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Formalisms — an overview (very limited)

Non-relativistic Tensor formalisms
in non-relativistic (Zemach) or covariant flavor
Fast computation, simple for small L and S

Spin-projection formalisms

where a quantization axis is chosen and proper rotations are used to
define a two-body decay

Efficient formalisms, even large L and S easy to handle

Relativistic Tensor Formalisms based
on Lorentz invariants (Rarita-Schwinger)

where each operator is constructed from
Mandelstam variables only

Elegant, but extremely difficult for large L and S




Zemach Formalism

For particle with spin S Similar for orbital angular
traceless tensor of rank S momentum L
[ =0 Al =1
[ =1 Al @ =3
3 1
l=2 A2_’=— _'._'T_ _"2
(g) > 199 3MI
L for tracelessness._
T a1 qdipi1 gipz2 gipPs
Gp'=| g2 |(P1 P2 P3)=| 92p1 q2pP2 Qq2p3
a3 q3P1 q3P2 q3P3
with indices
[ =0 Al =1
[ =1 Al =q;
2 3 1 2
[ =2 Ajj =599~ 5lai%;




Example: Zemach - pp (0-*) -» f,mV

Construct total spin 0 amplitude

A0 = A2 A2

fom OU nrm, kl

0ik i
\,—/
unpolarized

Zk:l om0, ij T[+1I klék&ﬂ
I_II

2 2
ZAfzno,ijAn"‘n‘,ij

3

om0, zptpj zpt if = Kkl

3

EQ’le — —IQzI Okl

[




Example: Zemach - pp (0-*) -» f,mV

0 3 1, 3 1 5
AT = | SPipj—Slpd%oy | | 5qiq; = Slaid®oy
9

3 3 1 3
- — 2 —D2—D2 —b —b - 2 —b2 2 —o
= —_— . — — JR— +3— R
4(q P) 4q p 467 p 4Iql Ia] (q p)s — 2 §°p
9 1 2 9 1 2
2 [(q p) 3q p } 2 [(qp ) 3q p

9 1
— 29 _ ~32 _ p0rgy2
4(cos 9 3) = P5(39)

Angular distribution (Intensity)




The Original Zemach Paper

Spin| 1=0 1= 1=2 1-

{except I w0}

othermodes
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QOB
QOO
QOO =
ele/S/eleea
QOB |k

F1c. 2. Regions of the 3x Dalitz plot where the density must
vanish because of symmetry requirements are shown in black. The
vanishing is of higher order (stronger) where black lines and dots
overlap. In each isospin and parity state, the pattern for a spin of
J+ even integer is identical to the pattern for spin J, provided
J22. (Exception: vanishing at the center is not required for
Jz4)




Spin-Projection Formalisms

Differ in choice of quantization axis
Helicity Formalism

parallel to its own direction of motion

Transversity Formalism
the component normal to the scattering plane is used

Canonical (Orbital) Formalism
the component m in the incident z-direction is diagonal
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Spin-Projection Formalisms

Differ in choice of quantization axis

Helicity Formalism
parallel to its own direction of motion

Wy = |5, A) =R(¢, 6, —9)B(0, 0, p)|m) = H(B)IA)

Transversity Formalism
the component normal to the scattering plane is used

Wr=1p,7) = > |BAIA, . = RH(BA~L|T) = T|7)
A

Canonical (Orbital) Formalism
the component m in the incident z-direction is diagonal

Wm =1pm) =Y |16, A\)Dy-R(9, 6, —¢) = R~1(¢, 6, —9)H(B)|m) = O|m)
A




How To Construct a Formalism
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Key steps are

Definition of single particle states of given momentum and spin
component (momentum-states),

Definition of two-particle momentum-states in the s-channel
center-of-mass system and of amplitudes between them,

Transformation to states and amplitudes of
given total angular momentum (/-states),

Symmetry restrictions on the amplitudes,

Derive Formulae for observable quantities.




Generalized Single Particle State

In general all single particle states
are derived from a lorentz transformation
and the rotation of the basic state

LIBE) = X(LBIR(L, PI0&) = 1L, E')Dlge(r)

with the Wigner rotation

R =X"Y(LP)LX(P)




Properties
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property

partial wave expansion

parity conservation

crossing relation

specification of
kinematical constraints

Helicity Transversity Canonical
possibility/simplicity
simple complicated complicated
no yes yes
no good bad
no yes yes




Rotation of States

A

T
W
-
LIS

....

Canonical System Helicity System




Rotations

F‘: ”-_'-' 15

Single particle states

Rotation R
Unitary operator U

D function represents the
rotation in the angular
momentum space

Valid in an inertial system

Relativistic state
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Single Particle State

Canonical y y;
- def .
lIp.jm) = Lp|im) |
o~ /\_1 .
= RolzpR,"lim) ‘.
0 X
1) momentum vectoris [T
rotated via z-direction. -
2) absolute value of the
momentum is Lorentz
boosted along z 0 X
3) z-axis is rotated to the >

momentum direction
Ro =Ro(e, 9,0)

)
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Two-Particle State

Canonical

constructed from two 1 re
: : K=
single-particle states 411

flaa =1, ba laa <12\

0 def > >
1Q;, smstm¢) = kK |L ps  Isms)L  ptr  |tmy)

