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Isobar Model

Generalization
construct any many-body system 
as a tree of subsequent two-body decays
the overall process is dominated 
by two-body processes
the two-body systems behave 
identical in each reaction
different initial states may interfere

We need
need two-body “spin”-algebra

various formalisms
need two-body scattering formalism

final state interaction, e.g. Breit-Wigner
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Properties of Dalitz Plots

For the process M → Rm3, R→ m1m2 the matrix element 
can be expressed like
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Winkelverteilung
(Legendre Polyn.)

Formfaktor
(Blatt-Weisskopf-F.)

Resonanz-Fkt.
(z.B. Breit Wigner)

decay angular distribution 
of R

Form-(Blatt-Weisskopf)-Factor for
M  Rm3, p=p3 in R12

Form-(Blatt-Weisskopf)-Factor for
R  m1m2, q=p1 in R12

Dynamical Function 
(Breit-Wigner, K-Matrix, Flatté)

J  L+l Z
0  0 + 0 1
0  1 + 1 cos2θ
0  2 + 2 [cos2θ – 1/3]2



5S-Matrix

Differential cross section

Scattering amplitude

Total scattering cross section

S-Matrix 

with

and
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Standard Breit-Wigner

Full circle in the Argand Plot

Phase motion from 0 to π
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Intensity I=ΨΨ*

Phase δ Speed dφ/dm

Argand Plot



Relativistic Breit-Wigner

By migrating from Schrödinger‘s equation (non-relativistic)
to Klein-Gordon‘s equation (relativistic) the energy term changes
different energy-momentum relation E=p2/m vs. E2=m2c4+p2c2

The propagators change to sR-s from mR-m
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Intensity I=ΨΨ*Phase δArgand Plot



Breit-Wigner in the Real World

e+e-→ ππ
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mππ

ρ-ω
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Outline of the Unitarity Approach

The most basic feature of an amplitude is UNITARITY
Everything which comes in has to get out again
no source and no drain of probability

Idea: Model a unitary amplitude
Realization: n-Rank Matrix of analytic functions, Tij

one row (column) for each decay channel

What is a resonance?
A pole in the complex energy plane Tij(m)

with m being complex
Parameterizations: e.g. sum of poles
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T-Matrix Unitarity Relations

Unitarity is a basic feature since probability has to be conserved

T is unitary if S is unitary

since                                we get in addition

for a single channel
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Outline of the Unitarity Approach

but there a more than one 
channel involved….
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T-Matrix Dispersion Relations

Cauchy Integral on a closed contour

By choosing proper contours and some 
limits one obtains the dispersion relation 
for Tl(s)

Satisfying this relation with an arbitrary
parameterization is extremely difficult
and is dropped in many approaches
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much more elsewhere….
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S-Matrix and Unitarity
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K-Matrix Definition

S (and T) is n x n matrix representing 
n incoming and n outgoing channel

the Caley transformation generates a 
unitary matrix from a real and symmetric 
matrix K

then T commutes with K
and is defined like

then T is also unitary by design

Some more properties

it can be shown, that this leads to
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K-Matrix - Interpretation

Each element of the K-matrix describes 
one particular propagation from initial to final states
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Example: ππ-Scattering

1 channel 2 channels
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Unitarity, cont‘d

Goal: Find a reasonable parameterization
The parameters are used to model the analytic function to follow the 
data
Only a tool to identify the resonances in the complex energy plane
Does not necessarily help to interpret the data! 
Poles and couplings have not always a direct physical meaning

Problem: Freedom and unitarity
Find an approach where unitarity is preserved by construction
And leave a lot of freedom for further extension
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Relativistic Treatment

So far we did not care about relativistic kinematics

covariant description

or

and

with

therefore

and K is changed as well                                            and
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Relativistic Treatment (cont’d)

So far we did not care about relativistic kinematics

covariant description

with

in detail
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Relativistic Treatment – 2 channel

S-Matrix

2 channel T-Matrix

to be compared with the non-relativistic case
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K-Matrix Poles

Now we introduce resonances
as poles (propagators)

One may add cij a real polynomial
of m2 to account for 
slowly varying background
(not experimental background!!!)

