Amplitude Analysis An Experimentalists View

K. Peters

Part V

K-Matrix

K-Matrix

The case
Derivation
Examples
Properties
Interpretation
Problems

Isobar Model

Generalization

construct any many-body system as a tree of subsequent two-body decays the overall process is dominated by two-body processes
the two-body systems behave identical in each reaction
different initial states may interfere

We need
need two-body "spin"-algebra various formalisms
need two-body scattering formalism
final state interaction, e.g. Breit-Wigner

Properties of Dalitz Plots

For the process $M \rightarrow R \mathrm{~m}_{3}, R \rightarrow \mathrm{~m}_{1} \mathrm{~m}_{2}$ the matrix element can be expressed like

$$
\mathcal{M}_{R}\left(L, m_{12}, m_{23}\right)=Z(L, \vec{p}, \vec{q}) \cdot B_{L}^{M}(p) \cdot B_{L}^{R}(q) \cdot T_{R}\left(m_{12}\right)
$$

Winkelverteilung (Legendre Polyn.) (Blatt-Weisskopf-F.) (z.B. Breit Wigner)

Differential cross section

$$
\frac{d \sigma_{f i}}{d \Omega}=\frac{1}{(8 \pi)^{2} s}\left(\frac{q_{f}}{q_{i}}\right)\left|\mathcal{M}_{f i}\right|^{2}=\left|f_{f i}(\Omega)\right|^{2}
$$

Scattering amplitude

$$
f_{f i}(\Omega)=\frac{1}{q_{i}} \sum_{J}(2 J+1) T_{f i}^{J}(s) D_{\lambda \mu}^{\prime *}(\phi, \theta, 0)
$$

$$
\text { S-Matrix } \quad S=I+2 \iota T
$$

Total scattering cross section
$\sigma_{f i}^{J}=\left(\frac{4 \pi}{q_{i}^{2}}\right)(2 J+1)\left|T_{f i}^{J}(s)\right|^{2}$
with $\quad|i\rangle=\left|a b, J M \lambda_{a} \lambda_{b}\right\rangle$
$|f\rangle=\left|c d, J M \lambda_{c} \lambda_{d}\right\rangle$
$\langle f \mid i\rangle=\delta_{i j}$
and

$$
S_{f i}=\langle f| S|i\rangle \quad S S^{\dagger}=S^{\dagger} S=I
$$

$$
\begin{aligned}
& z=(a, b)=(a=\mathfrak{R}[z], b=\mathfrak{J}[z]) \Rightarrow(r, \varphi) \\
& z=a+l b=r e^{\iota \varphi}=\cos \varphi+\iota \operatorname{sn} \varphi \\
& r=\sqrt{a^{2}+b^{2}} \\
& \varphi=\tan ^{-1} \frac{b}{a} \\
& \eta=2 \sqrt{a^{2}+\left(b-\frac{1}{2}\right)^{2}} \\
& \delta=\frac{1}{2} \tan ^{-1}\left(\frac{b-\frac{1}{2}}{a}\right)+\frac{\pi}{4}
\end{aligned} \quad(a, b) \Rightarrow(r, \varphi) \quad \xrightarrow[\operatorname{Re}(\mathrm{T})]{\phi} \quad l
$$

Standard Breit-Wigner

Full circle in the Argand Plot

Relativistic Breit-Wigner

By migrating from Schrödinger‘s equation (non-relativistic)
to Klein-Gordon's equation (relativistic) the energy term changes different energy-momentum relation $E=p^{2} / m$ vs. $E^{2}=m^{2} c^{4}+p^{2} c^{2}$

The propagators change to $s_{R}-s$ from $m_{R}-m$

$$
T(s)=\frac{\gamma}{s_{r}-s-l \frac{2 q \gamma}{\sqrt{s}}}=\frac{\Gamma}{m_{r}^{2}-m^{2}-\iota \rho m_{0} \Gamma}
$$

Breit-Wigner in the Real World

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi \pi
$$


```
Input = Output
```


Outline of the Unitarity Approach

The most basic feature of an amplitude is UNITARITY

Everything which comes in has to get out again no source and no drain of probability

Idea: Model a unitary amplitude
Realization: n-Rank Matrix of analytic functions, $T_{i j}$ one row (column) for each decay channel

What is a resonance?
A pole in the complex energy plane $T_{i j}(m)$ with m being complex
Parameterizations: e.g. sum of poles

$$
\frac{1}{m_{0}-i \frac{\Gamma_{0}}{2}}
$$

T-Matrix Unitarity Relations

Unitarity is a basic feature since probability has to be conserved
T is unitary if S is unitary

$$
\sum_{j=0}^{n} S_{k j}^{*} S_{i j}=\delta_{i k}=\sum_{j=0}^{n} T_{k j}^{*} T_{i j}
$$

$$
\text { since } S=I+2 \iota T \quad \text { we get in addition } \quad \mathfrak{I}\left[T_{i j}\right]=\sum_{n} T_{n j}^{*} T_{n i}
$$

for a single channel $\mathfrak{J}\left[T_{11}\right]=T_{11}^{*} T_{11}$

Outline of the Unitarity Approach

but there a more than one channel involved....

$$
\mathfrak{I}\left[T_{i j}\right]=T_{i 1}^{*} T_{1 j}+T_{i 2}^{*} T_{2 j}+\ldots
$$

