Amplitude Analysis An Experimentalists View

Lectures at the "Extracting Physics from Precision Experiments Techniques of Amplitude Analysis"

Klaus Peters
GSI Darmstadt and GU Frankfurt
Williamsburg, June 2012

Amplitude Analysis
An Experimentalists View
K. Peters

Part III

Spin-Parity

Basics

Formalisms
Examples

Formalisms - an overview (very limited)

Non-relativistic Tensor formalisms
in non-relativistic (Zemach) or covariant flavor
Fast computation, simple for small L and S

Spin-projection formalisms
where a quantization axis is chosen and proper rotations are used to define a two-body decay
Efficient formalisms, even large L and S easy to handle

Relativistic Tensor Formalisms based
on Lorentz invariants (Rarita-Schwinger)
where each operator is constructed from
Mandelstam variables only
Elegant, but extremely difficult for large L and S

Zemach Formalism

For particle with spin S
traceless tensor of rank S

Similar for orbital angular momentum L

$$
\begin{array}{ll}
l=0 & A^{0}=1 \\
l=1 & A^{1}(\vec{q})=\vec{q}
\end{array}
$$

$$
l=2 \quad A^{2}(\vec{q})=\frac{3}{2}[\vec{q} \cdot \vec{q}^{T}-\underbrace{\frac{1}{3}|\vec{q}|^{2}}_{\text {for tracelessness }}]
$$

$$
\vec{q} \cdot \vec{p}^{T}=\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)\left(\begin{array}{lll}
p_{1} & p_{2} & p_{3}
\end{array}\right)=\left(\begin{array}{lll}
q_{1} p_{1} & q_{1} p_{2} & q_{1} p_{3} \\
q_{2} p_{1} & q_{2} p_{2} & q_{2} p_{3} \\
q_{3} p_{1} & q_{3} p_{2} & q_{3} p_{3}
\end{array}\right)
$$

with indices

$$
\begin{array}{ll}
l=0 & A^{0}=1 \\
l=1 & A_{i}^{1}=q_{i} \\
l=2 & A_{i j}^{2}=\frac{3}{2} q_{i} q_{j}-\frac{1}{2}\left|q_{i}\right|^{2} \delta_{i j}
\end{array}
$$

Example: Zemach - p $\overline{\mathrm{p}}\left(0^{-+}\right) \rightarrow f_{2} \pi^{0}$

Construct total spin 0 amplitude

$$
\begin{aligned}
A^{0} & =A_{f_{2} \pi^{0}, i j}^{2} A_{\pi^{+} \pi^{-}, k l}^{2} \underbrace{\delta_{i k} \delta_{j l}}_{\text {unpolarized }} \\
& =\sum_{i, j, k, l} A_{f_{2} \pi^{0}, i j}^{2} A_{\pi^{+} \pi^{-}, k l}^{2} \delta_{i k} \delta_{j l} \\
& =\sum_{i, j} A_{f_{2} \pi^{0}, i j}^{2} A_{\pi^{+} \pi^{-}, i j}^{2} \\
A_{f_{2} \pi^{0}, i j}^{2} & =\frac{3}{2} p_{i} p_{j}-\frac{1}{2}\left|p_{i}\right|^{2} \delta_{i j} \quad A_{\pi^{+} \pi^{-}, k l}^{2}=\frac{3}{2} q_{k} q_{l}-\frac{1}{2}\left|q_{l}\right|^{2} \delta_{k l}
\end{aligned}
$$

Example: Zemach - p $\bar{p}\left(0^{-+}\right) \rightarrow f_{2} \pi^{0}$

$$
\begin{aligned}
A^{0} & =\left(\frac{3}{2} p_{i} p_{j}-\frac{1}{2}\left|p_{i}\right|^{2} \delta_{i j}\right)\left(\frac{3}{2} q_{i} q_{j}-\frac{1}{2}\left|q_{i}\right|^{2} \delta_{i j}\right) \\
& =\frac{9}{4}(\vec{q} \cdot \vec{p})^{2}-\frac{3}{4} \vec{q}^{2} \vec{p}^{2}-\frac{3}{4} \vec{q}^{2} \vec{p}^{2}+3 \frac{1}{4}|\vec{q}|^{2}|\vec{p}|^{2}=\frac{9}{4}(\vec{q} \cdot \vec{p})^{2}-\frac{3}{4} \vec{q}^{2} \vec{p}^{2} \\
I= & \frac{9}{4}\left[(\vec{q} \cdot \vec{p})^{2}-\frac{1}{3} \vec{q}^{2} \vec{p}^{2}\right]^{2}=\frac{9}{4}\left[(q p \cos \vartheta)^{2}-\frac{1}{3} q^{2} p^{2}\right]^{2} \\
& =\frac{9}{4}\left(\cos ^{2} \vartheta-\frac{1}{3}\right)^{2}=P_{2}^{0}(\vartheta)^{2}
\end{aligned}
$$

Angular distribution (Intensity)

Spin	$\mathrm{I}=0$	$\mathrm{I}=1$		2	$\mathrm{I}=1$
		lexcept $3 \pi 0$)	$\pi^{+} \pi^{-} \pi^{2}$	othermodes	$\begin{aligned} & 13 \pi^{0} \text { only! } \\ & \text { and } I=3 \end{aligned}$
0^{-}			\square	©	\square
1^{+}	\cdots				\square
2^{-}	\square			\square	\square
3^{+}	\square			(
1^{-}	\square		(-)	0	
2^{+}	-		\square		\cdots
3^{-}	\square	\square			

Fig. 2. Regions of the 3π Dalitz plot where the density must vanish because of symmetry requirements are shown in black. The vanishing is of higher order (stronger) where black lines and dots overlap. In each isospin and parity state, the pattern for a spin of $J+$ even integer is identical to the pattern for spin J, provided $J \geqq 2$. (Exception: vanishing at the center is not reguired for $J \geqq 4$.)

Spin-Projection Formalisms

Differ in choice of quantization axis

Helicity Formalism
parallel to its own direction of motion

Transversity Formalism
the component normal to the scattering plane is used

Canonical (Orbital) Formalism the component m in the incident z-direction is diagonal

Spin-Projection Formalisms

Differ in choice of quantization axis

Helicity Formalism

parallel to its own direction of motion

$$
\Psi_{\lambda}=|\tilde{p}, \lambda\rangle=\widehat{R}(\phi, \theta,-\phi) \widehat{B}(0,0, p)|m\rangle \equiv \widehat{H}(\tilde{p})|\lambda\rangle
$$

Transversity Formalism

the component normal to the scattering plane is used

$$
\Psi_{\tau}=|\tilde{p}, \tau\rangle=\sum_{\lambda}|\tilde{p} \lambda\rangle \Delta_{\lambda \tau}^{J}=\widehat{\Delta} \widehat{H}(\tilde{p}) \widehat{\Delta}^{-1}|\tau\rangle=\widehat{T}|\tau\rangle
$$

Canonical (Orbital) Formalism

the component m in the incident z-direction is diagonal

$$
\Psi_{m}=|\tilde{p} m\rangle=\sum_{\lambda}|\tilde{p}, \lambda\rangle D_{\lambda \tau}^{\prime *} \widehat{R}(\phi, \theta,-\phi)=\widehat{R}^{-1}(\phi, \theta,-\phi) \widehat{H}(\tilde{p})|m\rangle=\widehat{O}|m\rangle
$$

Key steps are

Definition of single particle states of given momentum and spin component (momentum-states),

Definition of two-particle momentum-states in the s-channel center-of-mass system and of amplitudes between them,

Transformation to states and amplitudes of given total angular momentum (J-states),

Symmetry restrictions on the amplitudes,

Derive Formulae for observable quantities.

Generalized Single Particle State

In general all single particle states are derived from a lorentz transformation and the rotation of the basic state

$$
L|\tilde{p} \xi\rangle=X(L \tilde{p}) R(L, \tilde{p})|0 \xi\rangle=\sum_{\xi^{\prime}}\left|L \tilde{p}, \xi^{\prime}\right\rangle D_{\xi^{\prime} \xi}^{\prime}(r)
$$

with the Wigner rotation

$$
R=X^{-1}(L \tilde{p}) L X(\tilde{p})
$$

| property | | Helicity | Transversity |
| ---: | :---: | :---: | :---: | Canonical

Rotation of States

Canonical System

Helicity System

Rotations

Single particle states

$$
\begin{aligned}
\left\langle j^{\prime} m^{\prime} \mid j m\right\rangle & =\delta_{j j,}, \delta_{m m^{\prime}} \\
1 & =\sum_{j, m}|j m\rangle\langle j m|
\end{aligned}
$$

Rotation R
Unitary operator U
D function represents the rotation in the angular momentum space

Valid in an inertial system

Relativistic state

$$
\begin{aligned}
U\left[R_{2} R_{1}\right] & =U\left[R_{2}\right] U\left[R_{1}\right] \\
U[R(\alpha, \beta, \gamma)] & =e^{-i \alpha \gamma_{z}} e^{-i \beta \beta_{y}} e^{-i \gamma \gamma_{2}}
\end{aligned}
$$

$$
\begin{aligned}
U[R(\alpha, \beta, \gamma)]|j m\rangle & =\sum_{m^{\prime}}\left|j m^{\prime}\right\rangle D_{m^{\prime}, m}^{* J}(\alpha, \beta, \gamma) \\
D_{m^{\prime}, m}^{* J}(\alpha, \beta, \gamma) & =\left\langle j m^{\prime}\right| U[R(\alpha, \beta, \gamma)]|j m\rangle \\
& =e^{-i m^{\prime} \alpha} d_{m^{\prime} m}^{j}(\beta) e^{-i m^{\prime} \gamma}
\end{aligned}
$$

$$
\begin{aligned}
|p, j m\rangle & =U\left[R(\Omega) L_{z}(\beta) R^{-1}(\Omega)\right]|j m\rangle \\
|p, j \lambda\rangle & =D_{m \lambda}^{j}(\Omega)|p, j m\rangle
\end{aligned}
$$

