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General Comments on my JLab talks

• An experimental physicist talking on theoretical topics and
therefore elementary for theorists

• A lot of the formula in my talks—mostly based on intituitive
perspectives and so

• Listen to what I say—not what I write—they are mostly meant for
the experts, or for the those who would want to go over Iater

• I have given a series of numerous courses/seminars at
TU/munich; and so, after some severe downsizing of the
material, those pressented here are necessarily sketchy and
rudimentary

• Just relax and enjoy and

• Consult the references lsited below—for further information
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Preliminaries

Introduction

• References

• The Poincaré Group

• Decay amplitudes for two- and three-body final states

• Comments on Helicity and Canonical approaches

• Reflectivity Operations

• Covariant Formulation of Helicity-Coupling Amplitudes

• Techniques of Partial-Wave Analysis—
Extended Maximum-Likelihood Methods

• Ambiguities in the Partial-Wave Amplitudes

Not covered: massless particles and fermions
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Perliminaries
References

• S. Weinberg:
‘The Quantum Theory of Fields,’ Cambridge, UK (1995), Volume I, Chapter 2:
Relativistic Quantum Mechanics, p.49—

The Poincaré Algebra
One-Particle States (Mass> 0 and = 0)
P -, T -, C-Operators

• M. Jacob and G. C. Wick, Ann. Phys. (USA) 7, 404 (1959)
‘ Helicity. . . ’

• M. E. Rose, ‘Angular Momentum. . . ,’ Wiley, NY (1957)
Clebsch-Gordan coefficients
The d-functions. . .

• A. D. Martin and T. D. Spearman,
‘Elementary Particle Theory,’ John Wiley & Sons, NY (1970)

• S. U. Chung, ‘Spin Formalisms,’ CERN 71-8

http://cern.ch/suchung/
Zemach amplitudes. . .
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Perliminaries
• S. U. Chung, PR D48, 1225 (1993)

‘The Helicity-coupling amplitudes in tensor formalism’
A Practical Guide—Examples with ℓ ≤ 4 (BNL-QGS94-21)

http://www.phy.bnl.gov/˜ e852/reviews.html

• V. Filippini, A. Fontana, and A. Rotondi, PR D51, 2247 (1995)

• S. U. Chung, PR D57, 431 (1998)
‘General formulation of covariant helicity-coupling amplitudes’
Rank-J Tensor for |Jm〉
General γ = E/m (the Lorentz factor) dependence

http://cern.ch/suchung/

• S. Huang, T. Ruan, N. Wu, and Z. Zheng, Eur. Phys. J. C 26, 609 (2003)
Rank-J Tensor for |Jm〉
(independently derived)

• S. U. Chung and Jan Friedrich, Phys. Rev. D78, 074027 (2008)
Online calculator for the Lorentz factors
The most general and recent paper on this topic
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Quantum Lorentz Transformations
The Poincaré Group

Primary References:

A. McKerrell, NC 34, 1289 (1964).
A. J. Macfarlane, J. Math. Phys. 4, 490 (1963).

Additional References:

‘The Quantum Theory of Fields,’ Steven Weinberg
Volume I—Foundations, Chapter 2 (Relativistic Quantum Mechanics)

‘A Modern Introduction to Quantum Field Theory,’ Michele Maggiore
Chapter 2 (Lorentz and Poincaré Symmetries in QFT)
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Quantum Lorentz Transformations
The Poincaré Group

The general inhomogeneous Lorentz transformation (a,Λ)

p′µ = aµ +Λµ
ν pν and gµν Λµ

ρ Λ
ν
τ = gρτ : The Lorentz Condition(1)

[The latter comes from the condition p ′ 2
∣

∣

∣

a=0
= p2.] Our Lorentz metric gµν = gµν has

signature (+,−,−,−) so that

gµν = δµν and gµ
ν = δµ

ν

Λν
σ Λν

τ = gστ or (Λ−1)σν = Λν
σ

(2)

and
pµ = (E, p1, p2, p3) = (E, px, py , pz)

pµ = gµν pν = (E, p1, p2, p3) = (E,−px,−py ,−pz)
(3)

Let w be the mass associated with p and adopt a notation in which p indicates both the
four-momentum and the magnitude of the 3-momentum, i.e.

E2 = w2 + p2, p2 = p2x + p2y + p2z(4)
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Quantum Lorentz Transformations
The group multiplication law is

(a1,Λ1) (a2,Λ2) = (a3,Λ3),

a3 = a1 +Λ1 a2, Λ3 = Λ1 Λ2

(5)

The corresponding unitary representations (or unitary operators) follow the same rule

U(a,Λ) = U(a, 1)U(0,Λ) ≡ U(a)U(Λ),

U(a1,Λ1)U(a2,Λ2) = U(a3,Λ3)
(6)

Consider now an homogeneous Lorentz transformation Λ(~β) [~β = ~p/E] without rotation
which takes q to q′

q′
µ
= Λµ

ν qν(7)

where

Λ0
0 = γ, Λi

0 = Λ0
i = ηi, Λi

j = δij +
ηiηj

γ + 1
(8)

with γ = E/w and ηi = γβi = pi/w. Note

γ2 = 1 + η2 =
1

1− β2
, η2 = η2x + η2y + η2z(9)
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Quantum Lorentz Transformations

Denote q = (Eq, ~q ) and q ′ = (Eq
′, ~q ′ ) and see that











Eq
′ = γ Eq + (~η · ~q )

~q ′ = ~q +

[

Eq +
(~η · ~q )
γ + 1

]

~η
(10)

The inverse of the Lorentz transormation Λ(~β ) is given by Λ(−~β ), i.e.

(Λ−1)00 = γ, (Λ−1)i0 = (Λ−1)0i = −ηi, (Λ−1)ij = δij +
ηiηj

γ + 1
(11)

so that










Eq = γ E′
q − (~η · ~q ′ )

~q = ~q ′ +

[

−E′
q +

(~η · ~q ′ )

γ + 1

]

~η
(12)

One can check for consistency by substituting q′ into the equations above and see that
the equalities hold.
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Quantum Lorentz Transformations

Go over to infinitesimal transformations (a,Λ)

aµ = ǫµ and Λµ
ν = gµν + ωµ

ν or Λµν = gµν + ωµν(13)

The unitary operators U(a,Λ) become











U(ǫ) = U(ǫ, 1) = 1− i ǫµ Pµ, U−1(ǫ) = 1 + i ǫµ Pµ

U(1 + ω) = U(0, 1 + ω) = 1− 1

2
i ωµν Jµν , U−1(1 + ω) = 1 +

1

2
i ωµν Jµν

P and M are Hermitian, and ω and M are antisymmetric. That ω is antisymmetric can
be worked out from the Lorentz Condition:

gρτ = gµν (gµρ + ωµ
ρ) (g

ν
τ + ων

τ )

= gρτ + ωρτ + ωτρ =⇒ ωρτ = −ωτρ

(14)

Poincaré group: 6 parameters (ωµν ) + 4 parameters (ǫµ) = 10 parameters
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Quantum Lorentz Transformations

Note that

U(Λ)U(a) = U(Λ a)U(Λ)(15)

so that, with b = Λ a,

U−1(Λ)U(b)U(Λ) = U(Λ−1 b)(16)

For b infinitesimally small, one finds

U(b) = 1− i bµ Pµ

U(Λ−1 b) = 1− i (Λ−1 b)α Pα

= 1− i (Λ−1)α
µ bµ Pα

= 1− iΛµ
α bµ Pα

(17)

using the identity (Λ−1)αµ = Λµ
α. And so one obtains

U−1(Λ)Pµ U(Λ) = Λµ
α Pα(18)
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Quantum Lorentz Transformations
Next, observe an obvious identity

U−1(Λ)U(Σ)U(Λ) = U(Λ−1 ΣΛ)(19)

and set U(Σ) = U(1 + ω)















































U(Σ) = 1− 1

2
i ωµν Jµν

U(Λ−1 ΣΛ) = 1− 1

2
i (Λ−1 ωΛ)αβ Jαβ

= 1− 1

2
i (Λ−1)α

µ ωµν Λν
β Jαβ

= 1− 1

2
iΛµ

α ωµν Λν
β Jαβ

(20)

and find

U−1(Λ) Jµν U(Λ) = Λµ
α Λν

β Jαβ(21)
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Quantum Lorentz Transformations

The commutation relations can be obtained as follows. Observe

U(a)U(b) = U(a+ b)(22)

and go over to infinitesimal translations

U(a) = 1− i (a · P )− 1

2
(a · P )2

U(b) = 1− i (b · P )− 1

2
(b · P )2

U(a+ b) = 1− i (a · P + b · P )− 1

2
(a · P + b · P )2

(23)

to see that

(a · P ) (b · P ) = (b · P ) (a · P ) =⇒ aµbν PµPν = aµbν PνPµ(24)

and find

[Pµ, P ν ] = 0(25)
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Quantum Lorentz Transformations

Consider next an infinitesimal Lorentz transformation Λ = 1 + ω. For the purpose, it
is convenient to recast ω, as it is antisymmetric,

ωµ
α =

1

2
ωαβ (gµα ~δ β

α − gµβ)

ων
β =

1

2
ωβα (gνβ ~δ α

β − gνα)

(26)

where ~δ β
α acts on the variables on right and replaces the superscript α with β.