T-Matrix Dispersion Relations

Cauchy Integral on a closed contour

$$
T_{l}(s)=\frac{1}{2 l \pi} \int_{C} \frac{T_{l}\left(s^{\prime}\right) d s^{\prime}}{s^{\prime}-s}
$$

By choosing proper contours and some limits one obtains the dispersion relation for $T_{l}(s)$

$$
T_{l}(s)=\frac{1}{\pi} \int_{-\infty}^{s_{L}} \frac{\mathfrak{J}\left[T_{l}\left(s^{\prime}\right)\right]}{s^{\prime}-s} d s^{\prime}+\frac{1}{\pi} \int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} \frac{\mathfrak{J}\left[T_{l}\left(s^{\prime}\right)\right]}{s^{\prime}-s} d s^{\prime}
$$

Satisfying this relation with an arbitrary parameterization is extremely difficult much more elsewhere.... and is dropped in many approaches

S-Matrix and Unitarity

\qquad

$$
\begin{aligned}
S_{f i} & =\langle f| S|i\rangle \\
S & =I+2 i T \\
S S^{\dagger} & =S^{\dagger} S=I \\
T-T^{\dagger} & =2 i T^{\dagger} T=2 i T T^{\dagger} \\
\left(T^{\dagger}\right)^{-1}-T^{-1} & =2 i l \\
\left(T^{-1}+i I\right)^{\dagger} & =T^{-1}+i l \\
K^{-1} & =T^{-1}+i l \\
K & =K^{\dagger} \\
T & =K+i T K=K+i K T \\
{[K, T] } & =0
\end{aligned}
$$

$S($ and $T)$ is $\mathbf{n} \times \mathbf{n}$ matrix representing \mathbf{n} incoming and \mathbf{n} outgoing channel
the Caley transformation generates a unitary matrix from a real and symmetric matrix K

$$
S=(I+\iota K)(I-\iota K)^{-1}=(I-\iota K)^{-1}(I+\iota K)
$$

then T commutes with $\mathrm{K} \quad[K, T]=0$
and is defined like

$$
T=K(I-\iota K)^{-1}=(I-\iota K)^{-1} K
$$

then T is also unitary by design

Some more properties

$$
\begin{aligned}
\mathfrak{R}[T] & =\left(I+K^{2}\right)^{-1} K=K\left(I+K^{2}\right)^{-1} \\
\mathfrak{I}[T] & =\left(I+K^{2}\right)^{-1} K^{2}=K^{2}\left(I+K^{2}\right)^{-1}
\end{aligned}
$$

it can be shown, that this leads to

$$
\mathfrak{I}[T]=T^{*} T=T T^{*}
$$

K-Matrix - Interpretation

Each element of the K-matrix describes
one particular propagation from initial to final states

Example: $\pi \pi-S c a t t e r i n g$

1 channel
$|S|=1$
$S=e^{2 i \delta}$
$K=\tan \delta$
$T=e^{1 \delta} \sin \delta$
$\sigma=\left(\frac{4 \pi}{q_{i}^{2}}\right) \sin ^{2} \delta \quad D=K_{11} K_{22}-K_{12}^{2}$
2 channels
$S_{i k} S_{j k}^{*}=\delta_{i j}$
$S_{11}=\eta e^{2 i \delta_{1}}$
$S_{22}=\eta e^{2 i \delta_{2}}$
$K=\left(\begin{array}{ll}K_{11} & K_{12} \\ K_{21} & K_{22}\end{array}\right)$
$S_{12}=\sqrt{1-\eta^{2}} e^{i \varphi_{12}}, \quad \varphi_{12}=\delta_{1}+\delta_{2}$
$T=\frac{1}{1-D-l\left(K_{11}+K_{22}\right)}\left(\begin{array}{cc}K_{11}-i D & K_{12} \\ K_{21} & K_{22}-i D\end{array}\right)$

Goal: Find a reasonable parameterization
The parameters are used to model the analytic function to follow the data
Only a tool to identify the resonances in the complex energy plane Does not necessarily help to interpret the data!
Poles and couplings have not always a direct physical meaning
Problem: Freedom and unitarity
Find an approach where unitarity is preserved by construction
And leave a lot of freedom for further extension

Relativistic Treatment

So far we did not care about relativistic kinematics
covariant description

$$
\begin{aligned}
& \text { or } \\
& \text { Tij }=\left\{\rho_{i}\right\}^{\frac{1}{2}} \widehat{T}_{i j}\left\{\rho_{j}\right\}^{\frac{1}{2}} \\
& \text { and } \\
& S=I+2 l\{\rho\}^{\frac{1}{2}} \widehat{T}\{\rho\}^{\frac{1}{2}}
\end{aligned}
$$

with $\rho=\left(\begin{array}{cc}\rho_{1} & 0 \\ 0 & \rho_{2}\end{array}\right) \quad \rho_{1}=\frac{2 q_{1}}{m} \quad$ and $\quad \rho_{2}=\frac{2 q_{2}}{m}$
therefore

$$
\mathfrak{I}[\hat{T}]=\hat{T}^{*} \rho \widehat{T}=\widehat{T} \rho \hat{T}^{*} \quad \mathfrak{I}\left[\hat{T}^{-1}\right]=-\rho
$$

and K is changed as well $K=\{\rho\}^{\frac{1}{2}} \widehat{K}\{\rho\}^{\frac{1}{2}} \quad$ and

$$
\widehat{K}^{-1}=\widehat{T}^{-1}+\iota \rho \quad \widehat{T}=\widehat{K}(I-\iota \rho \widehat{K})^{-1}=(I-\iota \widehat{K} \rho)^{-1} \widehat{K}
$$