Single Particle State

Canonical

$|\tilde{p}, j m\rangle \stackrel{\text { def }}{=} L \tilde{p}|j m\rangle$

$$
=\hat{R}_{0} L_{z} p \hat{R}_{0}^{-1}|j m\rangle
$$

1) momentum vector is rotated via z-direction.
2) absolute value of the momentum is Lorentz boosted along z
3) z-axis is rotated to the
 momentum direction
$\widehat{R}_{0}=\widehat{R}_{0}(\varphi, \vartheta, 0)$
$\vec{e}_{\vec{\rho}}=\widehat{R}_{0} \vec{e}_{Z}$
$\widehat{R}|\vec{p}, m\rangle=\sum_{m^{\prime}} D_{m^{\prime} m}^{j}|\hat{R} p, m\rangle$

Two-Particle State

Canonical

constructed from two single-particle states

$$
\kappa=\frac{1}{4 \pi} \sqrt{\frac{p_{s}}{m_{J}}}=\frac{1}{4 \pi} \sqrt{\rho_{s}}
$$

$$
\left|\Omega_{s}^{0}, s m_{s} t m_{t}\right\rangle \stackrel{\text { def }}{=} K[L \underset{\left(E_{s}, \tilde{p}_{s}\right)}{\tilde{p}_{s}}\left|s m_{s}\right\rangle L \underbrace{\tilde{p}_{t}}_{\left(E_{t,-}-\tilde{p}_{s}\right)}\left|t m_{t}\right\rangle]
$$

$\left|\Omega, S m_{s}\right\rangle=\sum_{m_{s}, m_{t}}\left(s m_{s} t m_{t} \mid S m_{s}\right)\left|\Omega, s m_{s} t m_{t}\right\rangle \quad$ Couple \boldsymbol{s} and \boldsymbol{t} to \boldsymbol{s}
$\left|L m_{L} S m_{S}\right\rangle=\int d \Omega \quad Y_{m_{L}}^{L}(\Omega)\left|\Omega, S m_{S}\right\rangle \quad$ Couple \boldsymbol{L} and \boldsymbol{S} to \boldsymbol{J}
$\left.U M L S\rangle=\sum_{m_{L}, m_{S}}\left(L m_{L} S m_{S} \| M\right) \mid L m_{L} S m_{S}\right)$

$$
\begin{aligned}
= & \sum_{m_{L}, m_{S}, m_{s}, m_{t}}\left(L m_{L} S m_{S} \mid V M\right)\left(s m_{s} t m_{t} \mid S m_{S}\right) \\
& \int d \Omega Y_{m_{L}}^{L}(\Omega)\left|\Omega_{s^{\prime}}^{0}, s m_{s} t m_{t}\right\rangle
\end{aligned} \text { al Harmonics }
$$

Single Particle State

Helicity

1) z-axis is rotated to the momentum direction
2)

Lorentz Boost
Therefore the new z-axis, z^{\prime}, is parallel
to the momentum

$\hat{R}|\vec{p}, \lambda\rangle=|\widehat{R} \vec{p}, \lambda\rangle$
$|\vec{p}, \lambda\rangle=\sum_{m} D_{m \lambda}^{j}\left(R_{0}\right)|\vec{p}, m\rangle$

Two-Particle State

Helicity

similar procedure

$$
\begin{aligned}
\left|\Omega_{s}, s \lambda_{s} t \lambda_{t}\right\rangle & \stackrel{\text { def }}{=} \kappa \widehat{R}_{0}\left[L_{z} p_{s}\left|s \lambda_{s}\right\rangle L_{z} p_{t}\left|t \lambda_{t}\right\rangle\right] \\
& =\widehat{R}_{0}\left(\Omega_{s}\right)\left|\Omega=(0,0), s \lambda_{s} t \lambda_{t}\right\rangle
\end{aligned}
$$

no recoupling needed

$$
\left.U M \lambda_{s} \lambda_{t}\right\rangle=N_{J} \int d \Omega \quad D_{M, \lambda_{s}-\lambda_{t}}^{J^{*}}\left|\Omega, s \lambda_{s} t \lambda_{t}\right\rangle
$$

normalization

$$
N_{J}=\sqrt{\frac{2 J+1}{4 \pi}}
$$

Completeness and Normalization

Canonical

completeness

$$
\left.1=\sum_{J, M, L, S} U M L S\right\rangle U M L S \mid
$$

Helicity

completeness

$$
\left.1=\sum_{J, M, \lambda_{s}, \lambda_{t}} U M \lambda_{s} \lambda_{t}\right\rangle U M \lambda_{s} \lambda_{t} \mid
$$

normalization

$$
\begin{aligned}
\left\langle\Omega_{s^{\prime}}, s^{\prime} m_{s^{\prime}} t^{\prime} m_{t^{\prime}} \mid \Omega_{s}, s m_{s} t m_{t}\right\rangle & =\delta\left(\Omega_{s^{\prime}}-\Omega_{s}\right) \delta_{s s^{\prime}} \delta_{t t^{\prime}} \delta_{m_{s}} m_{s^{\prime}} \delta m_{t} m_{t^{\prime}} \\
\left.U^{\prime} M^{\prime} L^{\prime} S^{\prime} U M L S\right\rangle & =\delta_{J J^{\prime}} \delta_{M M^{\prime}} \delta_{L L^{\prime}} \delta_{S S^{\prime}}
\end{aligned}
$$

normalization

$$
\begin{aligned}
\left\langle\Omega_{s^{\prime}, s^{\prime}} \lambda_{s^{\prime}} t^{\prime} \lambda_{t^{\prime}} \mid \Omega_{s}, s \lambda_{s} t \lambda_{t}\right\rangle & =\delta\left(\Omega_{s^{\prime}}-\Omega_{s}\right) \delta_{s s^{\prime}} \delta_{t t^{\prime}} \delta_{\lambda_{s} \lambda_{s^{\prime}}} \delta_{\lambda_{t} \lambda_{t^{\prime}}} \\
U^{\prime} M^{\prime} \lambda_{s^{\prime}} \lambda_{t^{\prime}}\left|J M \lambda_{s} \lambda_{t}\right\rangle & =\delta_{J J^{\prime}} \delta_{M M^{\prime}} \delta_{\lambda_{s} \lambda_{s^{\prime}}} \delta_{\lambda_{t} \lambda_{t^{\prime}}}
\end{aligned}
$$

Canonical Decay Amplitudes

Canonical

From two-particle state

$$
\begin{aligned}
& A=\sum_{m_{s}, m_{t}}\left\langle\vec{p}_{s}, s m_{s}\right|\left\langle-\vec{p}_{s}, t m_{t}\right| \mathcal{M U M \rangle} \\
& \left\langle\Omega_{s}, s m_{s} t m_{t} \| M L S\right\rangle=\sum_{m_{L}, m_{S}}\left(L m_{L} S m_{S} \| M\right)\left(s m_{s} t m_{t} \mid S m_{S}\right) Y_{m_{L}}^{L}\left(\Omega_{s}\right) \\
& A_{m_{s} m_{t}}^{M M}=\frac{4 \pi}{\sqrt{\rho_{s}}}\left\langle\Omega_{s}, s m_{s} t m_{t}\right| \mathcal{M U M \rangle} \\
& \left.\quad=\sum_{L, S}\left\langle\Omega_{s}, s m_{s} t m_{t} \| M L S\right\rangle \frac{4 \pi}{\sqrt{\rho_{s}}} U M L S \right\rvert\, \mathcal{M U M \rangle} \\
& \quad \stackrel{\text { def }}{=} \sum_{L, S} \sqrt{4 \pi} a_{L S}\left\langle\Omega_{s}, s m_{s} t m_{t} U M L S\right\rangle
\end{aligned}
$$

$$
A_{m_{s} m_{t}}^{M} \stackrel{\text { def }}{=} \sum_{L, S, m_{L}, m_{S}} \sqrt{4 \pi} a_{L S}^{J}\left(L m_{L} S m_{S} \cup M\right)\left(s m_{s} t m_{t} \mid S m_{S}\right) Y_{m_{L}}^{L}\left(\Omega_{s}\right)
$$

$$
\text { LS-Coefficients } \quad a_{L S}^{\prime} \stackrel{\text { def }}{=} \sqrt{\frac{4 \pi}{\rho_{S}}} U M L S|\mathcal{M} U M\rangle
$$