(Es, Ps) (Et, —Ps)

|10, Smg) = Z (sms tme|Sms)|Q, smstmt) Couplesand tto S
Mms, Mt

ILm; Smg) = J dQ Y,%qL(Q)|Qf Smg) Couple L and S toJ

UMLS) = Y. (Lmy SmsM)|Lm;Sms)

mi,ms

Y. (Lmy SmsM)(sms tmelSms)

mL,mS;mS;mt

al Harmonics

f dQYy, (Q)IQ, smstme)




Single Particle State
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Helicity

1) z-axis is rotated to the
momentum direction

2) Lorentz Boost

Therefore the new z-axis,
z’, is parallel
to the momentum
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Two-Particle State

Helicity
similar procedure

de ~
1Qs, sAstAr) = kRo [LzpsIshs)Lopelthe)]
= Ro(Qs)|Q = (0, 0), sAstA)

no recoupling needed

UMAGAL) = N,J dQ Dy 5 _».|Q SAstAr)

normalization
2/+1
41

Nj=
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Completeness and Normalization

completeness completeness
1= )  |MLS)(MLS]| 1= Y UMAsA)UMAsA
JM,L,S J.M,As, At

normalization
(Qgr, S’msfl"mt/|Q5, smstme) = 6(Qgr — 05)555’5tt’5msm515mtmt’
(J'M’L’S’YMLS) = 0)j0pmm? 01170557

normalization
6(€Qs7 — Q5)d55/0tt70MA s ONEA
01)7OMM ONGA 1ONEA

(Qcr, S Art’ Apr|Qs, SAstAt)
UM A ApJMASAE)
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Canonical Decay Amplitudes

From two-particle state

A= > (Bs smsl(=Ps, tme| MUM)

mSlmt

(Qs, smstmeJMLS) = > (Lmy Sms|/M)(sms tm¢|Sms)Y L, (Qs)
mg,ms
M am
A = (Qs, smstm¢| M/M)

MsMt Ps

= Z(QS, smstme|JMLS)
L,S

= Z \ 47'[0/[_5 Qs, SmstmeMLS)

41

)

am G \/Ea’LS(LmL SmslM)(sms tmelSms)YL, (Qs)

MsMt

L,5,m;,mg
LS-Coefficients af_s def UMLSIM /M)
V Os




Helicity Decay Amplitudes

Helicity
From two-particle state

A= > (Bs SAsl(=Ps, tAtM|/M)
As At

(Qs, SASEALUMAGAL) = NjDjy, 5 (Qs)

M 41
A)\s)\t = —(Qs, SAstAt|M|/M)
Ps
4T
= Z (Qs, SASEALYMA rm ) —{(IMA /A pr| M|IM)
At At Ps
st
41 Dj*
= p—(2]+ D) (IMAALIMUMIDy 5,5, (Qs)
S
M *
Arere = fo)\s)\tDjM,/\S/—)\t/(QS) 2
T
Helicity amplitude Nifashs = \/—(ZJ + L){MAsAt|IMUM)
Ps o =t B
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Spin Density and Observed # of Events

To finally calculate the intensity
l.e. the number of events
observed

Spin density of the initial state

1 0

Pmm’ = -
0 1

Sum over all unobserved states

M JM’ %
I()pn = E : Aror (@ Domm A 5, (@, 9)
M,M’,)\s)\sf,)\t)\t/

taking into account

A = As— At
A = Agr — Ay
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Relations Canonical & Helicity fAsAt‘E’GILs

Recoupling coefficients

Start with

2L+1LOS)\ A A A
2]+1( (As = A)/(As — At))

(SAs t(—=At)IS(As — At))

UMLS|JMAGA:) =

Canonical to Helicity

Nifaor, = LZS\/2L+1(L0 S(As = A)(As = Ar))

(SAs t(-At)IS(As — A0 o
Helicity to Canonical

v2L+1
as = Ny 3 — (L0 SOs = A)J(As = Ar))
Ao As /+1

(shs t(-AISAs = AN .,
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Clebsch-Gordan Tables

Clebsch-Gordan Coefficients are usually tabled in a graphical form
(like in the PDG)

Two cases

coupling two initial particles
with |j;m;) and |jmy)
to final system {(JM|

(J1mjom, /M)

decay of an initial system |JM)
to ¢jim,| and {,m,|

Jj; and j5, do not explicitly appear in the tables
all values implicitly contain a square root

Minus signs are meant to be used in front of the square root




1/3
-1/3
1/3

1/2 | 1/2
1/2 |-1/2




1/2 | 1/2
1/2 | -1/2

16 | 1/2 | 13
(-1/3
173

/M) =00)
(hm; | = (10]
(12, = {10]

(iim,  j,m,| M) <1o 10|00)

1/2 | 1/2
1/2 |-1/2




Parity Transformation and Conservation

Parity transformation
single particle
Plp,jm) =nle +m, m—3,p,jm)

Plﬁl.,/\) — r]e_lnjl(p + T, - 3! |ﬁ|r.l - /\)
two particles
PUMls) = nmz(—l)’UMIS)
UMALAZ) = Z (zo SAUM)(s1A1 S2(=A2)IsA)JMs)