One sees that, from U−1(Λ)Pµ U(Λ) = Λµ
α Pα with Λ = 1 + ω,

[Pµ, Jαβ ] = i (gµα Pβ − gµβ Pα)(27)

and find, from U−1(Λ) Jµν U(Λ) = Λµ
α Λν

β Jαβ with Λ = 1 + ω,

[Jµν , Jαβ ] = −i (gµα Jνβ − gνα Jµβ + gνβ Jµα − gµβ Jνα)(28)

using the fact that both ω and M are antisymmetric.
This completes construction of the Lie algebra for the Poincaré group.
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Quantum Lorentz Transformations
Define ‘relativistic spin’ via

Wµ =
1

2
εµαβ γ Pα Jβγ =

1

2
εµαβ γ Jαβ Pγ(29)

where ε is the 4-dimensional totally antisymmetric tensor with

ε0123 = +1, ε0123 = −1

Since Wµ is a four-vector, one must have

U−1(Λ)Wµ U(Λ) = Λµ
ν W ν(30)

But this formula can be derived independently, noting that

U−1(Λ)Wµ U(Λ) =
1

2
εµαβ γ U−1(Λ)Pα U(Λ)U−1(Λ) Jβγ U(Λ)

=
1

2
εµαβ γ Λα

ρ Λβ
σ Λγ

τ Pρ Jστ

(31)
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Quantum Lorentz Transformations

One now makes use of an elegant identity (see Appendix, note on QLT)

ε ν ρ σ τ = εµαβ γ Λµ
ν Λα

ρ Λβ
σ Λγ

τ(32)

to show that

Λµ
ν ε ν ρ σ τ = εµαβ γ Λα

ρ Λβ
σ Λγ

τ(33)

Sustituting this to the equation above, one obtains the desired result.

Pµ Pµ and Wµ Wµ are invariants (i.e. they commute with all the operators), given by
w2 and −w2 j(j + 1), i.e.







Pµ Pµ = w2

Wµ Wµ = −w2 j(j + 1)
(34)
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Quantum Lorentz Transformations
Define











Ji =
1

2
εijk Jjk : Angular Momentum Operator

Ki = J0i : Boost Operator
(35)

so that, using P i = −Pi, Jij = +Jij , J0i = −J0i and Ji0 = +J0i,







W 0 = ~P · ~J = ~J · ~P

W
→

= P 0 ~J − ~P ×K
→

= ~J P 0 +K
→ × ~P

(36)

Now construct a general (relativistic) spin operator by

wSi = W i − 1

P 0 + w
P i W 0(37)

so that

w~S = P 0 ~J − ~P × ~K − 1

P 0 + w
~P ( ~P · ~J)(38)
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Quantum Lorentz Transformations
The commutation relations are

[Pµ, P ν ] = 0, [P 0, Ji] = [P 0, Si] = 0, [Ji, Aj ] = i εijk Ak(39)

where

Ai = {P i, Ji, Ki, Si}(40)

And
[P 0,Ki] = i P i, [P i,Kj ] = i δij P

0, [P i, Sj ] = 0

[Si, Sj ] = i εijk Sk, [Ki,Kj ] = −i εijk Jk
(41)

Define a general orbital angular momentum operator L via

~J = ~L+ ~S(42)

so that

w~L = −(P 0 − w) ~J + ~P × ~K +
1

P 0 + w
~P ( ~P · ~J)(43)

and
[Ji, Lj ] = [Li, Lj ] = i εijk Lk, [P 0, Li] = [Li, Sj ] = 0

[P i, Lj ] = i εijk Pk, ~P · ~L = 0
(44)
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Quantum Lorentz Transformations
Recapitulate



















































W 0 = ~J · ~P

W
→

= ~J P 0 +K
→ × ~P

~J = ~L+ ~S

w~S = ~JP 0 +K
→ × ~P − 1

P 0 + w
~P ( ~J · ~P )

w~L = − ~J(P 0 − w)−K
→ × ~P +

1

P 0 + w
~P ( ~J · ~P )

(45)

Note that P 0 ~J has been changed to ~JP 0, since they commute. Note also that ~P ×K
→

has been changed to −(K
→ × ~P ); this is possible because [Ki, P j ] = 0 for i 6= j. When

the operators above act on states with a given momentum pµ, it is clear that (P 0, ~P )

can be changed to (E, ~p ). We shall denote the resulting operators by writing Wµ(p),
Sµ(p) and Lµ(p). We see that

Pµ Wµ = pµ Wµ(p) = 0(46)

If a state is at rest, then ~S is equivalent to ~J . The actions of Sµ and Sµ(p) are identical,
when applied to the states for which the Pµ operator has an eigenvalue of pµ.

Hadron Spectroscopy/Mathematical Techniques JLab May 30–June 13, 2012 – p.19



Physik
T UM

One- and Two-Particle States
Single-Particle States

Define

J1 = Jx, J2 = Jy, J3 = Jz ,

J± = Jx ± i Jy , ~J 2 = J2
x + J2

y + J2
z

(47)

The standard representation of angular momentum states are given by















~J 2 |jm〉 = j(j + 1) |jm〉

Jz |jm〉 = m |jm〉

J± |jm〉 =
√

(j ∓m)(j ±m+ 1) |jm± 1〉

(48)

Rest states |k, jm〉 for a single particle with mass w and spin j are eigenstates of P , J2

and Jz with corresponding eigenvalues k = (w, 0, 0, 0), j(j + 1) and m. They have the
usual transformation property under rotation R

U(R) |k, jm〉 =
∑

m′

|k, jm′〉D j

m′m
(R)(49)
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One- and Two-Particle States
The actions of the relativistic spin

Wµ Wµ = (W 0)2 − ( ~W · ~W )(50)

on the rest states are, with

Pµ |k, jm〉 = kµ |k, jm〉

P 0|k, jm〉 = w |k, jm〉, ~P |k, jm〉 = 0
(51)

Wµ Wµ |k, jm〉 = −w2 j(j + 1) |k, jm〉(52)

So Wµ Wµ has the eigenvalue indicated above for all, massive and relativistic
single-particle states. Note that















~J 2 |k, jm〉 = j(j + 1) |k, jm〉
~S 2 |k, jm〉 = j(j + 1) |k, jm〉
~L 2 |k, jm〉 = 0

(53)
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One- and Two-Particle States
Consider now a boost Bz(p) along the z-axis which takes k to p = (E, 0, 0, p), i.e.

pµ = [Bz(p)]
µ
ν kν , Bz(p) =









coshα 0 0 sinhα

0 1 0 0

0 0 1 0

sinhα 0 0 coshα









(54)

where tanhα = β = p/E, coshα = γ = E/w and sinhα = γβ = p/w. Define

◦
p = (E, ~p ) = (E, p sin θ cosφ, p sin θ sinφ, p cos θ)(55)

and
◦
p µ = [R(p̂)]µν p ν , R(p̂) = Rz(φ)Ry(θ)(56)

and

Ry(θ) =









1 0 0 0

0 cos θ 0 sin θ

0 0 1 0

0 − sin θ 0 cos θ









, Rz(φ) =









1 0 0 0

0 cosφ − sinφ 0

0 sinφ cosφ 0

0 0 0 1









(57)
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One- and Two-Particle States
The relevant unitary operators are