Helicity Decay Amplitudes

Helicity

From two-particle state

$$
A=\sum_{\lambda_{s}, \lambda_{t}}\left\langle\vec{p}_{s}, s \lambda_{s}\right|\left\langle-\vec{p}_{s}, t \lambda_{t} \mid \mathcal{M} \cup M\right\rangle
$$

$$
\left\langle\Omega_{s}, s \lambda_{s} t \lambda_{t} U M \lambda_{s^{\prime}} \lambda_{t^{\prime}}\right\rangle=N_{J} D_{M, \lambda_{s^{\prime}}-\lambda_{t^{\prime}}}^{\prime *}\left(\Omega_{s}\right)
$$

$$
A_{\lambda_{s} \lambda_{t}}^{J M}=\frac{4 \pi}{\rho_{s}}\left\langle\Omega_{s}, s \lambda_{s} t \lambda_{t} \mid \mathcal{M} \cup M\right\rangle
$$

$$
=\sum_{\lambda_{s^{\prime}}, \lambda_{t^{\prime}}}\left\langle\Omega_{s}, s \lambda_{s} t \lambda_{t} \mid U M \lambda_{s^{\prime}} m_{t^{\prime}}\right\rangle \frac{4 \pi}{\rho_{s}}\langle | M \lambda_{s^{\prime}} \lambda_{t^{\prime}}|\mathcal{M}||M\rangle
$$

$$
A_{\lambda_{s} \lambda_{t}}^{J M}=N_{J} f_{\lambda_{s} \lambda_{t}} D_{M, \lambda_{s^{\prime}-\lambda_{t^{\prime}}}^{J *}\left(\Omega_{s}\right)}
$$

Helicity amplitude

$$
N f_{\lambda_{s} \lambda_{t}}=\sqrt{\frac{4 \pi}{\rho_{s}}}(2 J+1)\left\langle J M \lambda_{s} \lambda_{t} \mid \mathcal{M} \cup M\right\rangle
$$

Spin Density and Observed \# of Events

To finally calculate the intensity i.e. the number of events observed

Spin density of the initial state

$$
\rho_{M M^{\prime}}=\left(\begin{array}{lll}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right)
$$

Sum over all unobserved states

$$
I(\vartheta)_{\lambda \lambda^{\prime}}=\sum_{M, M^{\prime}, \lambda_{s} \lambda_{s^{\prime}, \lambda_{t} \lambda_{t^{\prime}}}} A_{\lambda_{s} \lambda_{t}}^{J M}(\varphi, \vartheta) \rho_{M M^{\prime}} A_{\lambda_{s^{\prime}} \lambda_{t^{\prime}}}^{J M^{\prime} *}(\varphi, \vartheta)
$$

taking into account

$$
\begin{aligned}
\lambda & =\lambda_{s}-\lambda_{t} \\
\lambda^{\prime} & =\lambda_{s^{\prime}}-\lambda_{t^{\prime}}
\end{aligned}
$$

Relations Canonical \Leftrightarrow Helicity $f_{\lambda_{s} \lambda_{t}} \Leftrightarrow a_{L S}^{\prime}$

Recoupling coefficients

Start with

$$
\begin{aligned}
\text { UMLSUMM } \left.\lambda_{s} \lambda_{t}\right\rangle= & \sqrt{\frac{2 L+1}{2 J+1}}\left(\operatorname{LOS}\left(\lambda_{s}-\lambda_{t}\right) U\left(\lambda_{s}-\lambda_{t}\right)\right) \\
& \left(s \lambda_{s} t\left(-\lambda_{t}\right) \mid S\left(\lambda_{s}-\lambda_{t}\right)\right)
\end{aligned}
$$

Canonical to Helicity

$$
\begin{aligned}
N_{f} f_{\lambda_{s} \lambda_{t}}^{f}= & \sum_{L, S} \sqrt{2 L+1}\left(L 0 S\left(\lambda_{S}-\lambda_{t}\right) \cup\left(\lambda_{S}-\lambda_{t}\right)\right) \\
& \left(s \lambda_{S} t\left(-\lambda_{t}\right) \mid S\left(\lambda_{S}-\lambda_{t}\right)\right) a_{L S}^{J}
\end{aligned}
$$

Helicity to Canonical

$$
\begin{aligned}
a_{L S}^{J}= & N_{J} \sum_{\lambda_{s}, \lambda_{t}} \frac{\sqrt{2 L+1}}{2 J+1}\left(L 0 S\left(\lambda_{s}-\lambda_{t}\right) U\left(\lambda_{s}-\lambda_{t}\right)\right) \\
& \left(s \lambda_{s} t\left(-\lambda_{t}\right) \mid S\left(\lambda_{s}-\lambda_{t}\right)\right) f_{\lambda_{s} \lambda_{t}}^{J}
\end{aligned}
$$

Clebsch-Gordan Tables

Clebsch-Gordan Coefficients are usually tabled in a graphical form (like in the PDG)

Two cases

$$
\begin{aligned}
& \text { coupling two initial particles } \\
& \text { with }\left|j_{1} m_{1}\right\rangle \text { and }\left|j_{2} m_{2}\right\rangle \\
& \text { to final system }\langle J M| \\
& \text { decay of an initial system } U M\rangle \\
& \text { to }\left\langle j_{1} m_{1}\right| \text { and }\left\langle j_{2} m_{2}\right| \\
& j_{1} \text { and } j_{2} \text { do not explicitly appear in the tables }
\end{aligned}
$$

	$j_{1} \times j_{2}$	J
M	J	
m_{1}	m_{2}	
m_{1}	m_{2}	$\left\langle j_{1} m_{1} j_{2} m_{2} U M\right\rangle$

all values implicitly contain a square root

Minus signs are meant to be used in front of the square root

Using Clebsch-Gordan Tables, Case 1

Using Clebsch-Gordan Tables, Case 2

Parity Transformation and Conservation

Parity transformation

single particle

$$
\begin{aligned}
& P|\vec{p}, j m\rangle=\eta|\varphi+\pi, \pi-\vartheta, p, j m\rangle \\
& P|\vec{p}, j \lambda\rangle=\eta e^{-l \pi j}|\varphi+\pi, \pi-\vartheta,|\vec{p}|, j-\lambda\rangle
\end{aligned}
$$

two particles

$$
\begin{aligned}
& P U M|s\rangle=\eta_{1} \eta_{2}(-1)^{l} U M|s\rangle \\
& \left.\left.U M \lambda_{1} \lambda_{2}\right\rangle=\sum_{l, s} \sqrt{\frac{2 l+1}{2 J+1}}(l 0 s \lambda U M)\left(s_{1} \lambda_{1} s_{2}\left(-\lambda_{2}\right) \mid s \lambda\right)|U M| s\right\rangle \\
& \left.P U M \lambda_{1} \lambda_{2}\right\rangle=\eta_{1} \eta_{2}(-1)^{j+s_{1}+s_{2}} U M|s\rangle
\end{aligned}
$$

helicity amplitude relations (for P conservation)

$$
\begin{aligned}
& F_{\lambda_{1} \lambda_{2}}^{\prime}=\eta \eta_{1} \eta_{2}(-1)^{j+s_{1}+s_{2}} F_{\left(-\lambda_{1}\right)\left(-\lambda_{2}\right)}^{\prime} \\
& F_{\lambda_{1} \lambda_{2}}^{\prime}{ }^{1 \equiv 2} \eta(-1)^{\prime} F_{\lambda_{2} \lambda_{1}}
\end{aligned}
$$

$f_{2} \rightarrow \pi \pi$ (Ansatz)

Initial:
Final:

$$
\begin{array}{ll}
f_{2}(1270) & I^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right) \\
\pi^{0} & I^{G}\left(J^{P C}\right)=1^{-}\left(0^{-+}\right)
\end{array}
$$

Only even angular momenta, since $\eta_{f}=\eta_{\pi}{ }^{2}(-1)^{\prime}$
Total spin $s=2 s_{\pi}=0$

$$
\text { Ansatz } \quad \begin{aligned}
A_{\lambda_{1} \lambda_{2}}^{J M} & =N_{f} F_{\lambda_{1} \lambda_{2}}^{J} D_{M \lambda}^{\prime *}(\varphi, \theta) \\
\lambda & =\lambda_{1}-\lambda_{2}=0 \\
J & =2 \\
A_{00}^{2 M} & =N_{2} F_{00}^{2} D_{M 0}^{2 *}(\varphi, \theta) \\
N_{2} F_{00}^{2} & =\sqrt{5} \underbrace{(20}_{1} \quad 00 \mid 20) \\
A_{00}^{2 M} & =\sqrt{5} a_{20} \underbrace{2 *}_{M 0}(\varphi, \theta)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
d_{(-2) 0}^{2}(\theta) e^{-2 i \varphi} \\
d_{(-1)}
\end{array} \quad\right. \text { Amplitude has to be }} \\
& \text { symmetrized because } \\
& \text { of the final state particles } \\
& d_{(\pm 2) 0}^{2}(\theta)=\frac{\sqrt{6}}{4} \sin ^{2} \theta \\
& I(\theta)=\sum_{M, M^{\prime}} A_{00}^{1 M} \rho_{M M} \cdot A_{00}^{1 M^{*}} \\
& \rho=\frac{1}{2 J+1}\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right) \\
& I(\theta)=\left|a_{20}\right|^{\left(\frac{15}{4} \sin ^{4} \theta+15 \sin ^{2} \theta \cos ^{2} \theta+5\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)^{2}\right)} \\
& 15\left(\frac{1}{4} \sin ^{4} \theta+\sin ^{2} \theta \cos ^{2} \theta+\frac{3}{4} \cos ^{4} \theta-\frac{1}{2} \cos ^{2} \theta+\frac{1}{12}\right) \\
& =\left|a_{20}\right|^{2}=\text { const }
\end{aligned}
$$

Initial:	ω	$I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$
Final:	π^{0}	$I^{G}\left(J^{P C}\right)=1^{-}\left(0^{-+}\right)$
	γ	$I^{G}\left(J^{P C}\right)=0\left(1^{--}\right)$