PUMA1A>) nmz(—l)f+51+52uws>

helicity amplitude relations (for P conservation)
— +s1+52
Faghg = MMm2(=1YFS192F

1=2
Fj)\l)\z r](_l)jF)\z)\l




f, - nn (Ansatz)

Initial: fo(1270) IG(JPC) = 0+ (2+7)
Final: IO IG(JPC) = 1-(0-F)

Only even angular momenta, since n= nA(-1)
Total spin s =25, =0

M _ J J*
Ansatz Al —NF/ D} (9,6)
A=A -A =0
J=2
AL = N,F2 Do (9.6)

2 00~ MO
N2 =+/5(20 00[20)(00 00|00)a,, =52

2 00
1 1

Agg, = \/gazoD/\Z/r*o ((p,e)

20




f, - nnt (Rates)
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A7 (0)e7
. d(2 " (G)e""’
Aoo - \/gazo djo (9)
a2 (e)e"‘"
dz (9) 2i(p
I(6)=> Al AL
M,M'
1
1
P=3 J+1 .

Amplitude has to be
symmetrized because
of the final state particles

J6

a? (9) - Tsin2 0

d(zﬂ)0 (9) _ —\Esinecose
d:, (9) _ @cos2 0 — %]

2
1(9)=‘a ‘2 15 01 15sin?0cos?6+ 5| Scos?g - L
20 4 2 2

2
= ‘820‘ = const

15(:sin4 6-+sin? 6 cos? 6+% cos? 9—% cos® 9+1]

12




w — 1% (Ansatz)
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Initial: W IG(JPC) = 0-(17)
Final: O IG(JPC) = 1-(0-F)
Y IG(/PC) — 0(1——)
Only odd angular momenta, since n,, = n,n,(-1)
Only photon contributes to total spin s = s;+s,

Ansatz Al =NF!, D} (9.6)

A=A -A=A =A
J=1
Ay = N,F Dy (.6)

1" A0~ MA

N,FL =+3(10 1AJA)(1A 00[17)ay, = —/\\Ea11

A 1

V2

= -x 2,05 (0.6)




w — 1% (Rates)

A,==x1 do not interfere, A,=0 does not exist for real photons
Rate depends on density matrix

Choose uniform density matrix as an example

~dly ., (0)e™ 0 d (8)e™

a2l a6 o a
_ -d; (6)e® 0 d(6)e”
1(8)= > AlouuArs S,

2 1+cos8
:Mlmo 0 e (6) =5 = & ()
p=§8 (1) (1) o (6) =~ (6) d3<1)<9):%

1+ cos20 +sin? 9] =1 £ const
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foo— vYY (Ansatz)

Initial: f,o  IG(PC) = 0+(0,2++)
Final: Y IG(JPC) = 0(1)

Only even angular momenta, since ny= n,4(-1)’
Total spin s = 2s, =2, [=0,2 (fy), I=0,2,4 (f,)

Ansatz
M J J* j =0
A, = NJFDi (0:6) A%, =N.F., D55 (9:6)
A= _ A 2 2
A N, =D (10 sx j)\)(sl)\l 5,(-2,)|sM)a,

Is

=\1a,,(00 00/00)(1A, 1(-A,)07)
+5a,,(20 20/00)(1x, 1(-7,)[2A)

1 1
- §aoo Ty =%




foo— vy (cont'd)

OO 0 o*
AY = NF, DY (@

[

= const

const

Ratio between a,, and a,, is not measurable
Problem even worse for =2

J=2
AT = N,FZ, D (9.6)

NszAz Z(IO s)\‘j)\) S A 52(—)\2)‘5)\)@5
=If 58,,(20 002A)(1%, 1(-,)00)
+5a,,(20 2A2A)(1A 1(-1,)22)
+9a,,(40 2224)(1A, 1(-2,)22)




foo— vY (cont'd)
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Usual assumption [=A=2

NFEE =2 (10 s22)(s,1 s,1fs2)a,

Is

= +/5a,,(20 2222)(11 11[22)

1 Il I
2 1

7

+J/9a,, (40 2222)(11 11]22)

t.b.d. 1
Symmetrization

A = Nz (Fl(_l) T F(%l)l)Dl\z/l*z ((P'e)
=N,'D; (qo,e)
Comparison

AOO _ NOI

—




pp (2*t+) - mim

Proton antiproton in flight into two pseudo scalars

Initial: pp J,M=0,%1
Final: T IG(JPC) = 1-(07)
Ansatz . L
Al =NFl, D ((p,G)
A=A -A =0
=1
Ac{,(\)/, - NjFojoD/{/l*o (¢'9)

N ) =>\2J+1(/0 00[0)(00 00[00)a, =+2/+1a,
/ L |
1

)

Aoo = \/ﬁaJODI{/I*O ((p,e) - \/Z—/ﬁa/od/{/r*o (9) e ™M

Problem: d-functions are not orthogonal, if ¢ is not observed
ambiguities remain in the amplitude - polarization is needed




pp — mlw
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Two step process

First step pp » mw - Second step w — md%y
Combine the amplitudes

%, (0,0,)- A%5(0,) 4% (2,
=N,.F D, (2, )Npp F D (2,)
:_)\\E wllD;*A \/ +1(/o 1A,|JA,) )20 (2,)

w

a0 (0 >Df* (0)S 110 1| )a,,

helicity constant a,, ;; factorizes and is unimportant for angular
distributions




pp (0-+) - f,mV

Initial:

Final:

pp 1c(JF€) = 1-(0*)
fo(1270) IG(JPC) = 0+ (2+7)
0 IG(JPC) = 1-(0-+)

Is only possible from L=2

Ansatz Al =NFl, D (Q)
Ase (2, ) Ads (Q ) N, oFsoD55 (2, |V, o035 (2,)
N,,oFS =v1(20 20[00)(20 00[20)a,,.,
1 1

5

N, ,FZ =+/5(20 00[20)(00 00J00)a, ,,

1 1

N

I(cos 9) — S‘apﬁ’zza

5 2
Ecosze—1
2 2

f,,20




General Statements
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Flat angular distributions

General rules for spin O

initial state has spin 0
0 —» any

both final state particles have spin 0
J —>0+0

Special rules for isotropic density matrix and unobserved azimuth
angle
one final state particle has spin 0 and the second carries the same

spin as the initial state
J —>J+0




Moments Analysis

Consider reaction

n_+p—>MO+n and M0—>a+b

Total differential cross section

I(t, M, 9, 9) oo 1Zw (t, M, 9, )|
’ ’ :(p _ataMaCO596¢_2ApAn ADAI"I ’ ’ I(p
expand H
VATHA (M, 9, (p)—Z Z V2j + 1H, A d_ (9)em?
f=0m=
leading to
1
49, 9) = STNT N V21 +14/2j5 + 1elMmr —m2)e
Ap,Anj2.m2j1,m1
1* 2 1 2




Moments Analysis cont‘d
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Define now a density tensor

1

Ty Z 1% 2
m1m2 _ 2N /\p;)\n:ml Ap:)\n;mZ
Ap,)\n

the d-function products
can be expanded in spherical harmonics

and the density matrix gets absorbed in a
spherical moment

I(t, M, 9, q))—NZ Z (YMY™M(9, 9)
=0 m=—|

[

cO
Iproa(t, M, 3, ) = Z Z tfnylm(sr ®)
(=0 m=0
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Example: Where to start in Dalitz plot anlysis ‘

Sometimes a moment-analysis can help to find important contributions
best suited if no crossing bands occur

(1) = (D}, (0.0.0)

L
= [1(Q) Dy (9.6,0)d0
DO > K K*K-
5(1020)
CF P - I = J tio 300 | totao
17 E - 50 -
R 300 . - +
Cis [ = R 200 |
g - t O [+ . = t
= 200 £ - — -
1S - ) E at L .
1.4 | 100 . —-50 } 100 —
: | - 3 1 - t C +H
" :— I | | : | :! : | | O i Tﬂl I rf"l#TMT”*f""— 100 __l [ |h I I (@) Candet +f“ﬂ'l+'*-r'l‘:ﬂh‘-lr...+-
0.8 0.95 1 1.05 1.1 1.15 1.2 1.25 1 105 1 1.05 1 1.05

m?(K* K-




E791: Dt - K-ttt Dalitz
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Striking K*(892) bands
asymmetry implies strong S-wave interference (in Km)

Dalitz plot analysis as an Interferometer

Model-independent
analysis by using ‘
interference to fix the S-wave al

m*(Kx},)

F=

1.5

05




Recipe 44
Create slices in m2(K-m*)
S-wave is than a binned Phase Magnitude
function with parameters ¢, and vy, . | T
e .- {a) ll " :...-.;; (b)
> = Ger b h . Pu S
< =0 - ’l:“?‘ ;f_ |I *%U# |
) ? LT
Model well known  f By
P- and D-wave (K, Kl and K*z) SRl o7 1 1z s
K= Mass (GeV/e®) Kx Mass (GeVic®)
s b ) T 4§ - . : |
add form factors and j= % ez 2 @ P
. . . o B = L o g
put this into the fit e o N e e
T i s S O o A O
mE @ (= 2
| | 5 3 " AP
main uncertainty from K* and K; mie— ] hamee N
u:ﬁl{: Jlﬂ ;ﬁw:l‘?}l - K=z l:lln l?i:n.:'l.ﬁ'i:;'I:-'5




Comparison with Data
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200 =]
. 9 4
i (a) o . (b)
% 1000 'Dh oy q-"f-'
& oo - Data '§ o + +Data
S \ — Fit v— Fit
3 [ ] -
S04
3 : dwE | )
g 400 I . g 300 L4 _".
w -..-....'-' 200 % s
200 .
N T
n I AL i i im ﬂ T NI § N ' N T PR S TS W — |
0.5 1 1.5 2 1 2 I
Smaller M°(Kr") Larger M°(K'n")
3
. R
s
—
:I: 25 E
e m
) i1
‘E 2
Ty L i
3 .
L .1
J
1
7 TPIINPCS IPIPLTS SPTIPUTIE PRTIGD PUTOPS (TCTYPU CPRPETU SPRTOPEY P =
a4 08 o8 1 1.2 1.4 1.8 e 2 22
Smaller M°(K=*)

magnitude

phases (degrees)