Width/Lifetime

For a single channel and one pole we get
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Resonances, cont‘d

using gαi
0  the Lorentz invariant 

K-Matrix gets a simple form
It is possible to parametrize 
non-resonant backgrounds by 
additional unitless real 
constants or functions cij

Unitarity is still preserved

In the trivial case of only one 
resonance in a single channel 
the classical Breit-Wigner is 
retained with
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Example: 1x2 K-Matrix 25

Strange effects in subdominant channels

Scalar resonance at 1500 MeV/c2, Γ=100 MeV/c2

All plots show ππ channel
Blue: ππ dominated resonance (Γππ=80 MeV and ΓKK=20 MeV)
Red: KK dominated resonance (ΓKK=80 MeV and Γππ=20 MeV)

Look at the tiny phase motion in the subdominant channel

Intensity I=ΨΨ*Phase δArgand Plot



Example: 2x1 K-Matrix Overlapping Poles

two resonances overlapping with different (100/50 MeV/c2)
widths are not so dramatic (except the strength)

The width is basically added
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FWHM

FWHM

2 BW
K-Matrix



Example: 1x2 K-Matrix Nearby Poles

Two nearby poles (m=1.27 and 1.5 GeV/c2)
show nicely the effect of unitarization
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2 BW
K-Matrix



Example: Flatté 1x2 K-Matrix

2 channels for a single resonance at the 
threshold of one of the channels

with

Leading to the T-Matrix

and with

we get
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Flatté

Example
a0(980) decaying 
into πη and KK

29

BW πη
Flatte πη
Flatte KK

Intensity I=ΨΨ* Phase δ

Real PartArgand Plot



Flatté Formula, cont‘d

a0(980) appears as a „regular“ 
resonance in the πη system 
(channel 1)
comparable BW denominator 
for m near mR is

Simulated mass distributions in 
the a0(980) region using the 
Flatté formula

dashed lines correspond to 
different ratios of γ2

2/γ1
2
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Flatté Formula, Pole Structure
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Due to the simple form, the 
pole structure can be 
explored analytically
4 Riemann sheets (I-IV)
identified with real and 
imaginary part of q2

(+,+), (-,+), (+,-) (-,-)



Flatté Formula, Pole Structure, cont‘d
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Flatté formula entails two 
poles in sheet II (for qa) and 
sheet III (for qb)



K-Matrix Parameterizations

Au, Morgan and Pennington (1987)

Amsler et al. (1995)

Anisovich and Sarantsev (2003)

33

0

1

 T

0.4 0.8 1.2 1.6

2

f0(980)







P-Vector Definition

But in many reactions there is no scattering process but a production 
process, a resonance is produced with a certain strength and then decays

Aitchison (1972)

with
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P-Vector Poles

The resonance poles are constructed as in the K-Matrix

and one may add a polynomial di again

For a single channel and a single pole

If the K-Matrix contains fake poles...
for non s-channel processes modeled in an s-channel model

...the corresponding poles in P are different
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Q-Vector

A different Ansatz with a different 
picture: channel n is produced and 
undergoes final state interaction

For channel 1 in 2 channels

36



Complex Analysis Revisited

The Breit-Wigner example

shows, that Γ(m) implies ρ(m)

Each ρ(m) which is a square root, 

one obtains two solutions for p>0 or p<0 respectively
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Complex Analysis Revisited (cont’d)

one obtains two solutions for p>0 or p<0 respectively

But the two values (w=2q/m) have some phase in between
and are not identical

So you define a new complex plane for each solution,
which are 2n complex planes, called Riemann sheets
they are continuously connected. The borderlines are called CUTS.
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Riemann Sheets in a 2 Channel Problem

Usual definition

sheet sgn(q1) sgn(q2)
I + +
II - +
III - -
IV + +

This implies for the T-Matrix

Complex Energy Plane

Complex Momentum Plane
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States on Energy Sheets

Singularities appear 
naturally where

Singularities 
might be

1 – bound states
2 – anti-bound

states
3 – resonances

or

artifacts due to 
wrong treatment 
of the model
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States on Momentum Sheets

Or in the complex momentum plane

Singularities might be

1 – bound states
2 – anti-bound states
3 – resonances
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Left-hand and Right-hand Cuts

The right hand CUTS (RHC) come from the open 
channels in an n channel problem

But also exchange processes and other effects 
introduce CUTS on the left-hand side (LHC)
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N/D Method

To get the proper behavior for the left-hand cuts
Use Nl(s) and Dl(s) which are correlated by dispersion 
relations

An example for this is the work of Bugg and Zhou (1993)
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Nearest Pole Determines Real Axis

The pole nearest to the real axis
or more clearly to a point with 
mass m on the real axis

determines your physics results

Far away from thresholds this 
works nicely

At thresholds, the world is more 
complicated

While ρ(770) in between two
thresholds has a beautiful shape
the f0(980) or a0(980) have not
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Pole and Shadows near Threshold (2 Channels)

For a real resonance one always 
obtains poles on sheet II and III
due to symmetries in Tl