Only odd angular momenta, since $\eta_{\omega}=\eta_{\pi} \eta_{\gamma}(-1)^{1}$
Only photon contributes to total spin $s=s_{\pi}+s_{\gamma}$

$$
\begin{aligned}
& \text { Ansatz } \quad A_{\lambda_{1} \lambda_{2}}^{J M}=N_{j} F_{\lambda_{1} \lambda_{2}}^{J} D_{M \lambda}^{J *}(\varphi, \theta) \\
& \lambda=\lambda_{1}-\lambda_{2}=\lambda_{\gamma}=\lambda_{1} \\
& J=1 \\
& A_{\lambda 0}^{1 M}=N_{1} F_{\lambda 0}^{1} D_{M \lambda}^{1 *}(\varphi, \theta) \\
& N_{1} F_{\lambda 0}^{1}=\sqrt{3} \underbrace{\left(\begin{array}{ll}
10 & 1 \lambda \mid J \lambda
\end{array}\right)}_{-\frac{\lambda}{\sqrt{2}}} \underbrace{1 \lambda \quad 00 \mid 1 \lambda)}_{1} a_{11}^{1}=-\lambda \sqrt{\frac{3}{2}} a_{11} \\
& A_{\lambda 0}^{1 M}=-\lambda \sqrt{\frac{3}{2}} a_{11} D_{M \lambda}^{1 *}(\varphi, \theta)
\end{aligned}
$$

$\lambda_{\gamma}= \pm 1$ do not interfere, $\lambda_{\gamma}=0$ does not exist for real photons Rate depends on density matrix
Choose uniform density matrix as an example

$$
\begin{aligned}
& A_{\lambda 0}^{1 M}=-\sqrt{\frac{3}{2}}\left[\begin{array}{ccc}
-d_{(-1)(-1)}^{1}(\theta) e^{-i \varphi} & 0 & d_{(-1) 1}^{1}(\theta) e^{-i \varphi} \\
-d_{0(-1)}^{1}(\theta) & 0 & d_{01}^{1}(\theta) \\
-d_{1(-1)}^{1}(\theta) e^{i \varphi} & 0 & d_{11}^{1}(\theta) e^{i \varphi}
\end{array}\right] \\
& I(\theta)=\sum_{M, M^{\prime}, \lambda, \lambda^{\prime}} A_{\lambda 0}^{1 M} \rho_{M M^{\prime}} A_{\lambda^{\prime} \cdot 0}^{1 M^{\prime *}} \delta_{\lambda \lambda^{\prime}} \\
& \rho=\frac{1}{3}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad d_{1(\pm 1)}^{1}(\theta)=\frac{1 \pm \cos \theta}{2}=d_{(\mp 1) 1}^{1}(\theta) \\
& I=\frac{1}{2}\left[2\left(\frac{1-\cos \theta}{2}\right)^{2}+2\left(\frac{1+\cos \theta}{2}\right)^{2}+2 \frac{\sin ^{2} \theta}{2}\right] \\
& =\frac{1}{2}\left[1+\cos ^{2} \theta+\sin ^{2} \theta\right]=1=-d_{01}^{1}(\theta)=d_{0(-1)}^{1}(\theta)=\frac{\sin \theta}{\sqrt{2}}
\end{aligned}
$$

$f_{0,2} \rightarrow \gamma \gamma$ (Ansatz)

Initial:
Final:

$$
\begin{array}{ll}
f_{0,2} & I^{G}\left(\|^{P C}\right)=0^{+}\left(0,2^{++}\right) \\
\gamma & I^{G}\left(\|^{P C}\right)=0\left(1^{--}\right)
\end{array}
$$

Only even angular momenta, since $\eta_{f}=\eta_{\gamma}{ }^{2}(-1)^{\prime}$
Total spin $s=2 s_{\gamma}=2, I=0,2\left(f_{0}\right), I=0,2,4\left(f_{2}\right)$
Ansatz

$$
\begin{aligned}
A_{\lambda_{1} \lambda_{2}}^{J M}=N_{J} F_{\lambda_{1} \lambda_{2}}^{J} D_{M \lambda}^{J *}(\varphi, \theta) & =0 \\
\lambda=\lambda_{1}-\lambda_{2} & A_{\lambda_{1} \lambda_{2}}^{00}
\end{aligned}=N_{1} F_{\lambda_{1} \lambda_{2}}^{0} D_{0 \lambda}^{0 *}(\varphi, \theta) .
$$

$$
\begin{aligned}
A_{\lambda_{1} \lambda_{1}}^{00} & =N_{1} F_{\lambda_{1} \lambda_{1}}^{0} D_{00}^{0 *}(\varphi, \theta) \\
& =\left[\sqrt{\frac{1}{3}} a_{00}+\sqrt{\frac{1}{6}} a_{22}\right] \underbrace{D_{00}^{0 *}(\varphi, \theta)}_{\text {const }} \\
& =\text { const }
\end{aligned}
$$

Ratio between a_{00} and a_{22} is not measurable Problem even worse for $J=2$

$$
\left.\begin{array}{rl}
J & =2 \\
A_{\lambda_{1} \lambda_{2}}^{2 M} & =N_{2} F_{\lambda_{1} \lambda_{2}}^{2} D_{M \lambda}^{2 *}(\varphi, \theta) \\
N_{2} F_{\lambda_{1} \lambda_{2}}^{2} & =\sum_{\mid s}\left(\begin{array}{ll}
10 & s \lambda \mid J \lambda
\end{array}\right)\left(\begin{array}{ll}
s_{1} \lambda_{1} & s_{2}\left(-\lambda_{2}\right) \mid s \lambda
\end{array}\right) a_{l s} \\
& \left.=\sqrt{5} a_{20}\left(\begin{array}{ll}
20 & 00 \mid 2 \lambda
\end{array}\right)\left(\begin{array}{ll}
1 \lambda_{1} & 1\left(-\lambda_{2}\right)
\end{array}\right) \right\rvert\, 00
\end{array}\right) .
$$

$$
f_{0,2} \rightarrow \gamma \gamma\left(\text { cont }^{\prime} d\right)
$$

Usual assumption $J=\lambda=2$

$$
\begin{aligned}
& N_{2} F_{1(-1)}^{2}=\sum_{l s}\left(\begin{array}{ll}
10 & s 2 \mid 2
\end{array}\right)\left(\begin{array}{ll}
s_{1} 1 & s_{2} 1 \mid s 2
\end{array}\right) a_{1 s} \\
& =+\sqrt{5} a_{22} \underbrace{\left(\begin{array}{ll}
20 & 22 \mid 22
\end{array}\right)}_{\sqrt{\frac{2}{7}}} \underbrace{\left.\begin{array}{ll}
11 & 11 \mid 22
\end{array}\right)}_{1} \\
& +\sqrt{9} a_{42} \underbrace{\left(\begin{array}{ll}
40 & 22 \mid 22
\end{array}\right)}_{\text {t.b.d. }} \underbrace{\left(\begin{array}{ll}
11 & 11 \mid 22
\end{array}\right)}_{1}
\end{aligned}
$$

Symmetrization

$$
\begin{aligned}
A^{2 M} & =N_{2}\left(F_{1(-1)}^{2}+F_{(-1) 1}^{2}\right) D_{M 2}^{2 *}(\varphi, \theta) \\
& =N_{2}^{\prime} D_{M 2}^{2 *}(\varphi, \theta)
\end{aligned}
$$

Comparison

$$
A^{00}=N_{0}{ }^{\prime}
$$

Proton antiproton in flight into two pseudo scalars
Initial:
Final:

$$
\overline{\mathrm{p} p} \quad J, M=0, \pm 1
$$

$$
\left.\pi \quad I^{G}()^{P C}\right)=1^{-}\left(0^{-+}\right)
$$

Ansatz

Problem: d-functions are not orthogonal, if φ is not observed ambiguities remain in the amplitude - polarization is needed

$$
\begin{aligned}
& A_{\lambda_{1} \lambda_{2}}^{m}=N_{j} F_{\lambda_{1} \lambda_{2}}^{J} D_{M \lambda}^{J *}(\varphi, \theta) \\
& \lambda=\lambda_{1}-\lambda_{2}=0 \\
& J=1 \\
& A_{00}^{\prime M}=N_{j} F_{00}^{J} D_{m 0}^{*}(\varphi, \theta) \\
& N_{j} F_{00}^{J}=\sum_{1} \sqrt{2 J+1} \underbrace{(100}_{\delta_{1}} 00 \mid \rho 0) \underbrace{00}_{1} 00 \mid 00) a_{10}=\sqrt{2 J+1} a_{j 0} \\
& A_{00}^{\mu M}=\sqrt{2 J+1} a_{j 0} D_{M 0}^{\mu}(\varphi, \theta)=\sqrt{2 J+1} a_{j 0} d_{M 0}^{\mu}(\theta) e^{-i M \varphi}
\end{aligned}
$$