20

L
0.7

L
0.8

1
0.9

:
My, (GeV)

L L L 1
11 1.2 1.3 1.4

My . (GeV)




Proton-Antiproton Annihilation @ Rest
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Atomic initial system
formation at high n, I (n~30)
slow radiative transitions
de-excitation through

collisions
(Auger effect) =3 A/ |
L — :
Stark mixing of /-levels i » P-Wave
(Day, Snow, Sucher, 1960) A (D970lofi2k)
S -
Advantages S > gat%.r%rEaf?gétt;: |
. . . @2 mme== » ext. Auger-Effec
JPC varies with target density E > Annihilation
isospin varies with n (d) or p
target

incoherent initial states

unambiguous PWA possible
Disadvantages

phase space very limited

small kaon yield




pp Initial States @ Rest

Quantumnumbers

G=(-1)/+L+S
pP=(-1)L+1
C=(-1)L+S CP=(-1)2L+5+1

|=0
i) =1/ /5(1pB) + 1nf))

=1
i) =1/ /5(lpp) - Ini))

.

_E

1S, | O+ | pseudo scalar | 15;0* | O
3§, | 1~ |vector 0
P, axial vector 1
3P, scalar 1
3P, axial vector 1
3p, tensor 1




Proton-Antiproton Annihilation in Flight
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Annihilation in flight

scattering process:
no well defined initial state

maximum angular momentum
rises with energy

Advantages 100

larger phase space
formation experiments
Disadvantages

many waves interfere
with each other

many waves due
to large phase space

1

Cann— 20,
c(p)=(21+1) = [1-exp(-x(p))] / p°
1 (P)=N(p) exp(-3I(1+1)/4p°R")

with R*=<r*> (Baryon)

ang. mom. |
| ~ p.../0.2 GeV/c

05 10 15 2.0 25 3.0

P.. [GeV/c]
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Scattering Amplitudes in pp in Flight (I)

pp helicity amplitude

H, = V2L +1 (LOSV|jv)(s,v,s, - v, |Sv)(JMLS|M M)

\/ZjT 17172

P transform
Or% )ﬂis

J
H)., = n, (—1) vaz(_vl) S and CP directly correlated
CP conserved in strong int.
singlet and triplet decoupled

Cdrtyvafaforen
H.,  £QdLA-8ife@dn) correlated

CP-Invarig&hcenserved in strong int.

H,_=0 n‘%(tjof? W&‘/&F{'SH 9)

an even L decouples

(fxist

4 incoherent sets of
coherent amplitudes




Scattering Amplitudes in pp in Flight (II)
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Singlett

PC
even L J L[5 | Hes M.
1S, 0+ 0 [0 [Yes No
1D, 2+ 2 |0 |Yes No
G, 4-+ 4 |0 |Yes No
Triplett pC
even L J Lo{> [Hes H,.
35, A 1- 0 |1 [Yes Yes
sp, Vo |1- |2 |1 |ves |ves
3D, 2" 2 |1 |Yes Yes
3D, 3 2 |1 |Yes Yes

Singlett pC

odd L J LS [Fer | He
P, 1+ 1 [0 |Yes No
1F; 3+ 3 [0 |Yes No
1G; 5+ 5 [0 |Yes No
Triplett pC

odd L J L |S [H.. H,.
3P, ot+ |1 |1 |Yes No
3P, 1+* 11 |1 |No Yes
3P, A |2 |1 |1 |Yes Yes
3F,  V |2++ [3 |1 |[ves [No
3F; 3t |3 |1 |No Yes
3F, 4++ 13 |1 |Yes Yes
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Tensors revisited

The Zemach amplitudes are only valid in the rest frame of the
resonance.

Thus they are not covariant
Retain covariance by adding the time component and use 4-vectors

Behavior under spatial rotations dictates that the time component of
the decay momentum vanishes in the rest frame

This condition is called Rarita Schwinger condition

For Spin-1 it reads Su=5,p"=0
with p = (p,+p,)/m the 4-momentum of the resonance

The vector S, is orthogonal to the timelike vector p, and is therefore
spacelike, thus S2 < 0




Covariant Tensor Formalism

The most simple spin-1 covariant tensor with above properties is
5,=9,-(ap)p,
with q = (p,- Py

The negative norm is assured by the equation
§*=q"-(ap) =-|q, [

where g; is the break-up three-momentum

the general approach and recipe is a lecture of its own and you
should refer to the primary literature for more information

to calculate the amplitudes and intensities you may use qft++




qgft++ Package

gft++ = Numerical Object Oriented Quantum Field Theory
(by Mike Williams, Carnegie Mellon Univ.)