Relativistic Treatment (cont’d)

So far we did not care about relativistic kinematics
covariant description

$$
T=\{\rho\}^{\frac{1}{2}} \widehat{T}\{\rho\}^{\frac{1}{2}}
$$

with

$$
\rho=\left(\begin{array}{cc}
\rho_{1} & 0 \\
0 & \rho_{2}
\end{array}\right) \quad \rho_{1}=\frac{2 q_{1}}{m} \quad \text { and } \quad \rho_{2}=\frac{2 q_{2}}{m}
$$

in detail

$$
\begin{aligned}
& \rho_{1}=\frac{2 q_{1}}{m}=\sqrt{\left[1-\left(\frac{m_{a}+m_{b}}{m}\right)^{2}\right]\left[1-\left(\frac{m_{a}-m_{b}}{m}\right)^{2}\right]} \\
& \rho_{2}=\frac{2 q_{2}}{m}=\sqrt{\left[1-\left(\frac{m_{c}+m_{d}}{m}\right)^{2}\right]\left[1-\left(\frac{m_{c}-m_{d}}{m}\right)^{2}\right]} \\
& \quad \rho_{i} \rightarrow 1 \text { as } m^{2} \rightarrow \infty
\end{aligned}
$$

Relativistic Treatment - 2 channel

S-Matrix

$$
\begin{aligned}
S & =\left(I+\left\{\{\rho\}^{\frac{1}{2}} \widehat{K}\{\rho\}^{\frac{1}{2}}\right)\left(I-\iota\{\rho\}^{\frac{1}{2}} \widehat{K}\{\rho\}^{\frac{1}{2}}\right)^{-1}\right. \\
& =\left(I-l\{\rho\}^{\frac{1}{2}} \widehat{K}\{\rho\}^{\frac{1}{2}}\right)^{-1}\left(I+\iota\{\rho\}^{\frac{1}{2}} \widehat{K}\{\rho\}^{\frac{1}{2}}\right)
\end{aligned}
$$

2 channel T-Matrix

$$
\begin{aligned}
& \widehat{T}=\frac{1}{1-\rho_{1} \rho_{2} \hat{D}-\iota\left(\rho_{1} \widehat{K}_{11}+\rho_{2} \widehat{K}_{22}\right)}\left(\begin{array}{cc}
\widehat{K}_{11}-\rho_{2} \hat{D} & \widehat{K}_{12} \\
\widehat{K}_{21} & \widehat{K}_{22}-\iota \rho_{1} \hat{D}
\end{array}\right) \\
& \hat{D}=\widehat{K}_{11} \widehat{K}_{22}-\widehat{K}_{12}^{2}
\end{aligned}
$$

to be compared with the non-relativistic case

$$
\begin{aligned}
T & =\frac{1}{1-D-\iota\left(K_{11}+K_{22}\right)}\left(\begin{array}{cc}
K_{11}-i D & K_{12} \\
K_{21} & K_{22}-i D
\end{array}\right) \\
D & =K_{11} K_{22}-K_{12}^{2}
\end{aligned}
$$

Now we introduce resonances as poles (propagators)

$$
K_{i j}=\sum_{R} \frac{g_{R i}(m) g_{R j}(m)}{m_{R}^{2}-m^{2}}+c_{i j}
$$

One may add $\boldsymbol{c}_{i j}$ a real polynomial of $\boldsymbol{m}^{\mathbf{2}}$ to account for slowly varying background (not experimental background!!!)

$$
\widehat{K}_{i j}=\sum_{R} \frac{g_{R i}(m) g_{R j}(m)}{\left(m_{R}^{2}-m^{2}\right) \sqrt{\rho_{i} \rho_{j}}}+\hat{c}_{i j}
$$

$$
g_{R i}^{2}(m)=m_{R} \Gamma_{R i}(m)
$$

Width/Lifetime

$$
\begin{array}{r}
\Gamma_{R}(m)=\sum_{i} \Gamma_{R i}(m) \\
\Gamma_{R i}(m)=\frac{g_{R i}^{2}(m)}{m_{R}}=\gamma_{R i}^{2} \Gamma_{R}^{0}\left[B_{R i}^{l}\left(q, q_{R}\right)\right]^{2} \rho_{i}
\end{array}
$$

For a single channel and one pole we get

$$
T=e^{\iota \delta} \operatorname{sn} \delta=\left[\frac{m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}-i m_{0} \Gamma(m)}\right]\left[B^{l}\left(q, q_{0}\right)\right]^{2}\left(\frac{\rho}{\rho_{0}}\right)
$$

Resonances, cont‘d

using $\mathrm{g}_{\mathrm{ai}}{ }^{0}$ the Lorentz invariant K-Matrix gets a simple form It is possible to parametrize non-resonant backgrounds by additional unitless real constants or functions c_{ij} Unitarity is still preserved