Two step process
First step $p \bar{p} \rightarrow \pi^{0} \omega$ - Second step $\omega \rightarrow \pi^{0} \gamma$
Combine the amplitudes

$$
\begin{aligned}
A_{\lambda_{\omega} \lambda_{\gamma}}^{J M}\left(\Omega_{\omega}, \Omega_{\gamma}\right) & =A_{\lambda_{\gamma} 0}^{1 \lambda_{\omega}}\left(\Omega_{\gamma}\right) A_{\lambda_{\omega} 0}^{J M}\left(\Omega_{\omega}\right) \\
& =N_{\omega, 1} F_{\lambda_{\gamma}}^{1} D_{\lambda_{\omega} \lambda_{\gamma}}^{\prime \lambda_{\gamma}}\left(\Omega_{\gamma}\right) N_{p \bar{p},} F_{\lambda_{\omega}}^{\prime} D_{M \lambda_{\omega}}^{\prime *}\left(\Omega_{\omega}\right) \\
& =-\lambda \sqrt{\frac{3}{2}} a_{\omega, 11} D_{\lambda_{\omega} \lambda_{\gamma}}^{1 *}\left(\Omega_{\gamma}\right) \sum_{l} \sqrt{2 I+1}\left(10 \quad 1 \lambda_{\omega} \mid J \lambda_{\omega}\right) a_{p \bar{p}, 11} D_{M \lambda_{\omega}}^{J *}\left(\Omega_{\omega}\right) \\
& =-\lambda \sqrt{\frac{3}{2}} a_{\omega, 11} D_{\lambda_{\omega} \lambda_{\gamma}}^{1 *}\left(\Omega_{\gamma}\right) D_{M \lambda_{\omega}}^{J *}\left(\Omega_{\omega}\right) \sum_{l} \sqrt{2 I+1}\left(10 \quad 1 \lambda_{\omega} \mid J \lambda_{\omega}\right) a_{p \bar{p}, 11}
\end{aligned}
$$

helicity constant $a_{\omega, 11}$ factorizes and is unimportant for angular distributions

$$
\overline{\mathrm{p}} \mathrm{p}\left(0^{-+}\right) \rightarrow f_{2} \pi^{0}
$$

Initial: $\overline{\mathrm{p}} \mathrm{p} \quad I^{G}\left(J^{P C}\right)=1^{-}\left(0^{-+}\right)$
Final:

$$
\begin{array}{ll}
f_{2(1270)} & I^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right) \\
\pi^{0} & I^{G}\left(J^{P C}\right)=1^{-}\left(0^{-+}\right)
\end{array}
$$

is only possible from $L=2$
Ansatz

$$
\lambda=\lambda_{1}-\lambda_{2}=0
$$

$$
\begin{array}{rlrl}
A_{00}^{00}\left(\Omega_{f_{2}}\right) A_{00}^{20}\left(\Omega_{\pi}\right) & =N_{p \bar{p}, 0} F_{00}^{0} D_{00}^{0 *}\left(\Omega_{f_{2}}\right) N_{f_{2}, 2} F_{00}^{2} D_{00}^{2 *}\left(\Omega_{\pi}\right) & J_{p \bar{\rho}} & =0 \\
N_{p \overline{\bar{D}}, 0} F_{00}^{0} & =\sqrt{1}\left(\begin{array}{lll}
20 & 20 \mid 00
\end{array}\right)\left(\begin{array}{lll}
20 & 00 & 20) a_{p \overline{\bar{D}}, 22}
\end{array}\right. & J_{f_{2}}=2
\end{array}
$$

$$
\begin{aligned}
& N_{f_{2}, 2} F_{00}^{2}=\sqrt{5} \underbrace{\left(\begin{array}{ll}
20 & 00 \mid 20
\end{array}\right)}_{1} \underbrace{\left(\begin{array}{ll}
00 & 00 \mid 00
\end{array}\right)}_{1} a_{f_{2}, 20} \\
& A_{00}^{00}\left(\Omega_{f_{2}}\right) A_{00}^{20}\left(\Omega_{\pi}\right)=\sqrt{5} a_{p \bar{p}, 22} a_{f_{2}, 20} D_{00}^{2 *}\left(\Omega_{\pi}\right)=\sqrt{5} a_{p \bar{p}, 22} a_{f_{2}, 20}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right) \\
& I(\cos \theta)=5\left|a_{p \bar{p}, 22} a_{f_{2}, 20}\right|^{2}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)^{2}
\end{aligned}
$$

General Statements

Flat angular distributions

General rules for spin 0
initial state has spin 0
$0 \rightarrow$ any
both final state particles have spin 0

$$
J \rightarrow 0+0
$$

Special rules for isotropic density matrix and unobserved azimuth angle
one final state particle has spin 0 and the second carries the same spin as the initial state

$$
J \rightarrow J+0
$$

Consider reaction

$$
\pi^{-}+p \rightarrow M^{0}+\mathrm{n} \quad \text { and } \quad M^{0} \rightarrow a+b
$$

Total differential cross section

$$
I(t, M, \vartheta, \varphi)=\frac{\partial^{4} \sigma}{\partial t \partial M \partial \cos \vartheta \partial \varphi}=\frac{1}{2} \sum_{\lambda_{p}, \lambda_{n}}\left|H_{\lambda_{p} \lambda_{n}}(t, M, \vartheta, \varphi)\right|^{2}
$$

expand H

$$
\sqrt{4 \pi} H_{\lambda_{\mathrm{p}} \lambda_{\mathrm{n}}}(t, M, \vartheta, \varphi)=\sum_{j=0}^{\infty} \sum_{m=-j}^{j} \sqrt{2 j+1} H_{\lambda_{\mathrm{p}} \lambda_{\mathrm{n}}, m}^{j} d_{m 0}^{j}(\vartheta) e^{l m \varphi}
$$

leading to

$$
\begin{aligned}
4 \pi I(\vartheta, \varphi)= & \frac{1}{2} \sum_{\lambda_{\mathrm{p}}, \lambda_{n}} \sum_{j_{2}, m_{2}} \sum_{j_{1}, m_{1}} \sqrt{2 j_{1}+1} \sqrt{2 j_{2}+1} e^{l\left(m_{1}-m_{2}\right) \varphi} \\
& \times H_{\lambda_{\mathrm{p}}, \lambda_{n}, m_{1}}^{j_{1} *} H_{\lambda_{\mathrm{p}}, \lambda_{n}, m_{2}}^{j_{2}} d_{m_{1} 0}^{j_{1}}(\vartheta) d_{m_{2} 0}^{j_{2}}(\vartheta)
\end{aligned}
$$

Define now a density tensor

$$
\rho_{m_{1} m_{2}}^{j_{1} j_{2}}=\frac{1}{2 N} \sum_{\lambda_{\mathrm{p}}, \lambda_{\mathrm{n}}} H_{\lambda_{\mathrm{p}}, \lambda_{n}, m_{1}}^{j_{1} *} H_{\lambda_{\mathrm{p}}, \lambda_{n}, m_{2}}^{j_{2}}
$$

the d-function products
can be expanded in spherical harmonics
and the density matrix gets absorbed in a spherical moment

$$
\begin{aligned}
& I(t, M, \vartheta, \varphi)=N \sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left\langle Y_{l}^{m}\right\rangle Y_{l}^{m}(\vartheta, \varphi) \\
& I_{p r o d}(t, M, \vartheta, \varphi)=\sum_{l=0}^{\infty} \sum_{m=0}^{l} t_{l}^{m} Y_{l}^{m}(\vartheta, \varphi)
\end{aligned}
$$

Example: Where to start in Dalitz plot anlysis

Sometimes a moment-analysis can help to find important contributions best suited if no crossing bands occur

$$
\begin{aligned}
t(L M) & =\left\langle D_{M 0}^{L}(\varphi, \theta, 0)\right\rangle \\
& =\int I(\Omega) D_{M_{0}}^{L}(\varphi, \theta, 0) d \Omega
\end{aligned}
$$

Striking $K^{*}(892)$ bands
asymmetry implies strong S-wave interference (in $K \pi$)

Dalitz plot analysis as an Interferometer

Model-independent
analysis by using interference to fix the S-wave

Recipe

Create slices in $m^{2}\left(K^{-} \pi^{+}\right)$ S-wave is than a binned
function with parameters c_{k} and γ_{k}
$S=c_{k} \mathrm{e}^{\mathrm{i} \gamma_{k}}$

Model well known
P - and D-wave (K^{*}, K_{1} and K_{2}^{*})
add form factors and put this into the fit
main uncertainty from K^{*} and K_{1}

D

Comparison with Data

Proton-Antiproton Annihilation @ Rest

Atomic initial system

formation at high n, I ($n \sim 30$)
slow radiative transitions
de-excitation through
collisions
(Auger effect)
Stark mixing of l-levels
(Day, Snow, Sucher, 1960)

Advantages

$J^{P C}$ varies with target density isospin varies with n (d) or p target
incoherent initial states
unambiguous PWA possible
Disadvantages
phase space very limited
small kaon yield

Quantumnumbers

$$
\begin{aligned}
& G=(-1)^{1+L+S} \\
& P=(-1)^{L+1} \\
& C=(-1)^{L+S} C P=(-1)^{2 L+S+1} \\
& I=0 \\
& |i\rangle=1 / \sqrt{2}(|p \bar{p}\rangle+|n \bar{n}\rangle) \\
& I=1 \\
& |i\rangle=1 / \sqrt{2}(|p \bar{p}\rangle-|n \bar{n}\rangle)
\end{aligned}
$$

	$J^{P C}$		I^{G}	L	S
${ }^{1} S_{0}$	0^{-+}	pseudo scalar	$1 ; 0^{+}$	0	0
${ }^{3} S_{1}$	1^{--}	vector	$1^{+} ; 0^{-}$	0	1
${ }^{1} P_{1}$	1^{+-}	axial vector	$1^{+} ; 0^{-}$	1	0
${ }^{3} P_{0}$	0^{++}	scalar	$1 ; 0^{+}$	1	1
${ }^{3} P_{1}$	1^{++}	axial vector	$1 ; 0^{+}$	1	1
${ }^{3} P_{2}$	2^{++}	tensor	$1 ; 0^{+}$	1	1

Proton-Antiproton Annihilation in Flight

Annihilation in flight

scattering process:
no well defined initial state
maximum angular momentum rises with energy
Advantages
larger phase space formation experiments
Disadvantages
many waves interfere with each other
many waves due to large phase space
len
$\bar{p} p$ helicity amplitude

$$
\begin{aligned}
& H_{\nu_{1} v_{2}}^{\prime}=\sum_{L, S} \frac{\sqrt{2 L+1}}{\sqrt{2 J+1}}(\operatorname{LOSv} \mid J v)\left(s_{1} \nu_{1} s_{2}-v_{2} \mid S v\right)(J M L S \mid M J M) \\
& H_{\nu_{1} \nu_{2}}^{\jmath}=\eta_{J}(-1)^{J} H_{-v_{2}\left(-v_{1}\right)}^{J} \\
& \begin{array}{l}
\text { CP transform } \\
\text { only } H_{\text {and }}{ }^{H} P^{-1}=(-1)^{2 L+5+1} \text { exist }
\end{array} \\
& S \text { and } C P \text { directly correlated } \\
& \text { CP conserved in strong int. } \\
& \text { singlet and triplet decoupled }
\end{aligned}
$$

C tntyariofrfon
H_{++}E日infolforiteredAy correlated
$C P$-Invarizncenserved in strong int.