Calculation of the matrices, tensors, spinors, angular momentum
tensors etc. with C++ classes

gqft++ Class Symbol Concept
Matrix<T> ajj matrices of any dimension
Tensor<T> Ty tensors of any rank
MetricTensor Juv Minkowsk: metric
LeviCivitaTensor €uvaf totally anti-symmetric Levi-Civita tensor
DiracSpinor Upy.pi g _q 0 (p,m) half-integral spin wave functions
DiracAntiSpinor v(p, m) spin-1/2 anti-particle wave functions
DiracGamma H
DiracGammab ~5 Dirac matrices
DiracSigma at?
PolVector €uy..uy(p,m) integral spin wave functions
OrbitalTensor LLEI)_” e orbital angular momentum tensors
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gft++ Package
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Example: X(27) — wK — ntn n%K
Amplitude and Intensity given by

A x E:l(pw;mij(S)“m(pr)em(P,ﬂ-f) and 7 ~ Z Z Al

_ _ M=+1m,=+1.,0
qgft++: Declaration and Calculation

PolVector epso; // omega
PolVector epsx(2); // X
OrbitalTensor orb3(3); // L°3
Tensor<complex<double> > amp;

Vector4<double> p4o,pdk, pdx; l ’s

] qft++

— analytic

Intensity

double intensity =0.;
for(Spinm=-1; m<=1; m+=2){
for(Spinmo = -1; mo <=1; mo++){
amp = conj (epso(mo))*orb3|epsx(m) ; 0

= III\|IIII

L1 | L 11 | L1l | L 11 | L 11 | L1 | L1 ‘ | ‘ | | L 11
. . 0.8 -0.6 -04 -0.2 0 02 04 06 038 1
intensity += norm(amp()) ; cos(9)

} Angular distribution
} of X —» wK
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Differences to the Zemach formalism

[(0-1+1) « (1+2z%)cos?6
[(1-1+0) « 1+22cos286

[(1->1+1) x 1-—cos?@

1 1
[(2—-224+0) x 1 +22(§ + cos? 0) +z4(cos2 0 — 5)2

it Is possible to show, that

72 = y? -1

for Yy =E/m for the resonant system formed by (a+Db)




Comparison y=1 and y=00
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Y=1 (non-relativistic case) Y=00 (ultra-relativistic)
I(0->1+1) x cos?6 [(0>1+4+1) x cos?6
I(1-1+0) o« 1 I(1-1+4+0) < cos’6
I(1-1+1) « 1-cos?e (1-1+1) « 1-cos?6@

1
[(2-2+0) o 1 I2—2+0) (c0529—§)2

the angular distributions can be radically different

it depends on the available phase space of a resonance,

if this effect is actually measurable




Covariant extension of the helicity formalism,
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in non-covariant description we obtained to
relationsship

Nifyone Zx/2L+ 1(LO S(As — ADU(As — At))

(5As H-ADIS(As — A, o

where a, s is a constant for each J

In covariant description a,s depend on A_ A, !




Covariant extension of the helicity formalism

the formula for a,c reads then

a5 = gush) 2

AS,A{_‘

W
(sAs t(=Ap)|S(As — )\t))(m)nBL(qr o) (Y1)’ (v2)"

2L+1
+1

(LO S(As = At)U/(As — At))

with
n=1if S+A_,, ,A,=0dd and n=0 otherwise
W = Vs of the two-body system and W, = W(m,)
g = two-body breakup momentum and q, = q(m,)
B, = Form-factor
f,(y) = f-function for given daughter particle with Lorentz-factors y

Definition

af(n) _ G+m)j—m)
' | | B 2))!
) = dM 3PN yith %
10 (n,no) = lnaln_ |
ny'ng'n_!
2ny = J+n-—-ng
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THANK YOU

for today
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Part IV

Dynamics



Dynamics

Scattering
T-Matrix
Breit-Wigner

Blatt-Weisskopf




Properties of Dalitz Plots

For the process M — Rm;, R— m;m, the matrix element
can be expressed like

MR(L, m12,m23) = Z(L, B, d) - B)'(p) - B} (q) - TrR(mM12)

Winkelverteilung Formfaktor Resonanz-Fkt.
(Legendre Polyn.)  (Blatt-Weisskopf-F.) (z.B. Breit Wigner)

J>LH 1z

Z(L,p,q) decay angular distribution 0>0+0 1
of R > 0>1+1 cos?6

BM(p) Form-(Blatt-Weisskopf)-Factor for 0> 2+ 2 [cos?6 -1/3]°
. M =2 Rms, p=p;5in Ry,

spin 0 spin1
BLR(q) Form—(BIatt—Weisg.kopf)—Factor for
R 2 mim,, g=p; In Ry,
Tr(M12) Dynamical Function BT

(Breit-Wigner, K-Matrix, Flatté)

0z D:4 o‘a O‘B
cosO




Interference problem

PWA

The phase space diagram in
hadron physics shows a pattern
due to interference and spin effects

This is the unbiased measurement
What has to be determined ?

Analogy Optics & PWA
# lamps < # level
# slits © # resonances Optics

ositions of slits ©® masses 2
P , , I(x) = [A1(x) + A200e'?|
sizes of slits © widths

Dalitz plot

but only if spins I(m) = |A1(m) +A2(m)elq)|2

are properly assigned

bias due to hypothetical
spin-parity assumption




Introducing Partial Waves, cont’d

Schrodinger’s Equation

_% v W(P) + V(AW(7) = EV(F)

maimg2

IJ:

St <t

K= =H mi+mo

i el

Scattering of particles on
a spherical potential

iIncoming planar wave
outgoing spherical wave

_ elkr
e swer | ]

V(r)=0




Introducing Partial Waves...

Compose planar wave in terms of partial waves with given L

spherical Besselfct. Legendre-Polyn.