U [Bz(p)] = exp[−i αKz ]

U [R(p̂)] = U [Rz(φ)Ry(θ)] = exp(−i φ Jz) exp(−i θ Jy)
(58)

Define
U [L(◦p)] = U [R(p̂)]U [Bz(p)]

U [L(
◦
p)] = U [R(p̂)]U [Bz(p)]U

−1[R(p̂)]
(59)

The canonical and helicity states can now be defined via











|~p, jm〉 = U [L(
◦
p)] |k, jm〉 = U [R(p̂)]U [Bz(p)]U

−1[R(p̂)] |k, jm〉

|~p, λ〉 = U [L(◦p)] |k, λ〉 = U [R(p̂)]U [Bz(p)] |k, λ〉 = U [L(
◦
p)]U [R(p̂)] |k, λ〉

(60)

where |k, λ〉 = |k, jm〉 with λ = m.
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One- and Two-Particle States
The helicity and canonical states are related through

|~p, λ〉 =
∑

m

Dj
mλ

(φ, θ, 0)|~p, jm〉, |~p, jm〉 =
∑

λ

Dj ∗
mλ

(φ, θ, 0) |~p, λ〉(61)

from orthonormality of the D-functions. The ket states are normalized according to

〈~p, jm|~p ′, j′m′〉 = 2E (2π)3 δ(3)(~p− ~p ′) δj j′ δmm′ = δ̃(~p− ~p ′) δj j′ δmm′

〈~p, jλ|~p ′, j′λ′〉 = 2E (2π)3 δ(3)(~p− ~p ′) δj j′ δλλ′ = δ̃(~p− ~p ′) δj j′ δλλ′

(62)

Together with the invariant volume element

d̃p =
d3p

(2π)3(2E)
(63)

the closure relations can be written

∑

jm

∫

|~p, jm〉 d̃p 〈~p, jm| = I

∑

jλ

∫

|~p, jλ〉 d̃p 〈~p, jλ| = I

(64)
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One- and Two-Particle States
Let R be a general rotation R(αβγ)

U(R) = U [R(αβγ)] = exp[−i α Jz ] exp[−i β Jy ] exp[−i γ Jz ](65)

The canonical and helicity states transform under a pure rotation R (~p → ~p ′ )

U(R) |~p, jm〉 =
∑

m′

|R~p, jm′〉Dj

m′m
(R) =

∑

m′

|~p ′, jm′〉Dj

m′m
(R)

U(R) |~p, λ〉 = |R ~p, λ〉 = |~p ′, λ〉
(66)

Canonical states transform as if they were rest-frame states and helicity is conserved
under a pure rotation.
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One- and Two-Particle States
One needs similar transformation laws for ~S and ~L. For the purpose, one defines

wSµ(p) = U [L(p)]Wµ(p)U−1[L(p)]

= U−1[L−1(p)]Wµ(p)U [L−1(p)]

= L−1(p)µν W ν(p)

(67)

so that














wSi(p) = W i(p)− 1

E + w
pi W 0(p)

wSi = W i − 1

P 0 + w
P i W 0 : Original Definition

(68)

Note

wSi(p) |~p, jm〉 = U [L(p)]W i |k, jm〉 = wU [L(p)]Ji |k, jm〉(69)

Or







Sz(p) |~p, jm〉 = U [L(p)]Jz |k, jm〉 = m |~p, jm〉

S±(p) |~p, jm〉 = U [L(p)]J±|k, jm〉 =
√

(j ∓m)(j ±m+ 1) |~p, jm± 1〉
(70)

Hadron Spectroscopy/Mathematical Techniques JLab May 30–June 13, 2012 – p.26



Physik
T UM

One- and Two-Particle States

Define

US(R) = US [R(αβγ)] = exp[−i αSz ] exp[−i β Sy ] exp[−i γ Sz ](71)

It is clear that
US(R) |~p, jm〉 =

∑

m′

|~p, jm′〉Dj

m′m
(R)(72)

So the operator US(R) acts on the angular momentum part of the canonical states
|~p, jm〉 and leaves the momentum ~p unpertubed.
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One- and Two-Particle States
Define

UL(R) = UL[R(αβγ)] = exp[−i αLz ] exp[−i β Ly] exp[−i γ Lz ](73)

Because ~S and ~L commute, it is clear that

U(R) = US(R)UL(R) = UL(R)US(R)(74)

Noting that

UL(R) = [US(R)]−1 U(R) = US(R−1)U(R)

and using the group property of the Dj functions, one finds

UL(R) |~p, jm〉 = |R~p, jm〉(75)

So, for the canonical states, US(R) acts on the spin while leaving the momentum
invariant, whereas UL(R) rotates the momentum but leaves the spin unchanged.
This is to be contrasted with the actions of U(R), which act on both the spin and the
momentum.
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One- and Two-Particle States
Two-Particle States

Consider a system of two spinless particles with momenta p1 and p2 and masses w1

and w2. Let w be the effective mass of the two-particle system and let p = p1 + p2 be
the total 4-momentum and let q be the breakup momentum in the rest frame of the
two-particle system. Ω = (θ, φ) describes to the direction of ~p1 in the rest frame. We
work out the normalization of the product of the two ket states

∫

d̃p1d̃p2 〈~p1|~p ′
1〉 〈~p2|~p ′

2〉

=

∫

d̃p1d̃p2 δ̃(~p1 − ~p ′
1) δ̃(~p2 − ~p ′

2) = 1

(76)

provided ~p ′
1 = ~p1 and ~p ′

2 = ~p2. Adopt a normalization for the two-particle system

|p,Ω〉 = a |~p1〉 |~p2〉, a = a normalization constant(77)

by requiring

〈p,Ω | p′,Ω′〉 = (2π)4 δ(4)(p− p′) δ(2)(Ω− Ω′)(78)
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It is seen that six variables contained in ~p1 and ~p2 have been transformed into the
4-momentum p and Ω. To find a, perform a change of variables

∫

d̃p1d̃p2 〈p,Ω | p′,Ω′〉 = a2
∫

d̃p1d̃p2 〈~p1|~p ′
1〉 〈~p2|~p ′

2〉 = a2

= (2π)4
∫

d̃p1d̃p2 δ(4)(p− p′) δ(2)(Ω− Ω′)

in RF → =
1

(4π)2

∫ (

q2dq d2Ω

E1E2

)

δ(w − E1 − E2) δ
(2)(Ω− Ω′)

Ei =
√

w2
i + q2 → =

1

(4π)2

( q

w

)

(79)

where RF stands the two-particle rest frame, and i = 1 or 2. So we see that

a =
1

4π

√

q

w
(80)
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Define, in the rest frame of the two-particle system of arbitrary spin,







◦
q = (E1, ~q ) = (E1, q sin θ cosφ, q sin θ sinφ, q cos θ)

q̆ = (E2,−~q ) = (E2,−q sin θ cosφ,−q sin θ sinφ,−q cos θ)

(81)

Using the boost operators U [Bz(q)] and U [B−z(q)] along the positive and negative
z-axis and with R(q̂) = Rz(φ)Ry(θ),







U [L(
◦
q)] = U [R(q̂)]U [Bz(q)]U

−1[R(q̂)]

U [L(q̆)] = U [R(q̂)]U [B−z(q)]U
−1[R(q̂)]

(82)

one sets

|Ωm1m2〉 =
1

4π

√

q

w
U [L(

◦
q)]|s1m1〉U [L(q̆)]|s2m2〉

=
1

4π

√

q

w
|~q, s1m1〉 | − ~q, s2m2〉

(83)

Adopt a normalization

〈Ωm1m2 |Ω′ m′
1m

′
2〉 = δ(2)(Ω− Ω′) δm1m

′
1

δm2m
′
2

(84)
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Define

~J = ~J(1) + ~J(2), ~S = ~S(1) + ~S(2), ~L = ~L(1) + ~L(2)(85)

and














U [R(Ω)] = exp(−i φ Jz) exp(−i θ Jy)