4 incoherent sets of coherent amplitudes

Scattering Amplitudes in $\overline{\mathrm{p}} \mathrm{p}$ in Flight (II)

Singlett even L	$J^{P C}$	L	S	H_{++}	H_{+-}
${ }^{1} S_{0}$	0^{-+}	0	0	Yes	No
${ }^{1} D_{2}$	2^{-+}	2	0	Yes	No
${ }^{1} G_{4}$	4^{-+}	4	0	Yes	No

Singlett odd L	$J^{P C}$	L	S	H_{++}	H_{+-}
${ }^{1} P_{1}$	1^{+-}	1	0	Yes	No
${ }^{1} F_{3}$	3^{+-}	3	0	Yes	No
${ }^{1} G_{5}$	5^{+-}	5	0	Yes	No
Triplett odd L	$J^{P C}$	L	S	H_{++}	H_{+-}
${ }^{3} P_{0}$	0^{++}	1	1	Yes	No
${ }^{3} P_{1}$	1^{++}	1	1	No	Yes
${ }^{3} P_{2}$	2^{++}	1	1	Yes	Yes
${ }^{3} F_{2}$	2^{++}	3	1	Yes	No
${ }^{3} F_{3}$	3^{++}	3	1	No	Yes
${ }^{3} F_{4}$	4^{++}	3	1	Yes	Yes

Tensors revisited

The Zemach amplitudes are only valid in the rest frame of the resonance.

Thus they are not covariant
Retain covariance by adding the time component and use 4-vectors Behavior under spatial rotations dictates that the time component of the decay momentum vanishes in the rest frame

This condition is called Rarita Schwinger condition

For Spin-1 it reads $S u=S_{\mu} p^{\mu}=0$
with $p=\left(p_{a}+p_{b}\right) / m$ the 4-momentum of the resonance

The vector $S_{\mu \mu}$ is orthogonal to the timelike vector p_{μ} and is therefore spacelike, thus $S^{2}<0$

Covariant Tensor Formalism

The most simple spin-1 covariant tensor with above properties is

$$
\begin{aligned}
& S_{\mu}=q_{\mu}-(q p) p_{\mu} \\
& \text { with } q=\left(p_{a}-p_{b}\right)
\end{aligned}
$$

The negative norm is assured by the equation

$$
S^{2}=q^{2}-(q p)^{2}=-\left|q_{R}\right|^{2}
$$

where q_{R} is the break-up three-momentum
the general approach and recipe is a lecture of its own and you should refer to the primary literature for more information
to calculate the amplitudes and intensities you may use qft++
qft $++=$ Numerical Object Oriented Quantum Field Theory (by Mike Williams, Carnegie Mellon Univ.)
Calculation of the matrices, tensors, spinors, angular momentum tensors etc. with $\mathrm{C}++$ classes

qft++ Class	Symbol	Concept
Matrix<T>	$a_{i j}$	matrices of any dimension
Tensor<T>	x_{μ}	tensors of any rank
MetricTensor	$g_{\mu \nu}$	Minkowski metric
LeviCivitaTensor	$\epsilon_{\mu \nu \alpha \beta}$	totally anti-symmetric Levi-Civita tensor
DiracSpinor	$u_{\mu_{1} \ldots \mu_{J-1 / 2}(p, m)}$	
DiracAntiSpinor	$v(p, m)$	half-integral spin wave functions
DiracGamma	γ^{μ}	Dirac matrices
DiracGamma5	γ^{5}	
DiracSigma	$\sigma^{\mu \nu}$	integral spin wave functions
PolVector	$\epsilon_{\mu_{1} \ldots \mu_{J}}(p, m)$	orbital angular momentum tensors wave functions
OrbitalTensor	$L_{\mu_{1} \ldots \mu_{\ell}}^{(\ell)}$	

qft++ Package

Example: $X\left(2^{-}\right) \rightarrow \omega K \rightarrow \pi^{+} \pi^{-} \pi^{0} K$

Amplitude and Intensity given by

$$
\mathcal{A} \propto \epsilon_{\mu}^{*}\left(p_{\omega}, m_{\omega}\right) L^{(3) \mu \nu \alpha}\left(p_{\omega K}\right) \epsilon_{\nu \alpha}(P, M) \text { and } \mathcal{I} \propto \sum_{M= \pm 1} \sum_{m_{\omega}= \pm 1,0}|\mathcal{A}|^{2}
$$

qft++: Declaration and Calculation

```
PolVector epso; // omega
PolVector epsx(2); // X
OrbitalTensor orb3(3); // L^3
Tensor<complex<double> > amp;
Vector4<double> p4o,p4k,p4x;
double intensity = 0.;
for(Spinm = -1;m<= 1; m+=2){
    for(Spin mo = -1; mo<= 1; mo++){
        amp = conj(epso(mo))*orb3|epsx(m);
        intensity += norm(amp());
    }
}
```


Angular distribution of $X \rightarrow \omega K$

$$
\begin{aligned}
& I(0 \rightarrow 1+1) \propto\left(1+z^{2}\right) \cos ^{2} \theta \\
& I(1 \rightarrow 1+0) \propto 1+z^{2} \cos ^{2} \theta \\
& I(1 \rightarrow 1+1) \propto 1-\cos ^{2} \theta \\
& I(2 \rightarrow 2+0) \propto 1+z^{2}\left(\frac{1}{3}+\cos ^{2} \theta\right)+z^{4}\left(\cos ^{2} \theta-\frac{1}{3}\right)^{2}
\end{aligned}
$$

it is possible to show, that

$$
z^{2}=\gamma^{2}-1
$$

for $\gamma=E / m$ for the resonant system formed by (a+b)

Comparison $\gamma=1$ and $\gamma=\infty$

$\gamma=1$ (non-relativistic case)	$\gamma=\infty$ (ultra-relativistic)
$I(0 \rightarrow 1+1) \propto \cos ^{2} \theta$	$I(0 \rightarrow 1+1) \propto \cos ^{2} \theta$
$I(1 \rightarrow 1+0) \propto 1$	$I(1 \rightarrow 1+0) \propto \cos ^{2} \theta$
$I(1 \rightarrow 1+1) \propto 1-\cos ^{2} \theta$	$I(1 \rightarrow 1+1) \propto 1-\cos ^{2} \theta$
$I(2 \rightarrow 2+0) \propto 1$	$I(2 \rightarrow 2+0) \propto\left(\cos ^{2} \theta-\frac{1}{3}\right)^{2}$

the angular distributions can be radically different
it depends on the available phase space of a resonance, if this effect is actually measurable

Covariant extension of the helicity formalism

in non-covariant description we obtained to relationsship

$$
\begin{aligned}
N J f_{\lambda_{s} \lambda_{t}}^{\prime}= & \sum_{L, S} \sqrt{2 L+1}\left(L 0 S\left(\lambda_{S}-\lambda_{t}\right) \cup\left(\lambda_{S}-\lambda_{t}\right)\right) \\
& \left(S \lambda_{S} t\left(-\lambda_{t}\right) \mid S\left(\lambda_{S}-\lambda_{t}\right)\right) a_{L S}^{J}
\end{aligned}
$$

where $a_{L S}$ is a constant for each J
in covariant description $a_{L S}$ depend on $\lambda_{s}, \lambda_{L}!!!$

Covariant extension of the helicity formalism

the formula for $a_{L S}$ reads then

$$
\begin{aligned}
a_{L S}^{\prime}= & g_{L S} N_{J} \sum_{\lambda_{s}, \lambda_{t}} \sqrt{\frac{2 L+1}{2 J+1}}\left(L O S\left(\lambda_{S}-\lambda_{t}\right) U\left(\lambda_{S}-\lambda_{t}\right)\right) \\
& \left(s \lambda_{S} t\left(-\lambda_{t}\right) \mid S\left(\lambda_{S}-\lambda_{t}\right)\right)\left(\frac{W}{W^{0}}\right)^{n} B_{L}\left(q, q_{0}\right) f_{\lambda_{s}}\left(\gamma_{1}\right)^{S} f_{\lambda_{t}}\left(\gamma_{2}\right)^{T}
\end{aligned}
$$

with
$n=1$ if $\mathrm{S}+\lambda_{s+L+} \lambda_{L}=$ odd and $n=0$ otherwise
$W=\sqrt{ } s$ of the two-body system and $W_{0}=W\left(m_{0}\right)$
$q=$ two-body breakup momentum and $q_{0}=q\left(m_{0}\right)$
$B_{L}=$ Form-factor
$f_{\lambda}(\gamma)=f$-function for given daughter particle with Lorentz-factors γ
Definition

$$
f_{n}^{j}(\gamma)=a^{j}(n) \sum_{n_{0}} b^{j}\left(n, n_{0}\right)(2 \gamma)^{n_{0}} \quad \text { with } \quad \begin{aligned}
a^{j}(n) & =\frac{(j+m)!(j-m)}{(2 j)!} \\
b^{j}\left(n, n_{0}\right) & =\frac{j!}{n_{+}!n_{0}!n_{-}!} \\
2 n_{ \pm} & =J \pm n-n_{0}
\end{aligned}
$$