% J /
etkz = elkrcos® = %"y (r)P(cos 8) = > (21+ 1) iYji(kr)P(cos 6)
[ (=0

. I
with jikry e ST ) L [e"(’“—%”) _eilkr=3 }
kr 2ikr

. U+ o . ln
e‘kz=2 e [e‘(kr 2) — e~ Ukr 2)} P;(cos 6)

[




Introducing Partial Waves, cont’d

wave without scattering outgoing incoming

/ /
21+ 1)

kr—oo i(kr—1 —i(kr—l—")}
Y — e 2/ — e 2’| Pi(cos @
Xl: 2ikr [ (cos®)

wave with scattering (only outgoing part is modified)

21+ 1)
2(kr

w Ky

206, pitkr="T) _ —f(kr—‘ﬂ)}
ne<lt-e 2/ — e 27 | Pi(cosB)
[ [ T~

Inelasticity + Phaseshift

for the scattered wave ys one gets | L
etkr (8_7) =e‘kr(—i)[

/*/L__\

ikr N
€ (2(+1)1 (n,e2i6! _1)ei(kr—l7")

Y=V -Y=F0)— =
> f(l) r ZI: 2(kr
1 e2r—1
We = [;Z(z” 1)1
[

alkr nle2i5l -1
P[(cose)} - — T = .
r 210




Argand Plot

z=(a,b)=(@=R[z],b=3[z]) = (r, ¢)

z=a+b=re'?=cosp+isng

(a,b)=(r,¢)
r = \/az+é)2 1 AIm(T)
¢ = tan_la T

-
|l
N
g‘
Q
N
+
N
o
I
N~ N =
N—
N
J\%}H

1 1 (b— ) Tl

6 = —tan + —

2 a 4
Re(T)
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Standard Breit-Wigner

| Argand Plot | | Intensity I=WW* |

Im(T)
ITf

0.6 - -

0.4

02"

of
I DT R B ] 1) R B | L
06 -04 02 0 02 04 06 08 1 12 14 16 18
Re(T GeV/
r | Phased | ,e( : | Speed d¢g/dm m[f Sl

wk
o

T(m) =

(o2}

do/dm [rad/0.011GeV/c?]
(o]

I(m) = |T(m)|?

NN

2 1
— 2 E PO (TR TR Pl ORI T T | o L
(mO m) + (2) 0708 1 12 14 16 18

m [GeV/c]




Breit-Wigner in the Real World

ete - M

2
F |
3
5

A M o
/y s

g AV
.-’Jl "a‘ 3D L
% [

1 ;
‘%ﬂﬁ L
Pt I | I\ .'Ld\! | |
E S W |\}|\ / |\|
0] RV i {' UL
S £ s g S
o-ADONE i
-3 :
10
500 1000 1500 2000 2500 3000

Center-of-Mass Energy, MeV




Isobar Model

Generalization

We

construct any many-body system
as a tree of subsequent two-body decays Isobar

the overall process is dominated
by two-body processes

the two-body systems behave
identical in each reaction

different initial states may interfere

need
need two-body “spin”-algebra
various formalisms

need two-body scattering formalism
final state interaction, e.qg. Breit-Wigner




The Full Amplitude f({,I3,s, Q) =Ii(I,I3)Ti(S)R(Q)

For each node an amplitude f(1,15,5,Q) is obtained.
The full amplitude is the sum of all nodes.
Summed over all unobservables




Dynamical Functions are Complicated

14

Search for resonance enhancements
IS @ major tool in meson spectroscopy

The Breit-Wigner Formula was derived
for a single resonance
appearing in a single channel

But: Nature is more complicated
Resonances decay into several channels
Several resonances appear within the same channel
Thresholds distort line shapes due to available phase space

A more general approach is needed
for a detailed understanding (see last lecture!)




S-Matrix

Differential cross section

de, 1 5 5
dQ ~ (8m)2s ( )Wﬁl - Uit > <

Scatterlng amplitude

fri(Q) = EZ(ZJ+1)TJ ()D)\1(6,6,0)
tJ

S-Matrix S=I+2tT
Total scattering cross section with i) = |ab,/MAgAp)
41 If) = |cd, JMAcAg)
of; = ( ) (2) + DIT/(5)I2 Yo s
qt Fliy = &
and

Sei=(fISliy  SST= sTs =l
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Harmonic Oscillator (classics revisited)

Free oscillator

2

0x=O

X+ w

Damped oscillator

5&+2)\>’<+w(2)x=0

Solution
_ aa—AL : _ 2 2
x(t) = Ae cos(wt+a) with W= 1/wg+A

External periodic force

) . f
X+ 2AX + w3Xx = — coswpt = —R [e‘th}
0" m m

Oscillation strength

and phase shift I(wg) = tans =
Lorentz function 4m (wWR — W0)? + A2 w%h— w%
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Breit-Wigner Function

Wave function for an unstable particle
t [

- ——t
W(t) = Woe WRle 27 = yyeWRLy 2

Fourier transformation for E dependence -

1 00 Wy [ l(&)—&)R+l—)f
| w)e?lgr= —f e 2) dt
«/an_oo V2T J o

_ r - 00
| W—wWRr+t— |t

W(w)

L J4 =00
K
= r
(ER—E)—1(3 r
W(E) = L
Finally our first Breit-Wigner (ER-E)-15




1

We can describe this with a propagator T = V12E EV12
0—
But we may have a self-energy term
M,
My— —m,
M 1 1 Vi2bV12
2 leading to T = V1> b Vis =

Eo—E Eg—E (Eq — E)?