US [R(Ω)] = exp(−i φ Sz) exp(−i θ Sy)

UL[R(Ω)] = exp(−i φLz) exp(−i θ Ly)

(86)

Introduce a new ket state of a given S

|ΩSms〉 =
∑

m1m2

(s1m1 s2m2|Sms) |Ωm1m2〉(87)

It follows, from

US(R) |~p, jm〉 =
∑

m′

|~p, jm′〉Dj

m′m
(R)

that
US [R(Ω′)] |ΩSms〉 =

∑

m′
s

|ΩSm′
s〉D S

m′
sms

(φ′, θ′, 0)
(88)
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Now construct a ket state of a given ℓ and S

|ℓmSms〉 =
∑

m1m2

(s1m1 s2m2|Sms)

∫

dΩY ℓ
m(Ω)|Ωm1m2〉(89)

Apply UL on the states above and find

UL[R(Ω′)] |ℓmSms〉 =
∑

m1m2

(s1m1 s2m2|Sms)

∫

dΩY ℓ
m(Ω)|R(Ω′)Ωm1m2〉

(Ω′′ = RΩ) → =
∑

m1m2

(s1m1 s2m2|Sms)

∫

dΩ′′ Y ℓ
m(R−1Ω′′)|Ω′′ m1m2〉

(group property) → =
∑

m′

Dℓ ∗
mm′ (R

−1)
∑

m1m2

(s1m1 s2m2|Sms)

∫

dΩ′′ Y ℓ
m′ (Ω

′′)|Ω′′ m1m2〉

(unitary property) → =
∑

m′

|ℓm′ Sms〉Dℓ
m′m(φ, θ, 0)

Under a general rotation then, the ket states transform according to

U [R(Ω′)] |ℓmSms〉 = UL[R(Ω′)]US [R(Ω′)] |ℓmSms〉

=
∑

m′ m′
s

|ℓm′ Sm′
s〉D ℓ

m′m(φ′, θ′, 0)D S
m′

sms
(φ′, θ′, 0)(90)
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Construct next a ket state

|JMℓS〉 =
∑

mms

(ℓmSms|JM) |ℓmSms〉

=
∑

mms
m1m2

(ℓmSms|JM)(s1m1 s2m2|Sms)

∫

dΩY ℓ
m(Ω)|Ωm1m2〉

(91)

normalized

〈JMℓS|J ′M ′ℓ′S′〉 = δJJ′δMM′δℓℓ′δSS′(92)

It is apparent that

U [R(Ω′)] |JMℓS〉 =
∑

M′

|JM ′ℓS〉D J
M′M (φ′, θ′, 0)(93)

so that














~J 2 |JMℓS〉 = J(J + 1) |JMℓS〉
~S 2 |JMℓS〉 = S(S + 1) |JMℓS〉
~L 2 |JMℓS〉 = ℓ(ℓ+ 1) |JMℓS〉

(94)
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Consider two-particle states in the helicity basis. Define

U [L(◦q)] = U [R(q̂)]U [Bz(q)], U [L(q̆)] = U [R(q̂)]U [B−z(q)]

|Ωλ1λ2〉 =
1

4π

√

q

w
U [L(◦q)]|s1λ1〉U [L(q̆)]|s2 −λ2〉 =

1

4π

√

q

w
|~q, λ1〉 | − ~q,−λ2〉

Construct, with λ = λ1 − λ2 ,

|JMλ1λ2〉 =
√

2J + 1

4π

∫

dΩD J∗
Mλ(φ, θ, 0) |Ωλ1λ2〉

〈JMλ1λ2|J ′M ′λ′
1λ

′
2〉 = δJJ′δMM′δλ1λ

′
1

δλ2λ
′
2

U [R(Ω)] |JMλ1λ2〉 =
∑

M′

|JM ′λ1λ2〉D J
M′M (φ, θ, 0)

Recoupling coefficient:

〈J ′M ′ℓ′S′|JMλ1λ2〉 =
√

2ℓ+ 1

2J + 1
(ℓ 0Sλ|Jλ)(s1λ1 s2 −λ2|Sλ) δJJ′δMM′(95)
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Two-body Decays
In the two-body rest frame, the decay amplitude is

AJ
M (Ω) =

∑

λ1λ2

{

〈~q, λ1| 〈−~q,−λ2|
}

M|JM〉

= 4π

√

w

q

∑

λ1λ2

〈Ωλ1λ2|JMλ1λ2〉〈JMλ1λ2|M|JM〉

=

√

2J + 1

4π

∑

λ1λ2

D J∗
Mλ(φ, θ, 0)F

J
λ1λ2

, λ = λ1 − λ2

(96)

where

FJ
λ1λ2

= 4π

√

w

q
〈JMλ1λ2|M|JM〉(97)

and, from parity conservation in the decay,

FJ
λ1λ2

= η
J
η
1
η
2
(−)J−s1−s2 FJ

−λ1,−λ2
(98)
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Alternatively, the decay amplitude may be written

AJ
M (Ω) =

∑

m1m2

{

〈~q, s1m1| 〈−~q, s2m2|
}

M|JM〉

=
∑

ℓS

∑

m1m2

{

〈~q, s1m1| 〈−~q, s2m2|
}

JMℓS〉〈JMℓS|M|JM〉

= 4π

√

w

q

∑

ℓS

∑

m1m2

〈Ωm1m2 |JMℓS〉〈JMℓS|M|JM〉

=
∑

ℓS

∑

mms
m1m2

(ℓmSms|JM)(s1m1 s2m2|Sms)Y
ℓ
m(Ω)GJ

ℓS

(99)

where

GJ
ℓS = 4π

√

w

q
〈JMℓS|M|JM〉, η

J
= η

1
η
2
(−)ℓ (Parity)(100)
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Recoupling coefficient:

FJ
λ1λ2

= 4π

√

w

q
〈JMλ1λ2|M|JM〉

= 4π

√

w

q

∑

ℓS

〈JMλ1λ2|JMℓS〉〈JMℓS|M|JM〉

=
∑

ℓS

〈JMλ1λ2|JMℓS〉GJ
ℓS

=
∑

ℓS

√

2ℓ+ 1

2J + 1
(ℓ 0Sλ|Jλ)(s1λ1 s2 −λ2|Sλ)GJ

ℓS

(101)

where

GJ
ℓS ∝ qℓ for q → 0(102)
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Spin-1 States in Momentum Space
Homogeneous Lorentz transformations are given by

Λ = exp[− i

2
ωµν Jµν ](103)

so that Jµν is now an operator imbedded in the momentum space. For infinitesimal
transformations, we have

Λρ
σ = δρσ − i

2
ωµν (Jµν)ρσ(104)

As this must be equal to

Λρ
σ = δρσ + ω ρ

σ

we can deduce that

(Jµν)ρσ = i (gµρ δνσ − gνρ δµσ) ; see M. Maggiore, Capter 2(105)
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Explicitly, we find

(Jx)
ρ
σ ⇒









0 0 0 0

0 0 0 0

0 0 0 −i

0 0 +i 0









, (Kx)
ρ
σ ⇒









0 +i 0 0

+i 0 0 0

0 0 0 0

0 0 0 0









(Jy)
ρ
σ ⇒









0 0 0 0

0 0 0 +i

0 0 0 0

0 −i 0 0









, (Ky)
ρ
σ ⇒









0 0 +i 0

0 0 0 0

+i 0 0 0

0 0 0 0









(Jz)
ρ
σ ⇒









0 0 0 0

0 0 −i 0

0 +i 0 0

0 0 0 0









, (Kz)
ρ
σ ⇒









0 0 0 +i

0 0 0 0

0 0 0 0

+i 0 0 0









(106)

and

[Ji, Jj ] = i εijk Jk, [Ji,Kj ] = i εijk Kk, [Ki,Kj ] = −i εijk Jk(107)