In the trivial case of only one resonance in a single channel the classical Breit-Wigner is retained with

$$
\begin{aligned}
\hat{K}_{i j} & =\sum_{a} \frac{Y_{a i} Y_{a j} \Gamma_{a}^{0} B_{a i}^{1}\left(q, q_{a}\right) B_{a j}^{1}\left(q, q_{a}\right)}{m_{a}^{2}-m^{2}} \\
& =\sum_{a} \frac{g_{a i}^{0} g_{a j}^{0} B_{a i}^{\prime}\left(q_{1} q_{a}\right) B_{a j}^{\prime}\left(q, q_{a}\right)}{m_{a}^{2}-m^{2}} \\
\hat{K}_{i j} & \rightarrow \hat{K}_{i j}+c_{i j} \\
K & =\frac{m_{0} \Gamma(m)}{m_{0}^{2}-m^{2}}=\tan \delta \\
\Gamma(m) & =\tilde{\Gamma}_{0}\left(\frac{\rho}{\rho_{0}}\right)\left[B^{1}\left(q, q_{0}\right)\right]^{2} \\
T & =e^{i \delta} \sin \delta \\
& =\left[\frac{m_{0} \tilde{\Gamma}_{0}}{m_{0}^{2}-m^{2}-i m_{0} \Gamma(m)}\right]\left[B^{1}\left(q, q_{0}\right)\right]^{2}\left(\frac{\rho}{\rho_{0}}\right) \\
T & =+i \quad \text { and } \quad \hat{T}=\frac{+i}{\rho} \\
& \text { at } m=m_{0} \quad
\end{aligned}
$$

Example: 1x2 K-Matrix

Strange effects in subdominant channels

Scalar resonance at $1500 \mathrm{MeV} / \mathrm{c}^{2}, \Gamma=100 \mathrm{MeV} / \mathrm{c}^{2}$
All plots show $\pi \pi$ channel
Blue: $\pi \pi$ dominated resonance ($\Gamma_{\pi \pi}=80 \mathrm{MeV}$ and $\Gamma_{K \bar{K}}=20 \mathrm{MeV}$)
Red: $K \bar{K}$ dominated resonance ($\Gamma_{K \bar{K}}=80 \mathrm{MeV}$ and $\Gamma_{\pi \pi}=20 \mathrm{MeV}$)
Look at the tiny phase motion in the subdominant channel

Example: 2×1 K-Matrix Overlapping Poles

$\begin{array}{ll}\square & 2 \text { BW } \\ \text { K-Matrix }\end{array}$

two resonances overlapping with different ($100 / 50 \mathrm{MeV} / \mathrm{c}^{2}$) widths are not so dramatic (except the strength)

The width is basically added

$$
T=\frac{m_{0}\left[\Gamma_{a}(m)+\Gamma_{b}(m)\right]}{m_{0}^{2}-m^{2}-i m_{0}\left[\Gamma_{a}(m)+\Gamma_{b}(m)\right]}
$$

Two nearby poles ($m=1.27$ and $1.5 \mathrm{GeV} / c^{2}$) show nicely the effect of unitarization

$$
\begin{aligned}
& K=\frac{m_{a} \Gamma_{a}(m)}{m_{a}^{2}-m^{2}}+\frac{m_{b} \Gamma_{b}(m)}{m_{b}^{2}-m^{2}} \\
& \Gamma_{R}(m)=\Gamma_{R}^{0}\left(\frac{m_{a}}{m}\right)\left(\frac{q}{q_{R}}\right)\left[B^{2}\left(q, q_{R}\right)\right]^{2}
\end{aligned}
$$

Example: Flatté 1x2 K-Matrix

2 channels for a single resonance at the threshold of one of the channels
with $\quad \gamma_{1}^{2}+\gamma_{2}^{2}=1$

Leading to the T-Matrix

$$
\begin{aligned}
\widehat{K}_{11} & =\frac{\gamma_{1}^{2} m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}} \\
\widehat{K}_{22} & =\frac{\gamma_{2}^{2} m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}} \\
\widehat{K}_{12} & =\widehat{K}_{21}=\frac{\gamma_{1} \gamma_{2} m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}}
\end{aligned}
$$

$$
\widehat{T}=\frac{m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}-i m_{0} \Gamma_{0}\left(\rho_{1} \gamma_{1}^{2}+\rho_{2} \gamma_{2}^{2}\right)}\left(\begin{array}{cc}
\gamma_{1}^{2} & \gamma_{1} \gamma_{2} \\
\gamma_{1} \gamma_{2} & \gamma_{2}^{2}
\end{array}\right)
$$

and with

$$
\begin{aligned}
& g_{i}=\gamma_{i} \sqrt{m_{0} \Gamma_{0}} \\
& g_{1}^{2}+g_{2}^{2}=m_{0} \Gamma_{0}
\end{aligned}
$$

$$
\text { we get } \hat{T}=\frac{\left(\begin{array}{cc}
g_{1}^{2} & g_{1} g_{2} \\
g_{1} g_{2} & g_{2}^{2}
\end{array}\right)}{m_{0}^{2}-m^{2}-\iota\left(\rho_{1} g_{1}^{2}+\rho_{2} g_{2}^{2}\right)}
$$

$a_{0}(980)$ appears as a „regular" resonance in the $\pi \eta$ system (channel 1)
comparable BW denominator for m near m_{R} is

$$
\begin{aligned}
& m_{c}^{2}-m^{2}-m_{c} \Gamma_{c} \\
& m_{0}^{2}=m_{c}^{2}+\left(\frac{\gamma_{1}}{\gamma_{2}}\right)^{2}\left[\frac{\left|\rho_{2}\left(m_{c}\right)\right|}{\rho_{1}\left(m_{c}\right)}\right] m_{c} \Gamma_{c} \\
& \Gamma_{0}=\frac{m_{c} \Gamma_{c}}{m_{0} \rho_{1}\left(m_{c}\right) \gamma_{1}^{2}}
\end{aligned}
$$