T-Matrix Perturbation

-----------------
~~~~~~~~~~~~

’ ~ ’
Y pL TSP

................
~~~~~~~~~~~

- » # ~
- ~
- LTS DT S

We can have an infinite number of loops inside our propagator

1 V12bV1o  V12b2V1s

Viz + + +...
Eo—E (Ep—E)* (Ep-E)3

T =Vi>

every loop involves a coupling b,
so if b is small, this converges like a geometric series
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ViaViz [ b b
Soweget T = 14
Eo—E \  Eo—-E (Eo—E)?
viaviz [ 1
= _ b
Eo—E k]_ ForF
V2V
- Eo—E-D

and the full amplitude with a “dressed propagator” leads to

_— V12V12
Eo—R[b]—-E—-(3[b]
3 V12V12
~ ER—E-1(3[b]

which is again a Breit-Wigner like function,
but the bare energy E, has now changed into E,-R{b}




Relativistic Breit-Wigner
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Im(T)

| Intensity I=YyY*

| Argand Plot Phase 0
[ R T 30 =
- g o E
i o
0.8 - —
0.6 - .
04 - .
0.2_-
0. e ]
[oe N R R | B P PRI BRI B Ok.x..l P PRSI BT N
-06 -04 -02 0 02 04 06 0.8 1 12 14 16 1.8 0.8 1 12 14 16 1.8
Re(T) m [GeV/c’] m [GeV/c’]

By migrating from Schrodinger’s equation (non-relativistic)
to Klein-Gordon’s equation (relativistic) the energy term changes
different energy-momentum relation E=p2/m vs. E2=m?2c*+p2c?

The propagators change to sz-s from mg-m

7(s) ! i
S)= =
sr—s—zquSY m2 —m?2 —ipmql




Barrier Factors - Introduction

At low energies, near thresholds M o q2l+1 = pq2[

but is not valid far away from thresholds -- otherwise the width
would explode and the integral of the Breit-Wigner diverges

It reflects the non-zero size of the object
Need more realistic centrifugal barriers

known as Blatt-Weisskopf damping factors q/,
We start with the semi-classical impact parameter L/L‘

b=[L(L+ 1)]%/61

and use the approximation for the stationary solution of the radial
differential equation

1
e (o209
a?Uf’pz (r—;’ 1) Utp  Ufp "2 iChoh{M(p) ~ Cre :
with Fn(gn) = FO?'I’?HH(R/b”)
-1 1 . n\yn -
[HP(R/b)] = p?|h;(p)|? We obtain ”H”(R/bo)




Blatt-Weisskopf Barrier Factors

The energy dependence is usually parameterized in terms of spherical
Hankel-Functions

. _om1
xy = 52 1)
= 3N, 100
n(x) = —2
1) 2x 143
hfl’z)(x) = E% [jl _1(><):I:N1 1(><)}
2x L1tz +2 we define F,(g) with the
1) alX following features
hO (x) = ? =
__q 2
t X=g lh; (X))
1 —eX (1 + —) Filgy — =°¢ D A
RO \inPec=1
—q
e (Hi_i) ) TTE
2 q— z
h(zl)(x) = X X Fi(q) = q

X
Main problem is the choice of the scale parameter gr=q...e




Fo(x)

F1(x)

F2(x)

F3(x)

Bi(g, qr)

Usage

(-
><

13x2

277x3

\/x 3)2 +9x

x(x —15)2 +9(2x — 5)2
Fi(q)

Fi(gRr)

Ti(s) =

B (q)T
m2 —m? — thlZ(q)mOF

by Hippel and Quigg (1972)




Form/Barrier factors Resonant daughters
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2
2q. m m
p.—>1 as m’>ow; p = 9% _ 1_[ma+b] 1_[ 2

Scales and Formulae

formula was derived from 5 I
a cylindrical potential may become complex

b-threshold
the scale (197.3 MeV/c) may be (su reshold)
different for different processes

valid in the vicinity of the pole

Breakup-momentum

need <F'(q)>=IF'(q)dBW
since Fl(q)=q/
complex even above threshold

meaning of mass and width are
mixed up

l needs analytic continuation
K

Imaginary




Input = Output
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8.13

Electricity
%7 Generation

Electricity Generation,
Transmission & Distribution Losses

Lost Enorgy
[ 55.1 ]

Usoful Enorgy
42.8
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Outline of the Unitarity Approach

The most basic feature of an amplitude is UNITARITY
Everything which comes in has to get out again
no source and no drain of probability

ldea: Model a unitary amplitude
Realization: n-Rank Matrix of analytic functions, T;
one row (column) for each decay channel

What is a resonance?
A pole in the complex energy plane T;(m)

with m being complex Im
Parameterizations: e.g. sum of poles [of2 |[====~- K]
1
1 | Re
1
mqo — i% m,




THANK YOU

for today
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