Usually

To make sure that pole and shadow 
match and form an s-channel 
resonance, it is mandatory to check if 
the pole on sheets II and III match

This is done by artificially changing
ρ2 smoothly from q2 to –q2
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t-channel Effects (also u-channel)

They may appear resonant and non-resonant
Formally they cannot be used with Isobars

But the interaction is among two particles
To save the Isobar Ansatz (workaround)

they may appear as unphysical poles in K-Matrices
or as polynomial of s in K-Matrices
background terms in unitary form
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Rescattering

No general solution
Specific models needed
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Handling K-Matrices and P-Vectors

Problems of the method are
performance (complex matrix-inversions!)

numerical instabilities
singularities

unitarity constraints
for P-Vectors

cut structure
behavior at left- and right-hand cuts
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Handling K-Matrices and P-Vectors

Problems of the method are
unmeasured channels

yield huge problems if numerous or dominant

systematic errors of the experiment
relative efficiency, shift in mass, different resolutions

damping factors (sizes) for respective objects
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Handling K-Matrices and P-Vectors

Problems in terms of interpretation are
mapping K-Matrix to T-Matrix poles

number might be different

branching ratios
K-matrix strength is unequal T-matrix coupling
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Handling K-Matrices and P-Vectors

Problems in terms of interpretation are
validity of P-vectors

all channels need to have identical production processes
FSI has to be dominant

singularities
not all are resonances ⇒ limit of the isobar model
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Summary

K-Matrix is a good tool

if one obeys a few rules

ideally one would like to use an unbiased
parameterization which fulfills everything

use the best you can for your case and
document well, what you have done
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THANK YOU
for today
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Phase space

do you expect phase space distortions?
for example from varying efficiencies

example: ε(p) ≠ const.
how strong is the event displacement?

due to resolution
example: m2 has Gaussian smeared 
may end up in a different bin

due to wrong particle assignments
example: 15 combinations of 6γ may form 3π0

a wrong assignment is still reconstructed but with different coordinates
has it impact on the model and/or the method?
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Finally: Coupled channels

Coupling can occur in initial and final states
same intermediate state, but everything else is different
coupling due to related production mechanisms
is a very important tool, but not the focus of this talk.

Isospin relations (pure hadronic)
combine different channels of the same gender, like 
π+π- and π0π0 (as intermediate states)
or combining p, n and n
or X0KKπ, Example K* in K+KLπ-
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JC=0+

I=0
JC=0+

I=1
JC=1-

I=0
JC=1-

I=1



Fitting

There are many programs and packages on the market

but there are a few importat aspects which should be mentioned
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The Hesse Matrix: 2f/xixj

Having an good (algebraic) description of the Hesse-Matrix 
is vital for fast and stable convergence

MINUIT does not allow for them  need for improved version
now: only numerical calculation of 2nd derivatives

FUMILI uses an approximation  good convergence
even if the approximation is not always correct
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Minimization

MINUIT2 = classical gradient descent
Sometimes gets stuck in local minima

Alternative: Evolutionary Strategy GenEvA
➞ new solutions created from previous ones (offspring)
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GenEvA Example

Example: Angular distribution + maximum spin of                               
@ 1940 MeV/c (LEAR data)
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Convergence behaviour of minimizing log(LH)

Less probability 
to get stuck in 
local minima!

Result: Jmax = 5

1     2     3     4     5     6     7 
Jmax

1     2     3     4     5     6     7 
Jmax



Adaptive binning

Finite size effects in a bin of the Dalitz plot
limited line shape sensitivity for narrow 
resonances

Entry cut-off for bins of a Dalitz plots
χ2 makes no sense for small #entries
cut-off usually 10 entries

Problems
the cut-off method may deplete 
important regions of the plot to much
circumvent this by using a bin-by-bin
Poisson-test for these areas

alternatively: adaptive Dalitz plots, 
but one may miss narrow 
depleted regions, like the f0(980) dip
systematic choice-of-binning-errors

9

cut-off



another Caveat in c2 Fits of Dalitzplots

Don‘t forget the non-statistical bin-by-bin errors

statistical error from the MC events
systematic error of a MC efficiency parameterization
statistical error (propagation) from a background subtraction
systematic error from background parameterization



Finite Resolution

Due to resolution or wrong matching:
True phase space coordinates of MC events 
are different from the reconstructed coordinates
In principle amplitudes of MC-events have to be calculated at the 
generated coordinate, not the reconstructed location
But they are plotted at the reconstructed location

Applies to:
Experiments with “bad” resolution (like Asterix)
For narrow resonances  [like Φ or f1(1285) or f0(980)]
Wrongly matched tracks

Cures phase-smearing and 
non-isotropic resolution effects
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Is one more resonance significant ?