Simulated mass distributions in the $a_{0}(980)$ region using the Flatté formula
dashed lines correspond to different ratios of $\gamma_{2}{ }^{2} / \gamma_{1}{ }^{2}$

Flatté Formula, Pole Structure

Due to the simple form, the pole structure can be explored analytically
4 Riemann sheets (I-IV) identified with real and imaginary part of q_{2}
(+,+), (-,+), (+,-) (-,-)

$$
\begin{aligned}
& \rho_{1} \approx 1 \quad q_{2} \ll m_{k} \text { for } m \simeq 2 m_{\kappa} \\
& 2 m_{k} q_{1} \simeq 2 m_{K}^{2}+q_{2}^{2} \\
& f \circ r \quad q^{2}=r e^{i \varphi} \\
& \Im\left(q_{1}\right) \simeq\left(\frac{r^{2}}{2 m_{k}}\right) \sin 2 \varphi \\
& q_{a}=-\alpha+i \beta \\
& q_{b}=+\alpha-i \gamma \\
& g_{1}^{2}= 4 \alpha(\gamma+\beta) \\
& g_{1}^{2}= 4 m_{\kappa}(\gamma-\beta) \\
& m_{0} \simeq 2 m_{\kappa}+\frac{\alpha^{2}-\beta \gamma}{m_{k}} \\
& \Rightarrow \alpha, \beta, \gamma>0 \\
& \Rightarrow \gamma>\beta
\end{aligned}
$$

Flatté Formula, Pole Structure, cont'd

Flatté formula entails two poles in sheet II (for q_{a}) and sheet III (for q_{b})

$$
\begin{aligned}
& m_{a} \simeq 2 m_{k}+\frac{\alpha^{2}-\beta^{2}}{m_{k}} \\
& m_{b} \simeq 2 m_{k}+\frac{\alpha^{2}-\gamma^{2}}{m_{k}} \\
& \Gamma_{a} \simeq \frac{4 \alpha \beta}{m_{k}} \\
& \Gamma_{b} \simeq \frac{4 \alpha \gamma}{m_{k}} \\
& m_{0} \simeq \frac{m_{a}+m_{b}}{2}+\frac{(\gamma-\beta)^{2}}{2 m_{k}} \\
& \Gamma_{0} \simeq\left(\frac{2 m_{K}}{m_{0}}\right)\left[\frac{\Gamma_{a}+\Gamma_{b}}{2}+2(\gamma-\beta)\right]
\end{aligned}
$$

K-Matrix Parameterizations

Au, Morgan and Pennington (1987)

$$
\begin{aligned}
K_{i j} & =\frac{s-s_{0}}{4 m_{K}^{2}} \sum_{r} \frac{g_{r, i} g_{r, j}}{\left(s_{r}-s\right)\left(s_{r}-s_{0}\right)}+\sum_{\eta} \\
& \equiv\left(s-s_{0}\right) \widehat{K}_{i j}
\end{aligned}
$$

But in many reactions there is no scattering process but a production process, a resonance is produced with a certain strength and then decays

Aitchison (1972) $\quad F=(I-I K)^{-1} P=T K^{-1} P$

$$
\widehat{F}=(I-i \widehat{K} \rho)^{-1} \widehat{P}=\widehat{T} \widehat{K}^{-1} \widehat{P} \quad \text { with } \quad F=\{\rho\}^{\frac{1}{2}} \widehat{F} \quad \text { and } \quad P=\{\rho\}^{\frac{1}{2}} \widehat{P}
$$

The resonance poles are constructed as in the K-Matrix

$$
P_{i}=\sum_{R} \frac{\beta_{R}^{0} g_{R i}(m)}{m_{R}^{2}-m^{2}} \quad \widehat{P}_{i}=\sum_{R} \frac{\beta_{R}^{0} g_{R i}(m)}{\left(m_{R}^{2}-m^{2}\right) \sqrt{\rho_{i}}}
$$

and one may add a polynomial $\boldsymbol{d}_{\boldsymbol{i}}$ again

$$
P_{i} \rightarrow P_{i}+d_{i}
$$

For a single channel and a single pole

$$
\widehat{F}(m)=\beta \frac{m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}-i m_{0} \Gamma(m)} B^{l}\left(q, q_{0}\right)
$$

If the K-Matrix contains fake poles...
for non s-channel processes modeled in an s-channel model
...the corresponding poles in P are different

A different Ansatz with a different picture: channel n is produced and undergoes final state interaction

$$
\begin{aligned}
& Q=K^{-1} P \quad \text { and } \quad\{\rho\}^{\frac{1}{2}} Q=\widehat{Q} \quad \text { and } \quad \widehat{Q}=\widehat{K}^{-1} \widehat{P} \\
& F=T Q \quad \text { and } \quad \widehat{F}=\widehat{T} \widehat{Q}
\end{aligned}
$$