Hadron Spectroscopy/Mathematical Techniques JLab May 30–June 13, 2012 – p.40



Physik
T UM

Spin-1 States in Momentum Space
The spin-1 wave functions at rest are

eµ(0) =









0

0

0

1









, eµ(±1) = ∓ 1√
2









0

1

±i

0









(108)

It can be shown that















J2 e(m) = j(j + 1) e(m), j = 1, m = −1, 0, +1

Jz e(m) = me(m), m = −1, 0, +1

J± e(0) =
√
2 e(±1), J± e(∓1) =

√
2 e(0), J± e(±1) = 0

(109)

Define

θi =
1

2
εijk ωjk =

1

2
εijk ωjk, αi = ω0 i(110)

so that the homogeneous Lorentz transformations take on the form

Λ = exp[−i ~θ · ~J − i ~α · ~K ](111)
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for a boost along the z-axis, we know that

[Bz(p)]
ρ
σ = exp[−i α (Kz)

ρ
σ ] ⇒









coshα 0 0 sinhα

0 1 0 0

0 0 1 0

sinhα 0 0 coshα









(112)

Here coshα = E/w and sinhα = p/w. After a boost along the z-axis, the wave
functions become

eµ(~p,m) = [Bz(p)]
µ
ν eν(m)(113)

or, writing out the components explicitly,

eµ(~p, 0) =









p/w

0

0

E/w









, eµ(~p,±1) = ∓ 1√
2









0

1

±i

0









(114)

Note that pµ eµ(~p,m) = 0 in any Lorentz frame.
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Define ‘relativistic spin’ via

Wµ(p) =
1

2
εµαβ γ pα Jβγ =

1

2
εµαβ γ Jαβ pγ(115)

where pµ’s are c-numbers, i.e. not operators. Given a momentum pµ = (E, ~p ) and
pµ pµ = w2, we can define the modfied form of the relativistic spin Wµ and their
derivatives Si and Li











































W 0(p) = ~J · ~p

W
→
(p) = E ~J +K

→ × ~p

w~S(p) = E ~J +K
→ × ~p − ~p ( ~J · ~p )

E + w

w~L(p) = −(E − w) ~J −K
→ × ~p +

~p ( ~J · ~p )

E + w

(116)

Here (E, ~p) are not operators but merely c-numbers. These are the operators acting on
ket states with 4-momenta (E, ~p ).
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Consider a special case of ~p along the z-direction, i.e. px = py = 0 and pz = p. Then,
we see that

−Wµ(p)Wµ(p) = w2 J2 + p2 (J2
x + J2

y +K2
x +K2

y)

+ 2E p (Jx Ky − Jy Kx − iKz)
(117)

We find

−Wµ(p)Wµ(p) = 2









−p2 0 0 E p

0 w2 0 0

0 0 w2 0

−E p 0 0 E2









(observe: p → 0)(118)

so that






−Wµ(p)Wµ(p) e
µ(~p, 0) = 2w2 eµ(~p, 0)

−Wµ(p)Wµ(p) e
µ(~p,±1) = 2w2 eµ(~p,±1)

(119)

So, from considering a special case, we have proven a general formula

−Wµ(p)Wµ(p) : j(j + 1)w2 I = 2w2 I, j = 1(120)

where, again, I is the 4× 4 identity matrix.
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Consider now the spin operator ~S. Once again we confine ourselves to ~p along the
z-direction, i.e. px = py = 0 and pz = p. Its z-component is

wSz(p) = E Jz − p2

E + w
Jz = w Jz , setting p2 = E2 − w2

= w









0 0 0 0

0 0 −i 0

0 +i 0 0

0 0 0 0









(121)

Applying it to the wave functions, we find







wSz(p) e
µ(~p, 0) = 0

wSz(p) e
µ(~p,±1) = ±w eµ(~p,±1)

(122)
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Next, we evaluate

wSx(p) = E Jx + pKy = i









0 0 +p 0

0 0 0 0

+p 0 0 −E

0 0 +E 0









wSy(p) = E Jy − pKx = i









0 −p 0 0

−p 0 0 +E

0 0 0 0

0 −E 0 0









(123)

Setting S±(p) = Sx(p)± i Sy(p), we obtain the desired result















wS±(p) eµ(~p, 0) =
√
2w eµ(~p,±1)

wS±(p) eµ(~p,∓) =
√
2w eµ(~p, 0)

wS±(p) eµ(~p,±) = 0

(124)
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Under a finite rotation RS(α, β, γ), one has

RS(α, β, γ) eµ(~p,m) =
∑

m′

eµ(~p,m′)D
(1)
m′m

(α, β, γ)(125)

Consider a rank-2 tensor

eµν(~p, Sm) =
∑

m1 m2

(1m1 1m2|Sm) eµ(~p1,m1) e
ν(~p2,m2)(126)

where ~p = ~p1 + ~p2 and S = 0, 1 or 2. It is clear that

RS(α, β, γ) eµν(~p, Sm) =
∑

m′

eµν(~p, Sm′)DS
m′m(α, β, γ)(127)

General Formulation of Covariant Helicity-Coupling Amplitudes
S. U. Chung, PR D57, 431 (1998)
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To Be Continuned. . .
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Spin Formalisms
One-Particle States at Rest

States of a single particle at rest (mass w > 0) may be denoted by |jm〉, where j is
the spin and m the z-component of the spin. The states |jm〉 are the canonical basis
vectors by which the angular momentum operators are represented in the standard way.
Since the angular momentum operators are the infinitesimal generators of the rotation
operator, the spin of a particle characterizes how the particle at rest transforms under
spatial rotations.
Let us denote the three components of the angular momentum operator by Jx, Jy , and
Jz (or J1, J2, and J3). They are Hermitian operators satisfying the following
commutation relations:

[Ji, Jj ] = i ǫijk Jk ,(1)

where i, j, and k run from 1 to 3. The operators Ji act on the canonical basis vectors
|jm〉 as follows:

J2|jm〉 = j(j + 1)|jm〉

Jz |jm〉 = m|jm〉

J±|jm〉 = [(j ∓m)(j ±m+ 1)]
1

2 |jm± 1〉 ,

(2)

where J2 = J2
x + J2

y + J2
z and J± = Jx ± iJy .
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The states |jm〉 are normalized in the standard way and satisfy the completeness
relation:

〈j′m′|jm〉 = δj′j δm′m,
∑

jm

|jm〉〈jm| = I ,(3)

where I denotes the identity operator.
A finite rotation of a physical system (with respect to a fixed coordinate axis) may be
denoted by R(α, β, γ), where (α, β, γ) are the standard Euler angles. We use the
so-called active rotations.
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Euler Angles
z, z′

z′′, z′′′

x y

y′, y′′ (node)

α

β

γ

y′′′

−x′′′

U [R(α, β, γ)] = exp[−i α Jz ] exp[−i β Jy ] exp[−i γ Jz ]

= exp[−i γ J ′′
z ] exp[−i β J ′

y ] exp[−i α Jz ]

Dj

m′m
(α, β, γ) = 〈jm′|U [R(α, β, γ)]|jm〉

M. E. Rose,
‘Elementary Theory of Angular Momentum,’
John Wiley & Sons, Inc. (see Chapter IV)
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To each R, there corresponds a unitary operator U [R], which acts on the states |jm〉,
and preserves the multiplication law:

U [R2 R1] = U [R2] U [R1] .

