(Breit-Wigner, K-Matrix, Flatté)

J  L+l Z
0  0 + 0 1
0  1 + 1 cos2θ
0  2 + 2 [cos2θ – 1/3]2



Interference problem

PWA
The phase space diagram in 
hadron physics shows a pattern
due to interference and spin effects
This is the unbiased measurement
What has to be determined ?

Analogy Optics ⇔ PWA
# lamps ⇔ # level
# slits ⇔ # resonances
positions of slits ⇔ masses
sizes of slits ⇔ widths

but only if spins 
are properly assigned

bias due to hypothetical 
spin-parity assumption

Optics

Dalitz plot

5



Introducing Partial Waves, cont’d

Schrödinger‘s Equation

Scattering of particles on
a spherical potential

incoming planar wave
outgoing spherical wave

6



Introducing Partial Waves...

Compose planar wave in terms of partial waves with given L

7

Legendre-Polyn.spherical Besselfct.

with



Introducing Partial Waves, cont’d

wave without scattering

wave with scattering (only outgoing part is modified)

for the scattered wave ψS one gets 

8

Inelasticity + Phaseshift

outgoing incoming



Argand Plot 9



Standard Breit-Wigner

Full circle in the Argand Plot

Phase motion from 0 to π

10

Intensity I=ΨΨ*

Phase δ Speed dφ/dm

Argand Plot



Breit-Wigner in the Real World

e+e-→ ππ

11

mππ

ρ-ω



Isobar Model

Generalization
construct any many-body system 
as a tree of subsequent two-body decays
the overall process is dominated 
by two-body processes
the two-body systems behave 
identical in each reaction
different initial states may interfere

We need
need two-body “spin”-algebra

various formalisms
need two-body scattering formalism

final state interaction, e.g. Breit-Wigner

12

Isobar



The Full Amplitude

For each node an amplitude f(I,I3,s,Ω) is obtained.
The full amplitude is the sum of all nodes.
Summed over all unobservables

13



Dynamical Functions are Complicated

Search for resonance enhancements
is a major tool in meson spectroscopy

The Breit-Wigner Formula was derived 
for a single resonance 
appearing in a single channel

But: Nature is more complicated
Resonances decay into several channels
Several resonances appear within the same channel
Thresholds distort line shapes due to available phase space

A more general approach is needed 
for a detailed understanding (see last lecture!)
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S-Matrix

Differential cross section

Scattering amplitude

Total scattering cross section

S-Matrix 

with

and

15



Harmonic Oscillator (classics revisited)

Free oscillator

Damped oscillator

Solution

External periodic force

Oscillation strength
and phase shift
Lorentz function

16



Breit-Wigner Function

Wave function for an unstable particle

Fourier transformation for E dependence

Finally our first Breit-Wigner

17



Dressed Resonances – T meets Field Theory

Suppose we have a resonance with mass m0

We can describe this with a propagator

But we may have a self-energy term

leading to 

18



T-Matrix Perturbation

We can have an infinite number of loops inside our propagator

every loop involves a coupling b,
so if b is small, this converges like a geometric series

19

+ ... =

+ +



T-Matrix Perturbation – Retaining BW

So we get

and the full amplitude with a “dressed propagator” leads to

which is again a Breit-Wigner like function, 
but the bare energy E0 has now changed into E0-<{b}

20



Relativistic Breit-Wigner

By migrating from Schrödinger‘s equation (non-relativistic)
to Klein-Gordon‘s equation (relativistic) the energy term changes
different energy-momentum relation E=p2/m vs. E2=m2c4+p2c2

The propagators change to sR-s from mR-m

21

Intensity I=ΨΨ*Phase δArgand Plot



Barrier Factors - Introduction

At low energies, near thresholds
but is not valid far away from thresholds -- otherwise the width 
would explode and the integral of the Breit-Wigner diverges
It reflects the non-zero size of the object

Need more realistic centrifugal barriers 
known as Blatt-Weisskopf damping factors

We start with the semi-classical impact parameter

and use the approximation for the stationary solution of the radial 
differential equation

with
we obtain

22

q

L



Blatt-Weisskopf Barrier Factors

The energy dependence is usually parameterized in terms of spherical 
Hankel-Functions

we define Fl(q) with the
following features

Main problem is the choice of the scale parameter qR=qscale

23



Blatt-Weisskopf Barrier Factors (l=0 to 3)

Usage

24

by Hippel and Quigg (1972)



Form/Barrier factors 

Scales and Formulae
formula was derived from 
a cylindrical potential
the scale (197.3 MeV/c) may be 
different for different processes
valid in the vicinity of the pole

Breakup-momentum
may become complex 
(sub-threshold)

need <Fl(q)>=∫Fl(q)dBW
since Fl(q)≈ql

complex even above threshold
meaning of mass and width are 
mixed up

needs analytic continuation

25Resonant daughters
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Outline of the Unitarity Approach

The most basic feature of an amplitude is UNITARITY
Everything which comes in has to get out again
no source and no drain of probability

Idea: Model a unitary amplitude
Realization: n-Rank Matrix of analytic functions, Tij

one row (column) for each decay channel

What is a resonance?
A pole in the complex energy plane Tij(m)

with m being complex
Parameterizations: e.g. sum of poles

27

Re

Im

m0

Γ0/2



THANK YOU
for today
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