For channel 1 in 2 channels

$$
F_{1}=T_{11} Q_{1}+T_{12} Q_{2}
$$

Complex Analysis Revisited

The Breit-Wigner example

$$
T=e^{\iota \delta} \sin \delta=\left[\frac{m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}-i m_{0} \Gamma(m)}\right]\left[B^{l}\left(q, q_{0}\right)\right]^{2}\left(\frac{\rho}{\rho_{0}}\right)
$$

shows, that $\Gamma(m)$ implies $\rho(m)$

$$
\Gamma_{R i}(m)=\frac{g_{R i}^{2}(m)}{m_{R}}=\gamma_{R i}^{2} \Gamma_{R}^{0}\left[B_{R i}^{l}\left(q, q_{R}\right)\right]^{2} \rho_{i}
$$

Each $\rho(m)$ which is a square root,
one obtains two solutions for $p>0$ or $p<0$ respectively

Complex Analysis Revisited (cont'd)

one obtains two solutions for $p>0$ or $p<0$ respectively

$$
p>0
$$

$$
p<0
$$

$$
\begin{aligned}
& \rho_{a}=\sqrt{\frac{2|q|}{m}} \\
& \rho_{b}=-\sqrt{\frac{2|q|}{m}}
\end{aligned}
$$

$$
\rho_{a}=l \sqrt{\frac{2|q|}{m}}
$$

$$
\rho_{b}=-i \sqrt{\frac{2|q|}{m}}
$$

But the two values ($w=2 q / m$) have some phase in between and are not identical

$$
\sqrt{w}-\sqrt{w^{*}}= \pm \sqrt{|w|}\left(e^{l \frac{\varphi}{2}}+e^{-l \frac{\varphi}{2}}\right)=\left.\cosh \frac{\varphi}{2}\right|_{\varphi=0} \neq 0
$$

So you define a new complex plane for each solution, which are 2^{n} complex planes, called Riemann sheets they are continuously connected. The borderlines are called CUTS.
Usual definition
sheet

I	$\operatorname{sgn}\left(q_{1}\right)$	$\operatorname{sgn}\left(q_{2}\right)$
II	+	+
III	-	+
IV	+	+

This implies for the T-Matrix

$$
\left(\widehat{T}^{I I I}\right)^{-1}=\left(\widehat{T}^{I I}\right)^{-1}+\rho_{2}
$$

Complex Momentum Plane

States on Energy Sheets

$$
T\left(E+\frac{\Gamma}{2}\right)=0
$$

Singularities might be

1 - bound states
2 - anti-bound
states
3 - resonances
$\operatorname{Re}(E)$
or
artifacts due to

wrong treatment of the model

States on Momentum Sheets

Or in the complex momentum plane

Singularities might be

1 - bound states
2 - anti-bound states
3 - resonances

$\operatorname{Im}\left(\mathrm{q}_{2}\right)$

Left-hand and Right-hand Cuts

The right hand CUTS (RHC) come from the open channels in an n channel problem

$$
\longrightarrow \text { Re(}
$$

But also exchange processes and other effects introduce CUTS on the left-hand side (LHC)

To get the proper behavior for the left-hand cuts
Use $N_{l}(s)$ and $D_{l}(s)$ which are correlated by dispersion relations

$$
T_{l}(s)=\frac{N_{l}(s)}{D_{l}(s)}
$$

An example for this is the work of Bugg and Zhou (1993)

$$
\begin{aligned}
K_{i j}= & \left(\frac{s-2 m_{\pi}^{2}}{s}\right)\left(\frac{\alpha_{i} \alpha_{j}}{s_{A}-s} \frac{\beta_{i} \beta_{j}}{s_{B}-s} \frac{\gamma_{i} \gamma_{j}}{s_{C}-s}+a_{i j}+b_{i j} s\right) \\
N_{\pi \pi}(s)= & N_{11}(s)=\left(c_{1}+c_{2} s\right) K_{11}+i \rho_{2}\left(c_{3}+c_{4} s\right) \\
& \left(K_{11} K_{22}-K_{12} K_{21}\right) \\
N_{\eta \eta}(s)= & N_{22}(s)=c_{1} K_{22}+i \rho_{2} c_{3}\left(K_{11} K_{22}-K_{12} K_{21}\right)
\end{aligned}
$$

Nearest Pole Determines Real Axis

The pole nearest to the real axis or more clearly to a point with mass m on the real axis
determines your physics results

Far away from thresholds this works nicely

At thresholds, the world is more complicated

While $\rho(770)$ in between two thresholds has a beautiful shape the $f_{0}(980)$ or $a_{0}(980)$ have not

Pole and Shadows near Threshold (2 Channels)

For a real resonance one always obtains poles on sheet II and III due to symmetries in T_{1}

$$
\hat{T}_{l}(q)=\hat{T}_{l}^{*}\left(-q^{*}\right) \quad \text { and } \quad \hat{T}_{l}(s)=\hat{T}_{l}^{*}\left(s^{*}\right)
$$

Usually
$\Gamma_{r}^{\mathrm{BW}} \approx \frac{1}{2}\left(\Gamma_{r}^{I I}+\Gamma_{r}^{I I I}\right)$

To make sure that pole and shadow match and form an s-channel
resonance, it is mandatory to check if the pole on sheets II and III match

This is done by artificially changing
ρ_{2} smoothly from q_{2} to $-q_{2}$
$\operatorname{Im}(E) \uparrow \pi \pi$-threshold

t-channel Effects (also u-channel)

They may appear resonant and non-resonant
Formally they cannot be used with Isobars
But the interaction is among two particles
To save the Isobar Ansatz (workaround)
they may appear as unphysical poles in K-Matrices or as polynomial of s in K-Matrices
background terms in unitary form