Now the unitary operator representing a rotation R(α, β, γ) may be written

U [R(α, β, γ)] = e−iαJz e−iβJy e−iγJz(4)

corresponding to the rotation of a physical system (active rotation!) by γ around the
z-axis, β around the y-axis, and finally by α around the z-axis, with respect to a fixed
(x, y, z) coordinate system. Then rotation of a state |jm〉 is given by

U [R(α, β, γ)] |jm〉 =
∑

m′

|jm′〉Dj

m′m
(α, β, γ) ,(5)

Dj

m′m
(α, β, γ) is the matrix representation of the rotation group.
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Dj

m′m
is the standard rotation matrix as given by M. E. Rose:

Dj

m′m
(R) = Dj

m′m
(α, β, γ) = 〈jm′|U [R(α, β, γ)] |jm〉

= e−im′α d j

m′m
(β) e−imγ

(6)

and

d j

m
′
m
(β) = 〈jm′ |e−i βJy |jm〉 .(7)

In Appendix A of the “Spin Formalisms” (S. U. Chung), some useful formulae
involving Dj

m
′
m

and d j

m
′
m

are listed.
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Relativistic One-Particle States
Relativistic one-particle states with momentum ~p may be obtained by applying on the

states |jm〉 a unitary operator which represents a Lorentz transformation that takes a
particle at rest to a particle of momentum ~p. There are two distinct ways of doing this,
leading to canonical and helicity descriptions of relativistic free particle states.
Let us first consider an arbitrary four-momentum pµ defined by

pµ = (p0, p1, p2, p3) = (E, px, py , pz) = (E, ~p ) .(8)

With the metric tensor given by

gµν = gµν =















1 0

−1

−1

0 −1















(9)

we can also define a four-momentum with lower indices:

pµ = gµν pν = (E,−~p ) .(10)

My convention: p is used to denote both the four-momentum
and the magnitude of the three-momentum.
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The proper homogeneous orthochronous Lorentz transformation takes the
four-momentum pµ into p′µ as follows:

p ′µ = Λµ
ν pν ,(11)

where Λµ
ν is the Lorentz transformation matrix defined by

gαβ Λα
µ Λβ

ν = gµν , det Λ = 1, Λ0
0 > 0 .(12)

The Lorentz transformation given by Λµ
ν includes, in general, rotations as well as the

pure Lorentz transformations. Let us denote by Lµ
ν(~β ) a pure time-like Lorentz

transformation, where ~β is the velocity of the transformation. Of particular importance is
the pure Lorentz transformation along the z-axis, denoted by Lz(β):

Lz(β) =















coshα 0 0 sinhα

0 1 0 0

0 0 1 0

sinhα 0 0 coshα















(13)

where β = tanhα.
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In terms of Lz(β), it is easy to define a pure Lorentz transformation along an arbitrary

direction ~β:

L(~β ) = R(φ, θ, 0)Lz(β)R
−1(φ, θ, 0) ,(14)

where R(φ, θ, 0) is the rotation which takes the z-axis into the direction of ~β with
spherical angles (θ, φ):

β̂ = R(φ, θ, 0)ẑ .(15)

The relation L(~β ) is an obvious one, but the reader can easily check for a special case
with φ = 0:

R(φ, θ, 0) =





1 0

0 Rij



 , Rij =









cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ









(16)
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Now the action of an arbitrary Lorentz transformation Λ on relativistic particle states
may be represented by a unitary operator U [Λ]. The operator preserves the
multiplication law, called the group property:

U [Λ2Λ1] = U [Λ2]U [Λ1] .(17)

Let us denote by L(~p ) the “boost” which takes a particle with mass w > 0 from rest to
momentum ~p and the corresponding unitary operator acting on the particle states by
U [L(~p )]:

U [L(~p )] = e−iαp̂· ~K ,(18)

where tanhα = p/E, sinhα = p/w, and coshα = E/w.
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A boost operator defines a Hermitian vector operator ~K, and the components Ki are
then the infinitesimal generators of “boosts”. The three components Ki together with Ji
form the six infinitesimal generators of the homogeneous Lorentz group, and they satisfy
definite commutation relations among them. We do not list the relations here, for they
are not needed for our purposes.
From the relation L(~β ) and the group property, one obtains

U [L(~p )] = U [
◦

R(φ, θ, 0)]U [Lz(p)]U
−1[

◦

R(φ, θ, 0)] ,(19)

where the rotation
◦

R takes the z-axis into the direction of ~p with spherical angles (θ, φ):

p̂ =
◦

R(φ, θ, 0)ẑ .(20)
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We are now ready to define the “standard” or canonical state describing a single
particle with spin j and momentum ~p:

|~p, jm〉 = |φ, θ, p, jm〉 = U [L(~p )] |jm〉

= U [
◦

R(φ, θ, 0)]U [Lz(p)]U
−1[

◦

R(φ, θ, 0)] |jm〉 ,
(21)

where |jm〉 is the particle state at rest as defined in the previous section. We emphasize
that the z-component of spin m is measured in the rest frame of the particle and not in
the frame where the particle has momentum ~p.
The advantage of the canonical state is that the state transforms formally under rotation
in the same way as the “rest-state” |jm〉:

U [R] |~p, jm〉 = U [R
◦

R]U [Lz(p)]U
−1[R

◦

R]U [R] |jm〉

=
∑

m′

Dj

m′m
(R) |R~p, jm′〉 ,

(22)
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It is clear from the rottional property of the canonical states that one may take over all
the non-relativistic spin formalisms and apply them to situations involving relativistic
particles with spin. One ought to remember, however, that the z-component of spin is
defined only in the particle rest frame obtained from the frame where the particle has
momentum ~p via the pure Lorentz transformation L−1(~p ). See Fig. 1a.

z

^p

x

y

node

�

�

z



y



x



(a)

Fig. 1a: The orientation of the coordinate systems associated with a particle at rest in
the canonical description (x̂c, ŷc, ẑc).
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Next, we shall define the helicity state describing a single particle with spin j and
momentum ~p [see Fig. 1b]:

|~p, jλ〉 = |φ, θ, p, jλ〉

= U [
◦

R(φ, θ, 0)]U [Lz(p)] |jλ〉 = U [L(~p )]U [
◦

R(φ, θ, 0)] |jλ〉
(23)

z

^p

x

y

node

�

�

z

h

^y

h

/^z � ^p

(b)

Fig. 1b: The orientation of the coordinate systems associated with a particle at rest in
the helicity description (x̂h = ŷh × ẑh, ŷh ∝ ẑ × p̂, ẑh = p̂).
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Helicity states may be defined in two different ways. One may first rotate the rest state

|jλ〉 by
◦

R, so that the quantization axis is along the ~p direction and then boost the

system along ~p to obtain the helicity state |~p, jλ〉. Or, equivalently, one may first boost
the rest state |jλ〉 along the z-axis and then rotate the system to obtain the state |~p, jλ〉.
That these two different definitions of helicity state are equivalent is obvious from the
relation for U [L(~p )] given previously.
One sees that, by definition, the helicity quantum number λ is the component of the spin
along the momentum ~p, and as such it is a rotationally invariant quantity, simply because
the quantization axis itself rotates with the system under rotation. This fact may be seen
easily from the definition of helicity states:

U [R] |~p, jλ〉 = U [R
◦

R]U [Lz] |jλ〉

= |R~p, jλ〉 .
(24)
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In addition, the helicity λ remains invariant under pure Lorentz transformation that takes
~p into ~p ′ , which is parallel to ~p. The invariance of λ under L′ may be seen by

U [L′] |~p, jλ〉 = U [L′]U [L(~p )]U [
◦

R] |jλ〉

= U [L(~p ′ )]U [
◦

R] |jλ〉(25)

= |~p ′ , jλ〉 .

There is a simple connection between the canonical and helicity descriptions. From the
definitions of canonical and helicity states, on finds easily that

|~p, jλ〉 = U [
◦

R]U [Lz]U
−1[

◦

R]U [
◦

R] |jλ〉

=
∑

m

Dj
mλ

(
◦

R) |~p, jm〉 .
(26)
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We shall adopt here the following normalizations for the one-particle states:

〈~p ′ j′m′|~pjm〉 = δ̃(~p ′ − ~p )δjj′ δmm′

〈~p ′ j′λ′|~pjλ〉 = δ̃(~p ′ − ~p )δjj′ δλλ′ ,
(27)

where δ(~p ′ − ~p ) is the Lorentz invariant δ-function given by

δ̃(~p ′ − ~p ) = (2π)3(2E) δ(3)(~p ′ − ~p ) .(28)

It can be shown that, with the invariant normalization given above, an arbitrary Lorentz
transformation operator U [Λ] acting on the states |~p, jm〉 or |p, jλ〉 is indeed a unitary
operator, i.e. U+U = I. With the invariant volume element as defined by

d̃p =
d3~p

(2π)3(2E)
,(29)

the completeness relations may be written as follows:

∑

jm

∫

|~pjm〉 d̃p 〈~pjm| = I,
∑

jλ

∫

|~pjλ〉 d̃p 〈~pjλ| = I ,(30)

where I denotes the identity operator.
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Parity and Time-Reversal Operations
Classically, the action of parity and time-reversal operations, denoted P and T , may

be expressed as follows:

P : ~x→ −~x, ~p→ −~p, ~J→ ~J

T : ~x→ ~x, ~p→ −~p, ~J→ − ~J
(31)

where ~x, ~p, and ~J stand for the coordinate, momentum, and angular momentum,
respectively. It is clear that P and T commute with rotations, i.e.