THANK YOU

for today

Amplitude Analysis An Experimentalists View

Lectures at the "Extracting Physics from Precision Experiments Techniques of Amplitude Analysis"

Klaus Peters
GSI Darmstadt and GU Frankfurt
Williamsburg, June 2012

Amplitude Analysis An Experimentalists View

K. Peters

Part IV

Dynamics

Dynamics

Scattering
T-Matrix
Breit-Wigner
Blatt-Weisskopf

Properties of Dalitz Plots

For the process $M \rightarrow R \mathrm{~m}_{3}, R \rightarrow \mathrm{~m}_{1} \mathrm{~m}_{2}$ the matrix element can be expressed like

$$
\mathcal{M}_{R}\left(L, m_{12}, m_{23}\right)=Z(L, \vec{p}, \vec{q}) \cdot B_{L}^{M}(p) \cdot B_{L}^{R}(q) \cdot T_{R}\left(m_{12}\right)
$$

Winkelverteilung
(Legendre Polyn.) (Blatt-Weisskopf-F.) (z.B. Breit Wigner)

Interference problem

PWA
The phase space diagram in hadron physics shows a pattern due to interference and spin effects This is the unbiased measurement What has to be determined ?

Analogy Optics \Leftrightarrow PWA
\# lamps \Leftrightarrow \# level
\# slits \Leftrightarrow \# resonances
positions of slits \Leftrightarrow masses
sizes of slits \Leftrightarrow widths
but only if spins
are properly assigned

Optics
$I(x)=\left|A_{1}(x)+A_{2}(x) e^{l \varphi}\right|^{2}$
Dalitz plot
$I(m)=\left|A_{1}(m)+A_{2}(m) e^{l \varphi}\right|^{2}$
bias due to hypothetical spin-parity assumption

Introducing Partial Waves, cont'd

Schrödinger's Equation

$$
\begin{gathered}
-\frac{\hbar}{2 \mu} \nabla^{2} \Psi(\vec{r})+V(\vec{r}) \Psi(\vec{r})=E \Psi(\vec{r}) \\
\vec{k}=\frac{\vec{p}}{\hbar}=\mu \frac{\vec{v}}{\hbar} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
\end{gathered}
$$

Scattering of particles on a spherical potential
incoming planar wave
outgoing spherical wave

$$
\Psi_{i}=e^{i k z} ; \Psi_{f}=f(\theta) \frac{e^{i k r}}{r} \longrightarrow\| \|\| \| \|
$$

Introducing Partial Waves...

Compose planar wave in terms of partial waves with given L

$$
\begin{aligned}
& e^{i k z}=e^{i k r \cos \theta}=\sum_{l} U_{l}(r) P_{l}(\cos \theta)=\sum_{l=0}^{\infty}(2 l+1) i^{l} j_{l}(k r) P_{l}(\cos \theta) \\
& \text { with } j_{l}(k r) \stackrel{k r \rightarrow \infty}{k r} \frac{\sin \left(k r-\frac{l \pi}{2}\right)}{k r}=\frac{1}{2 i k r}\left[e^{i\left(k r-\frac{l \pi}{2}\right)}-e^{-i\left(k r-\frac{l \pi}{2}\right)}\right] \\
& e^{i k z}=\sum_{l} \frac{(2 l+1) i^{l}}{2 i k r}\left[e^{i\left(k r-\frac{l \pi}{2}\right)}-e^{-i\left(k r-\frac{l \pi}{2}\right)}\right] P_{l}(\cos \theta)
\end{aligned}
$$

Introducing Partial Waves, cont'd

wave without scattering
outgoing incoming

$$
\Psi \stackrel{k r \rightarrow \infty}{ } \sum_{l} \frac{(2 l+1) i^{l}}{2 i k r}\left[e^{i\left(k r-\frac{l \pi}{2}\right)}-e^{-i\left(k r-\frac{l \pi}{2}\right)}\right] P_{l}(\cos \theta)
$$

wave with scattering (only outgoing part is modified)

$$
\psi^{\prime} \stackrel{k r \rightarrow \infty}{\longrightarrow} \sum_{l} \frac{(2 l+1) i^{l}}{2 i k r}[\eta_{l} e^{2 i \delta l} \underbrace{i\left(k r-\frac{l \pi}{2}\right)}_{\text {Inelasticity }+ \text { Phaseshift }}-e^{-i\left(k r-\frac{l \pi}{2}\right)}] P_{l}(\cos \theta)
$$

for the scattered wave ψ_{s} one gets

$$
e^{i k r}\left(e^{-\frac{i \pi}{2}}\right)^{l}=e^{i k r}(-i)^{l}
$$

$$
\psi_{S}=\psi^{\prime}-\psi=f(\theta) \frac{e^{i k r}}{r}=\sum_{l} \frac{(2 l+1) i^{l}}{2 i k r}\left(n_{l} e^{2 i \delta_{l}}-1\right) e^{\overbrace{i\left(k r-\frac{l \pi}{2}\right)}^{i}}
$$

$$
\Psi_{S}=\left[\frac{1}{k} \sum_{l}(2 l+1) \frac{\eta_{l} e^{2 i \delta_{l}}-1}{2 i} P_{l}(\cos \theta)\right] \cdot \frac{e^{i k r}}{r} \quad T_{l}=\frac{\eta_{l} e^{2 i \delta_{l}}-1}{2 i}
$$

$$
\begin{aligned}
& z=(a, b)=(a=\mathfrak{R}[z], b=\mathfrak{J}[z]) \Rightarrow(r, \varphi) \\
& z=a+l b=r e^{\iota \varphi}=\cos \varphi+\iota \operatorname{sn} \varphi \\
& r=\sqrt{a^{2}+b^{2}} \\
& \varphi=\tan ^{-1} \frac{b}{a} \\
& \eta=2 \sqrt{a^{2}+\left(b-\frac{1}{2}\right)^{2}} \\
& \delta=\frac{1}{2} \tan ^{-1}\left(\frac{b-\frac{1}{2}}{a}\right)+\frac{\pi}{4}
\end{aligned} \quad(a, b) \Rightarrow(r, \varphi) \quad \xrightarrow[\operatorname{Re}(\mathrm{T})]{\phi} \quad l
$$

Standard Breit-Wigner

Full circle in the Argand Plot

Breit-Wigner in the Real World

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi \pi
$$

Generalization

construct any many-body system as a tree of subsequent two-body decays the overall process is dominated by two-body processes
the two-body systems behave identical in each reaction
different initial states may interfere

We need
need two-body "spin"-algebra various formalisms
need two-body scattering formalism
final state interaction, e.g. Breit-Wigner

For each node an amplitude $f\left(I, I_{3}, s, \Omega\right)$ is obtained.
The full amplitude is the sum of all nodes.
Summed over all unobservables

Dynamical Functions are Complicated

Search for resonance enhancements is a major tool in meson spectroscopy

The Breit-Wigner Formula was derived
for a single resonance appearing in a single channel

But: Nature is more complicated
Resonances decay into several channels
Several resonances appear within the same channel
Thresholds distort line shapes due to available phase space

A more general approach is needed for a detailed understanding (see last lecture!)

Differential cross section

$$
\frac{d \sigma_{f i}}{d \Omega}=\frac{1}{(8 \pi)^{2} s}\left(\frac{q_{f}}{q_{i}}\right)\left|\mathcal{M}_{f i}\right|^{2}=\left|f_{f i}(\Omega)\right|^{2}
$$

Scattering amplitude

$$
f_{f i}(\Omega)=\frac{1}{q_{i}} \sum_{J}(2 J+1) T_{f i}^{J}(s) D_{\lambda \mu}^{\prime *}(\phi, \theta, 0)
$$

$$
\text { S-Matrix } \quad S=I+2 \iota T
$$

Total scattering cross section
$\sigma_{f i}=\left(\frac{4 \pi}{q_{i}^{2}}\right)(2 J+1)\left|T_{f i}^{J}(s)\right|^{2}$
with $\quad|i\rangle=\left|a b, J M \lambda_{a} \lambda_{b}\right\rangle$
$|f\rangle=\left|c d, J M \lambda_{c} \lambda_{d}\right\rangle$
$\langle f \mid i\rangle=\delta_{i j}$
and

$$
S_{f i}=\langle f| S|i\rangle \quad S S^{\dagger}=S^{\dagger} S=I
$$

Free oscillator

$$
\ddot{x}+\omega_{0}^{2} x=0
$$

Damped oscillator

$$
\ddot{x}+2 \lambda \dot{x}+\omega_{0}^{2} x=0
$$

Solution

$$
x(t)=A e^{-\lambda t} \cos (\omega t+\alpha) \quad \text { with } \quad \omega=\sqrt{\omega_{0}^{2}+\lambda^{2}}
$$