Rescattering

No general solution
Specific models needed

Handling K-Matrices and P-Vectors

Problems of the method are
performance (complex matrix-inversions!)
numerical instabilities
singularities
unitarity constraints
for P-Vectors
cut structure
behavior at left- and right-hand cuts

Handling K-Matrices and P-Vectors

Problems of the method are

unmeasured channels
yield huge problems if numerous or dominant
systematic errors of the experiment relative efficiency, shift in mass, different resolutions
damping factors (sizes) for respective objects

Handling K-Matrices and P-Vectors

Problems in terms of interpretation are

mapping K-Matrix to T-Matrix poles
number might be different
branching ratios
K-matrix strength is unequal T-matrix coupling

Handling K-Matrices and P-Vectors

Problems in terms of interpretation are validity of P-vectors
all channels need to have identical production processes FSI has to be dominant
singularities not all are resonances \Rightarrow limit of the isobar model

Summary

K-Matrix is a good tool
if one obeys a few rules
ideally one would like to use an unbiased parameterization which fulfills everything
use the best you can for your case and document well, what you have done

THANK YOU

for today

Amplitude Analysis An Experimentalists View

K. Peters

Part VI

Experiments

Experiments

Background

Numerical Issues
Goodbess-of-Fit
Computers

Phase space

do you expect phase space distortions?
for example from varying efficiencies
example: $\epsilon(p) \neq$ const.
how strong is the event displacement?
due to resolution
example: m^{2} has Gaussian smeared
may end up in a different bin
due to wrong particle assignments
example: 15 combinations of 6γ may form $3 \pi^{0}$
a wrong assignment is still reconstructed but with different coordinates has it impact on the model and/or the method?

Finally: Coupled channels

Coupling can occur in initial and final states
same intermediate state, but everything else is different
coupling due to related production mechanisms
is a very important tool, but not the focus of this talk.
Isospin relations (pure hadronic)
combine different channels of the same gender, like
$\pi^{+} \pi$ and $\pi^{0} \pi^{0}$ (as intermediate states)
or combining $\mathrm{p} \overline{\mathrm{p}}, \overline{\mathrm{p}} \mathrm{n}$ and $\mathrm{n} \overline{\mathrm{n}}$
or $X^{0} \rightarrow K K \pi$, Example K^{*} in $K^{+} K_{L} \pi$

Fitting

There are many programs and packages on the market
but there are a few importat aspects which should be mentioned

Having an good (algebraic) description of the Hesse-Matrix is vital for fast and stable convergence

MINUIT does not allow for them \rightarrow need for improved version now: only numerical calculation of $2^{\text {nd }}$ derivatives
FUMILI uses an approximation \rightarrow good convergence
even if the approximation is not always correct

$$
\begin{aligned}
& f=-\sum \log L\left(x_{1}, \ldots, x_{2}\right) \Rightarrow \\
& \frac{\partial f}{\partial x_{i}}=\sum \frac{1}{L} \frac{\partial L}{\partial x_{i}} \Rightarrow \\
& \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\sum(\underbrace{\frac{1}{L} \frac{\partial^{2} L}{\partial x_{i} \partial x_{j}}}_{0}-\frac{1}{L^{2}}\left(\frac{\partial L}{\partial x_{i}} \frac{\partial L}{\partial x_{j}}\right))
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} a^{2}}{\partial \alpha^{2}}=1 \neq 4 a^{2}=\left(\frac{\partial a^{2}}{\partial \alpha}\right)^{2} \\
& \frac{\partial^{2} \sin \alpha}{\partial \alpha^{2}}=-\sin \alpha \neq \cos ^{2} \alpha=\left(\frac{\partial \sin \alpha}{\partial \alpha}\right)^{2} \\
& \frac{\partial^{2} \sin ^{2} \alpha}{\partial \alpha^{2}} \neq\left(\frac{\partial \sin ^{2} \alpha}{\partial \alpha}\right)^{2}
\end{aligned}
$$

MINUIT2 = classical gradient descent
Sometimes gets stuck in local minima

Alternative: Evolutionary Strategy GenEvA

\rightarrow new solutions created from previous ones (offspring)

GenEvA Example

Example: Angular distribution + maximum spin of

$$
\bar{p} p \rightarrow \omega \pi^{0}, \omega \rightarrow \pi^{0} \gamma @ 1940 \mathrm{MeV} / \mathrm{c}(\text { LEAR data })
$$

Less probability to get stuck in local minima!

Adaptive binning

Finite size effects in a bin of the Dalitz plot
limited line shape sensitivity for narrow resonances
Entry cut-off for bins of a Dalitz plots X^{2} makes no sense for small \#entries cut-off usually 10 entries

Problems

the cut-off method may deplete important regions of the plot to much circumvent this by using a bin-by-bin Poisson-test for these areas

alternatively: adaptive Dalitz plots, but one may miss narrow depleted regions, like the $f_{0}(980)$ dip systematic choice-of-binning-errors

another Caveat in χ^{2} Fits of Dalitzplots

Don't forget the non-statistical bin-by-bin errors

statistical error from the MC events
systematic error of a MC efficiency parameterization
statistical error (propagation) from a background subtraction
systematic error from background parameterization

Finite Resolution

Due to resolution or wrong matching:
True phase space coordinates of MC events are different from the reconstructed coordinates
In principle amplitudes of MC-events have to be calculated at the generated coordinate, not the reconstructed location
But they are plotted at the reconstructed location

Applies to:
Experiments with "bad" resolution (like Asterix)
For narrow resonances [like Φ or $f_{1}(1285)$ or $f_{0}(980)$]
Wrongly matched tracks

Cures phase-smearing and non-isotropic resolution effects

Base your decision on
objective bin-by-bin χ^{2} and $\chi^{2} / N_{\text {dof }}$ visual quality
is the trend right?
is there an imbalance between different regions
compatibility with expected $\Delta \mathrm{L}$ structure
Produce Toy MC for Likelihood Evaluation
many sets with full efficiency and Dalitz plot fit
each set of events with various amplitude hypotheses calc ΔL expectation
ΔL expectation is usually not just $1 / 2 /$ dof
sometimes adding a wrong (not necessary) resonance
can lead to values over 100!
compare this with data
Result: a probability for your hypothesis!