[P , R] = 0, [T , R] = 0 .(32)

By definition, one sees also that the pure Lorentz transformations (in particular, boosts)
act under P and T according to

PL(~p ) = L(−~p )P , TL(~p ) = L(−~p )T .(33)
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Let us now define operators acting on the physical states, representing the parity and
time-reversal operations:

Π = U [P ], T = Ū [T ] ,(34)

where Π is a unitary operator and T is an anti-unitary (or anti-linear unitary) operator. T
is represented by an anti-unitary operator due to the fact that the time-reversal operation
transforms an initial state into a final state and vice versa. Operators Π, T, U [R], and
U [L(~p )] acting on the physical states should obey the same relations

[

Π, U [R]

]

= 0

[

T, U [R]

]

= 0(35)

and
ΠU [L(~p )] = U [L(−~p )] Π

TU [L(~p )] = U [L(−~p )]T .
(36)
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We are now ready to express the actions of Π and T on the rest states |jm〉. It is
clear that the quantum numbers j and m do not change under Π:

Π|jm〉 = η|jm〉 ,(37)

where η is the intrinsic parity of the particle represented by |jm〉. Let us write the action
of T as follows:

T |jm〉 =
∑

k

Tkm|jk〉 .

Remembering the anti-unitarity of T,

∑

k

Dj

m′k
(R)Tkm =

∑

k

Tm′k Dj ∗
km

(R) .

The above relation may be satisfied, if Tm′m is given by

Tm′m = d j

m′m
(π) = (−)j−mδm′,−m , Dj ∗

m′m
(α, β, γ) = (−)m

′
−mDj

−m′−m
(αβγ)

so that the action of T on the states |jm〉 may be expressed as

T |jm〉 = (−)j−m|j −m〉 .(38)
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One can show that the canonical state with momentum ~p transforms under Π and T

as follows:
Π |~p, jm〉 = η| − ~p, jm〉

Π |φ, θ, p, jm〉 = η|π + φ, π − θ, p, jm〉
(39)

and
T |~p, jm〉 = (−)j−m| − ~p, j −m〉

T |φ, θ, p, jm〉 = (−)j−m|π + φ, π − θ, p, j −m〉 .
(40)

Next, we wish to express the consequences of Π and T operations on the helicity states
|p, jλ〉. One finds

Π|φ, θ, p, jλ〉 = η e−iπj |π + φ, π − θ, p, j −λ〉(41)

T |φ, θ, p, jλ〉 = e−iπλ|π + φ, π − θ, p, jλ〉 .(42)

Now the helicity λ is an eigenvalue of ~J · p̂. Note that ~J · p̂ → − ~J · p̂ under P and
~J · p̂ → ~J · p̂ under T . This explains why the helicity λ changes sign under Π, while it
remains invariant under T.
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Two-Particle States
A system consisting of two particles with arbitrary spins may be constructed in two

different ways; one using the canonical basis vectors |~p, jm〉, and the other using the
helicity basis vectors |~p, jλ〉. We shall construct in this section both the canonical and
helicity states for a two-particle system having definite spin and z-component, and then
derive the recoupling coefficient which connects the two bases. Afterwards, we
investigate the transformation properties of the two-particle states under Π and T, as well
as the consequences of the symmetrization required when the two particles are identical.
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Construction of two-particle states:

Consider a system of two particles 1 and 2 with intrinsic spins s1 and s2 and masses
w1 and w2. In the two-particle rest frame, let ~p be the momentum of the particle 1, with
its direction given by the spherical angles (θ, φ). we define the two-particle state in the
canonical basis by

|φθm1m2〉 = aU [L(~p )] |s1m1〉U [L(−~p )] |s2m2〉 ,(43)

where |s1m1〉 is the rest-state of particle i and a is the normalization constant to be
determined later. L(±~p ) is the boost given by

L(±~p ) =
◦

R(φ, θ, 0)L±z(p)
◦

R
−1

(φ, θ, 0) ,(44)

where
◦

R(φ, θ, 0) is again the rotation which carries the z-axis into the direction of ~p and

L±z(p) is the boost along the ±z-axis.
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Owing to the rotational property of canonical one-particle states, one may define a
state of intrinsic total spin s by

|φθsms〉 =
∑

m1m2

(s1m1 s2m2|sms)|φθm1m2〉 ,(45)

where (s1m1 s2m2|sms) is the usual Clebsch-Gordan coefficient. Using the formula

Dj1
µ1m1

Dj2
µ2m2

=
∑

j3µ3m3

(j1µ1 j2µ2|j3µ3)(j1m1 j2m2|j3m3)D
j3
µ3m3(46)

and the orthonormality of the Clebsch-Gordan coefficients, one may easily show that, if
R is a rotation which takes Ω = (θ, φ) into R′ = RΩ,

U [R] |Ω sms〉 =
∑

m′
s

Ds
m′

sms
(R)|R′ sm′

s〉 ,(47)

so that the total spin s is a rotational invariant.
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The state of a fixed orbital angular momentum is constructed in the usual way:

|ℓmsms〉 =
∫

dΩY ℓ
m(Ω)|Ωsms〉 ,(48)

where dΩ = dφ d cos θ. Let us investigate the rotational property of the formula above

U [R] |ℓmsms〉 =
∫

dΩY ℓ
m(Ω)Ds

m′
sms

(R)|R′sm′
s〉 ,(49)

where R′ = R′(α′, β′, γ′) = RΩ, dΩ = dα′ d cos β′, and, from

Y ℓ
m(Ω) =

√

2ℓ+ 1

4π
Dℓ∗

m0(φ, β, 0)(50)

we see that

Y ℓ
m(Ω) =

√

2ℓ+ 1

4π
Dℓ∗

m0(R
−1R′)

(group property of D’s) → =

√

2ℓ+ 1

4π

∑

m′

Dℓ ∗
mm′ (R

−1)Dℓ∗
m′0(R

′)

(unitarity of D’s) → =
∑

m′

Dℓ
m′m(R)Y ℓ

m′ (β
′, α′) ,

(51)
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one obtains the result

U [R] |ℓmsms〉 =
∑

m′m′
s

Dℓ
m′m(R)Ds

m′
sms

(R)|ℓm′sm′
s〉 .(52)

This shows that the states |ℓmsms〉 transform under rotation as a product of two “rest
states” |ℓm〉 and |sms〉.
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Now, it is easy to construct a state of total angular momentum J :

|JMℓs〉 =
∑

mms

(ℓm sms|JM)|ℓmsms〉

=
∑

mms
m1m2

(ℓm sms|JM)(s1m1 s2m2|sms)×

×
∫

dΩY ℓ
m(Ω)|Ωm1m2〉 .

(53)

One sees immediately

U [R] |JMℓs〉 =
∑

M′

DJ
M′M (R)|JM ′ℓs〉 .(54)

Note that, as expected, ℓ and s are rotational invariants: This is the equivalent of the
non-relativistic L-S coupling.
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Next, we turn to the problem of constructing two-particle states from the helicity basis
vectors |~p, jλ〉. we write

|φθλ1λ2〉 = aU [
◦

R]

{

U [Lz(p)] |s1λ1〉U [L−z(p)] |s2 −λ2〉
}

≡ U [
◦

R(φ, θ, 0)] |00λ1λ2〉 ,
(55)

where |siλi〉 is the rest state of particle i and a the normalization constant introduced
previously. We have constructed the helicity state for the particle 2 in such a way that its
helicity quantum number is +λ2.