External periodic force

$$
\ddot{x}+2 \lambda \dot{x}+\omega_{0}^{2} x=\frac{f}{m} \cos \omega_{R} t=\frac{f}{m} \Re\left[e^{\iota \omega_{R} t}\right]
$$

Oscillation strength and phase shift Lorentz function

$$
I\left(\omega_{R}\right)=\frac{f^{2}}{4 m} \frac{\lambda}{\left(\omega_{R}-\omega_{0}\right)^{2}+\lambda^{2}} \quad \tan \delta=\frac{2 \lambda \omega_{R}}{\omega_{0}^{2}-\omega_{R}^{2}}
$$

Breit-Wigner Function

Wave function for an unstable particle

$$
\psi(t)=\Psi_{0} e^{-l \omega_{R} t} e^{-\frac{t}{2 \tau}}=\Psi_{0} e^{-l \omega_{R} t} e^{-\frac{\Gamma}{2} t}
$$

Fourier transformation for E dependence

$$
\begin{aligned}
\Psi(\omega) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Psi(t) e^{\iota \omega t} d t=\frac{\Psi_{0}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\iota\left(\omega-\omega_{R}+\iota \frac{\Gamma}{2}\right) t} d t \\
& =\frac{\Psi_{0}}{\omega-\omega_{R}-\iota \frac{\Gamma}{2}}\left[\frac{1}{\sqrt{2 \pi}} e^{\left.\iota\left(\omega-\omega_{R}+l \frac{\Gamma}{2}\right) t\right]_{-\infty}^{\infty}}\right. \\
& =\frac{K}{\left(E_{R}-E\right)-\iota \frac{\Gamma}{2}} \quad \Psi(E)=\frac{\frac{\Gamma}{2}}{\left(E_{R}-E\right)-l \frac{\Gamma}{2}}
\end{aligned}
$$

Suppose we have a resonance with mass m_{0}

We can describe this with a propagator $T=V_{12} \frac{1}{E_{0}-E} V_{12}$
But we may have a self-energy term

M_{2} leading to $T=V_{12} \frac{1}{E_{0}-E} b \frac{1}{E_{0}-E} V_{12}=\frac{V_{12} b V_{12}}{\left(E_{0}-E\right)^{2}}$

We can have an infinite number of loops inside our propagator

$$
T=V_{12} \frac{1}{E_{0}-E} V_{12}+\frac{V_{12} b V_{12}}{\left(E_{0}-E\right)^{2}}+\frac{V_{12} b^{2} V_{12}}{\left(E_{0}-E\right)^{3}}+\ldots
$$

every loop involves a coupling \boldsymbol{b},
so if \boldsymbol{b} is small, this converges like a geometric series

So we get $\begin{aligned} T & =\frac{V_{12} V_{12}}{E_{0}-E}\left(1+\frac{b}{E_{0}-E}+\frac{b^{2}}{\left(E_{0}-E\right)^{2}}+\ldots\right) \\ & =\frac{V_{12} V_{12}}{E_{0}-E}\left(\frac{1}{1-\frac{b}{E_{0}-E}}\right) \\ & =\frac{V_{12} V_{12}}{E_{0}-E-b}\end{aligned}$
and the full amplitude with a "dressed propagator" leads to

$$
\begin{aligned}
T & =\frac{V_{12} V_{12}}{E_{0}-\Re[b]-E-\mathfrak{I}[b]} \\
& =\frac{V_{12} V_{12}}{E_{R}-E-\mathfrak{I}[b]}
\end{aligned}
$$

which is again a Breit-Wigner like function, but the bare energy $\boldsymbol{E}_{\boldsymbol{o}}$ has now changed into $\boldsymbol{E}_{\mathbf{o}}-\Re\{\boldsymbol{b}\}$

By migrating from Schrödinger's equation (non-relativistic)
to Klein-Gordon's equation (relativistic) the energy term changes different energy-momentum relation $E=p^{2} / m$ vs. $E^{2}=m^{2} c^{4}+p^{2} c^{2}$

The propagators change to $s_{R}-s$ from $m_{R}-m$

$$
T(s)=\frac{\gamma}{s_{r}-s-\iota \frac{2 q \gamma}{\sqrt{s}}}=\frac{\Gamma}{m_{r}^{2}-m^{2}-\iota \rho m_{0} \Gamma}
$$

Barrier Factors - Introduction

At low energies, near thresholds $\quad \Gamma_{r} \propto q^{2 l+1}=\rho q^{2 l}$

but is not valid far away from thresholds -- otherwise the width would explode and the integral of the Breit-Wigner diverges
It reflects the non-zero size of the object

Need more realistic centrifugal barriers

known as Blatt-Weisskopf damping factors
We start with the semi-classical impact parameter

$$
b=[L(L+1)]^{\frac{1}{2}} / q
$$

and use the approximation for the stationary solution of the radial

$$
\begin{aligned}
& \text { differential equation } \\
& \frac{\partial^{2}}{\partial \rho^{2}} U_{l}^{n} \rho \simeq\left(\frac{b_{n}^{2}}{r^{2}}-1\right) U_{l}^{n} \rho \quad U_{l}^{n} \rho^{r>R} i C_{n} \rho h_{l}^{(1)}(\rho) \sim C_{n} e^{l}\left(\rho-\frac{1}{2} L \pi\right)
\end{aligned}
$$

with

$$
\left[H_{l}^{n}(R / b)\right]^{-1} \equiv \rho^{2}\left|h_{l}^{(1)}(\rho)\right|^{2} \text { we obtain }
$$

$$
\Gamma_{n}\left(q_{n}\right)=\Gamma_{n}^{0} \frac{\frac{q_{n}}{m} H_{l}^{n}\left(R / b_{n}\right)}{\frac{q_{n}^{0}}{m} H_{l}^{n}\left(R / b_{n}^{0}\right)}
$$

Blatt-Weisskopf Barrier Factors

The energy dependence is usually parameterized in terms of spherical Hankel-Functions

$$
\begin{aligned}
& j_{l}(x) \equiv \frac{\pi}{2 x}_{\frac{1}{2}} j_{1+\frac{1}{2}}(x) \\
& n_{l}(x) \equiv \frac{\pi}{2 x} \frac{1}{2} N_{1+\frac{1}{2}}(x) \\
& h_{l}^{(1,2)}(x) \equiv \frac{\pi}{2 x}^{\frac{1}{2}}\left[J_{1+\frac{1}{2}}(x) \pm N_{1+\frac{1}{2}}(x)\right] \\
& h_{0}^{(1)}(x)=\frac{e^{l x}}{l x} \\
& h_{1}^{(1)}(x)=\frac{-e^{l x}\left(1+\frac{l}{x}\right)}{x} \\
& F_{l}(q) \quad x=\frac{q}{q_{\text {scale }}} \\
& \begin{array}{l}
\text { we define } F_{l}(q) \text { with } \\
\text { following features }
\end{array} \\
& h_{2}^{(1)}(x)=\frac{e^{l x}\left(1+\frac{3 l}{x}-\frac{3}{x^{2}}\right)}{x} \quad \begin{array}{ll}
F_{l}(q) & \begin{array}{l}
q \rightarrow q_{\text {scale }} \\
q \rightarrow 0
\end{array} \\
F_{l}(q) & 1 \\
= & q^{l}
\end{array}
\end{aligned}
$$

Main problem is the choice of the scale parameter $q_{R}=q_{\text {scale }}$

$$
\begin{aligned}
F_{0}(x) & =1 \\
F_{1}(x) & =\sqrt{\frac{x}{x+1}} \\
F_{2}(x) & =\sqrt{\frac{13 x^{2}}{(x-3)^{2}+9 x}} \\
F_{3}(x) & =\sqrt{\frac{277 x^{3}}{x(x-15)^{2}+9(2 x-5)^{2}}} \\
B_{l}\left(q, q_{R}\right) & =\frac{F_{l}(q)}{F_{l}\left(q_{R}\right)}
\end{aligned}
$$

by Hippel and Quigg (1972)

Usage

$$
T_{l}(s)=\frac{B_{l}^{2}(q) \Gamma}{m_{r}^{2}-m^{2}-\iota B_{l}^{2}(q) m_{0} \Gamma}
$$

Form/Barrier factors Resonant daughters

$$
\rho_{i} \rightarrow 1 \text { as } m^{2} \rightarrow \infty ; \quad \rho_{i}=\frac{2 q_{i}}{m}=\sqrt{\left[1-\left(\frac{m_{a}+m_{b}}{m}\right)^{2}\right]\left[1-\left(\frac{m_{a}-m_{b}}{m}\right)^{2}\right]}
$$

Scales and Formulae

formula was derived from a cylindrical potential the scale (197.3 MeV/c) may be different for different processes valid in the vicinity of the pole

Breakup-momentum

may become complex (sub-threshold)
need $\left\langle F^{\prime}(q)\right\rangle=\int F^{\prime}(q) d B W$
since $F^{\prime}(q) \approx q^{\prime}$
complex even above threshold meaning of mass and width are mixed up
needs analytic continuation

```
Input = Output
```


Outline of the Unitarity Approach

The most basic feature of an amplitude is UNITARITY

Everything which comes in has to get out again no source and no drain of probability

Idea: Model a unitary amplitude
Realization: n-Rank Matrix of analytic functions, $T_{i j}$ one row (column) for each decay channel

What is a resonance?
A pole in the complex energy plane $T_{i j}(m)$ with m being complex
Parameterizations: e.g. sum of poles

$$
\frac{1}{m_{0}-i \frac{\Gamma_{0}}{2}}
$$

THANK YOU
 for today