ToyMC Significance Test

Your experiment may yield a certain likelihood pattern
Hypo $1 \quad-\log L_{1}=-5123$
Hypo $2 \quad-\log L_{2}=-4987 \quad(\Delta L=136)$
Hypo $3 \quad-\log L_{3}=-4877 \quad(\Delta L=110)$
Is Hypo 3 really needed? What is the significance
ToyMC create independent toy data sets which have exactly the same composition as solutions 1,2 and 3
If 3 is the right solution find out how often $-\log L_{3}$ is smaller than -log L_{2}, the percentage gives the confidence level \rightarrow significance

α	δ
0.3173	1σ
4.55×10^{-2}	2σ
2.7×10^{-3}	3σ
6.3×10^{-5}	4σ
5.7×10^{-7}	5σ
2.0×10^{-9}	6σ

α	δ
0.2	1.28σ
0.1	1.64σ
0.05	1.96σ
0.01	2.58σ
0.001	3.29σ
10^{-4}	3.89σ

table from PDG06 for $\pm \delta$

Plus

one indication can be a large branching fraction of interference terms Definition of BF of channel j
$B F_{j}=\int\left|A_{j}\right|^{2} \mathrm{~d} \Omega / \int\left|\sum_{i} A_{i}\right|^{2}$
But due to interferences, something is missing
Incoherent $I=|A|^{2}+|B|^{2}$
Coherent $\quad I=\left|A+\mathrm{e}^{\mathrm{i} \varphi} B\right|^{2}=|A|^{2}+|B|^{2}+2\left[\operatorname{Re}\left(A B^{*}\right) \sin \varphi+\operatorname{Im}\left(A B^{*}\right) \cos \varphi\right]$
If $\sum_{j} B F_{j}$ is much different from 100% there might be a problem
The sum of interference terms must
vanish if integrated from $-\infty$ to $+\infty$
But phase space limits this region
If the resonances are almost covered by phase space then the argument holds...
...and large residual interference intensities signal overfitting

Where to stop

Apart from what was said before

Additional hypothetical trees (resonances, mechanisms) do not improve the description considerably

Don't try to parameterize your data with inconsistent techniques

If the model don't match, the model might be the problem reiterate with a better model

Performance Issues

Problem:

Slow convergence

Solution(s):

proper parameterizations
calculate only function branches which depend on the actually changed parameter
multi-stage fits, increasing number of free parameters
intermediate steps are unimportant, stop early! $\Delta \chi^{2}$ cut-off
oscillation around the minimum with decreasing distance due to numerical deriviatives
may improve with analytical expressions (rarely done)
more speed by approximating second derivative (FUMILI)
(wrong for phases! only Re/lm-parameterizations!)

QM prevents us from explicitly saying which slit was more often used than the other one

Dealing with interferences

No correct way to determine the relative couplings in fits without a coupled channel approach

Even with K-Matrix approach, the
couplings are at K-Matrix-poles and don't have a priori meaning
\rightarrow Residues of the Singularities of the T-Matrix

Other important topics

Amplitude calculation

Symbolic amplitude manipulations (Mathematica, etc.)
On-the-fly amplitude construction (qft++,...etc.)

CPU demand
Minimization strategies and derivatives \rightarrow GPUs

Coupled channel implementation
Variants, Pros and Cons
Numerical instabilities
Unitarity constraints
Constraining ambiguous solutions with external information

Constraining resonance parameters
systematic impact if wrong masses are used

Various possibilities (depending on data and process)

 to account for backgroundas part of the data preparation
subtraction of background phase space distributions (from MC) subtraction of background phase space distributions (from sidebands)
background hypotheses as part of the model
functional description (parameterized distribution)
either form MC or from extra- or interpolated sidebands (or multidimensional extensions like 9-tile etc.)

Next Generation PWA Software
see poster!!

The Need for Partial Wave Analysis

Example: Consider the reaction $\bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$
What really happened...

What you see is always the same ...
etc.
PWA = technique to find out what happens in between

Summary and Outlook

Lot of material

Use what you have learned,

but use it

and use it with care

THANK YOU

Acknowledgements

I would like to thank
S.U. Chung and M.R. Pennington for teaching me so many things

I also would like to thank
C. Amsler, S.U. Chung, D.V. Bugg, Th. Degener, W. Dunwoodie, K. Götzen, W. Gradl, C. Hanhardt, E. Klempt, B. Kopf, R.S. Longacre, B. May, B. Meadows, L. Montanet, M.R. Pennington, S. Spanier, A.
Szczepaniak, M. Williams and many others more
for fruitful discussions and/or providing
a lot of material used in these lectures