Base your decision on
objective bin-by-bin χ2 and χ2/Ndof

visual quality
is the trend right?
is there an imbalance between different regions

compatibility with expected L  structure
Produce Toy MC for Likelihood Evaluation

many sets with full efficiency and Dalitz plot fit
each set of events with various amplitude hypotheses
calc L expectation

L expectation is usually not just ½/dof
sometimes adding a wrong (not necessary) resonance 
can lead to values over 100!
compare this with data

Result: a probability for your hypothesis!
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13ToyMC Significance Test

Your experiment may yield a certain likelihood pattern
Hypo 1 –log L1=-5123
Hypo 2 –log L2=-4987 (ΔL=136)
Hypo 3 –log L3=-4877 (ΔL=110)

Is Hypo 3 really needed? What is the significance
ToyMC create independent toy data sets which have exactly the same 
composition as solutions 1,2 and 3
If 3 is the right solution find out how often –log L3 is smaller than –log 
L2, the percentage gives the confidence level  significance

table from PDG06 for ±δ



Indications for a bad solution

Plus
one indication can be a large branching fraction of interference terms
Definition of BF of channel j

BFj = ∫|Aj|2dΩ/∫|ΣiAi|2

But due to interferences, something is missing
Incoherent I=|A|2+|B|2

Coherent I=|A+eiφB|2 = |A|2+|B|2 +2[Re(AB*)sinφ+Im(AB*)cosφ

If ΣjBFj is much different from 100% there might be a problem
The sum of interference terms must 
vanish if integrated from -∞ to +∞
But phase space limits this region
If the resonances are almost covered by phase space
then the argument holds...
...and large residual interference intensities signal overfitting
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Where to stop

Apart from what was said before

Additional hypothetical trees (resonances, mechanisms) do not
improve the description considerably

Don‘t try to parameterize your data with inconsistent techniques

If the model don‘t match, the model might be the problem
reiterate with a better model
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Problem:
Slow convergence

Solution(s):
proper parameterizations

calculate only function branches which depend 
on the actually changed parameter 

multi-stage fits, increasing number of free parameters

intermediate steps are unimportant, stop early! Δχ2 cut-off

oscillation around the minimum with decreasing distance
due to numerical deriviatives

may improve with analytical expressions (rarely done)
more speed by approximating second derivative (FUMILI)

(wrong for phases! only Re/Im-parameterizations!)

Performance Issues



Determining Branching Fractions

QM prevents us from explicitly saying which 
slit was more often used than the other one

Dealing with interferences

No correct way to determine the relative couplings 
in fits without a coupled channel approach

Even with K-Matrix approach, the
couplings are at K-Matrix-poles and don’t have a priori meaning
 Residues of the Singularities of the T-Matrix
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Other important topics

Amplitude calculation
Symbolic amplitude manipulations (Mathematica, etc.)
On-the-fly amplitude construction (qft++,…etc.)

CPU demand
Minimization strategies and derivatives  GPUs

Coupled channel implementation
Variants, Pros and Cons
Numerical instabilities
Unitarity constraints
Constraining ambiguous solutions with external information

Constraining resonance parameters
systematic impact if wrong masses are used
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Background

Various possibilities (depending on data and process) 
to account for background 

as part of the data preparation
subtraction of background phase space distributions (from MC)
subtraction of background phase space distributions (from sidebands)

background hypotheses as part of the model
functional description (parameterized distribution)
either form MC or from extra- or interpolated sidebands
(or multidimensional extensions like 9-tile etc.)

19



Next Generation PWA Software

see poster!!
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The Need for Partial Wave Analysis

Example: Consider the reaction

21

What you see is 
always the same ... 

What really happened...

PWA = technique to find 
out what happens in between

... 
etc.



Summary and Outlook

Lot of material

Use what you have learned,

but use it

and use it with care
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THANK YOU

23



Acknowledgements

I would like to thank
S.U. Chung and M.R. Pennington for teaching me so many things

I also would like to thank
C. Amsler, S.U. Chung, D.V. Bugg, Th. Degener, W. Dunwoodie, K. 
Götzen, W. Gradl, C. Hanhardt, E. Klempt, B. Kopf, R.S. Longacre, B. 
May, B. Meadows, L. Montanet, M.R. Pennington, S. Spanier, A. 
Szczepaniak, M. Williams and many others more

for fruitful discussions and/or providing
a lot of material used in these lectures

24


	Peters_sect5_K-Matrix.pdf
	Peters_sect6_Experiments.pdf