– p.28



Physik
T UM Hadron Spectroscopy—Mathematical Techniques JLab May 30–June 13, 2012

States of a definite total angular momentum J may be constructed as follows:

|JMλ1λ2〉 =
NJ

2π

∫

dRDJ ∗
Mµ(R)U [R] |00λ1λ2〉 ,(56)

where NJ is a normalization constant to be determined later. Let us apply an arbitrary
rotation R′ on this state

U [R′ ] |JMλ1λ2〉 =
NJ

2π

∫

dRDJ ∗
Mµ(R)U [R′′ ] |00λ1λ2〉 ,

where R′′ = R′R. But, by using the multiplication law and the unitarity of the
D-functions,

DJ ∗
Mµ(R) = DJ ∗

Mµ(R
′ −1R′′ )

=
∑

M′

DJ ∗
MM′ (R

′ −1)DJ ∗
M′µ(R

′′ )

Unitarity → =
∑

M′

DJ
M′M (R′)DJ ∗

M′µ(R
′′ ) .

(57)
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Using this relation, as well as the fact that dR = dR′′, one obtains the result

U [R′ ] |JMλ1λ2〉 =
∑

M′

DJ
M′M (R′ )|JM ′λ1λ2〉 ,(58)

so that the states are indeed states of a definite angular momentum J . Note that, as
expected, λ1 and λ2 are rotational invariants.

Now, let us specify the rotation R by writing R = R(φ, θ, γ). Then,

U [R(φ, θ, γ)] |00λ1λ2〉 = U [R(φ, θ, 0)]U [R(0, 0, γ)] |00λ1λ2〉(59)

= e−i(λ1−λ2) γ U [R(φ, θ, 0)] |00λ1λ2〉 .

The last relation follows because of the commutation relation: [R(0, 0, γ), L±z(p)] = 0 .
Integrating over dγ, one obtains

|JMλ1λ2〉 = NJ

∫

dΩDJ ∗
Mλ(φ, θ, 0) |φθλ1λ2〉 ,(60)

where λ = λ1 − λ2.
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Normalization:

For simplicity of notation, we shall deal with spinless particles. Two-particle states are
normalized

〈~p ′
1~p

′
2|~p1~p2〉 = δ̃(~p ′

1 − ~p1) δ̃(~p
′
2 − ~p2) ,(61)

where

δ̃(~p ′
i − ~pi ) = (2π)3(2Ei) δ

(3)(~p ′
i − ~pi ), i = 1 or 2 .(62)

A system consisting of two momenta ~p1 and ~p2 may be described, in general, by one
four-momentum p representing the sum of the four-momenta of particles 1 and 2 and Ω

describing the orientation of the relative momentum in the (1,2) rest frame, i.e.

|p,Ω〉 = a |~p1~p2〉 , where p = p1 + p2 and p2 = w2.(63)

We adopt the normalization for this state as follows:

〈p′,Ω′|p,Ω〉 = (2π)4δ(4)(p′ − p) δ(2)(Ω′ − Ω) .(64)

Multiply the formula above by the invariant volume element d̃p1 d̃p2, where

d̃p =
d3~p

(2π)3(2E)
,(65)

and integrate over these variables.
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Using the notation for which dφn is the n-body phase space so that

dφ2(1, 2) = (2π)4δ(4)(p′ − p) d̃p1 d̃p2(66)

we need to evaluate an integration, in the two-particle rest frame (RF),

a2 =

∫

δ(2)(Ω′ − Ω)dφ2(1, 2)

(∫

d3~p2; ~p1 → ~p

)

→ =
1

(2π)2

∫

δ(E1 + E2 − w) δ(2)(Ω′ − Ω)
p2 dp dΩ

4E1 E2
(∫

dΩ; Ei =
√

p2 + w2
i

)

→ =
1

(4π)2
p

w

(67)

where p is the relative momentum in the two-particle RF and w = E1 + E2 is the
effective mass of the two-particle system. We see immediately that

a =
1

4π

√

p

w
,(68)
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We are now ready to specify the normalizations for the two-particle states with
arbitrary spin.

〈Ω′m′
1m

′
2|Ωm1m2〉 = δ(2)(Ω′ − Ω)δm1m

′
1

δm2m
′
2

(69)

and

〈Ω′λ′
1λ

′
2|Ωλ1λ2〉 = δ(2)(Ω′ − Ω)δλ1λ

′
1

δλ2λ
′
2

.(70)

The states |JMℓs〉 obey the following normalizations:

〈J ′M ′ℓ′s′|JMℓs〉 = δJJ′δMM′δℓℓ′δss′ .(71)
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Since the D-functions are normalized according to

∫

dRDj1 ∗
µ1m1

(R)Dj2
µ2m2

(R) =
8π2

2j1 + 1
δj1j2δµ1µ2

δm1m2
,(72)

where R = R(α, β, γ) and dR = dα d cosβ dγ, the state |JMλ1λ2〉 is seen to be
normalized according to

〈J ′M ′λ′
1λ

′
2|JMλ1λ2〉 = δJJ′δMM′δλ1λ

′
1

δλ2λ
′
2

,(73)

if the constant NJ is set equal to

NJ =

√

2J + 1

4π
.(74)
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The completeness relations may now be written

∑

JM
ℓs

|JMℓs〉〈JMℓs| = I(75)

and
∑

JM
λ1λ2

|JMλ1λ2〉〈JMλ1λ2| = I .(76)

Finally, we note the relation

〈Ωλ′
1λ

′
2|JMλ1λ2〉 = NJD

J ∗
Mλ(φ, θ, 0) δλ1λ

′
1

δλ2λ
′
2

.(77)
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Connection between canonical and helicity states:

We start from

|φθλ1λ2〉 = aU [
◦

R]

{

U [Lz(p)] |s1λ1〉U [L−z(p)] |s2 −λ2〉
}

= aU [L(~p )]U [
◦

R] |s1λ1〉U [L(−~p )]U [
◦

R] |s2 −λ2〉(78)

=
∑

m1m2

Ds1
m1λ1

(φ, θ, 0)Ds2
m2−λ2

(φ, θ, 0)|φθm1m2〉 ,

we see that

|JMλ1λ2〉 = NJ

∑

m1m2

∫

dΩDJ ∗
Mλ(φ, θ, 0)D

s1
m1λ1

(φ, θ, 0)Ds2
m2−λ2

(φ, θ, 0)|φθm1m2〉 .

(79)

The product of three D-functions appearing may be reduced as follows:

Ds1
m1λ1

Ds2
m2−λ2

=
∑

sms

(s1m1s2m2|sms)(s1λ1s2 − λ2|sλ)Ds
msλ

(80)
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and

DJ ∗
MλD

s
msλ

=
∑

ℓm

√

4π

2ℓ+ 1

(

2ℓ+ 1

2J + 1

)

(ℓm sms|JM)(ℓ0 sλ|Jλ)Y ℓ
m .(81)

we obtain finally

|JMλ1λ2〉 =
∑

ℓs

(

2ℓ+ 1

2J + 1

) 1

2

(ℓ0 sλ|Jλ)(s1λ1 s2 −λ2|sλ)|JMℓs〉 ,(82)

so that the recoupling coefficient between canonical and helicity states is given by

〈J ′M ′ℓs|JMλ1λ2〉 =
(

2ℓ+ 1

2J + 1

) 1

2

(ℓ0 sλ|Jλ)(s1λ1 s2 −λ2|sλ)δJJ′δMM′ .(83)

This relation may be inverted to give

|JMℓs〉 =
∑

λ1λ2

|JMλ1λ2〉〈JMλ1λ2|JMℓs〉

=
∑

λ1λ2

(

2ℓ+ 1

2J + 1

) 1

2

(ℓ0 sλ|Jλ)(s1λ1 s2 −λ2|sλ)|JMλ1λ2〉 .
(84)
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Symmetry relations:

The canonical states |JMℓs〉 transform in a particularly simple manner under
symmetry operations (e.g. parity and time-reversal), and the derivation is also much
simpler than for helicity states. For this reason, we shall first investigate the
consequences of symmetry operations on the canonical states, and then obtain the
corresponding relations for the states |JMλ1λ2〉.
We shall first start with the parity operation. We find

Π|φθm1m2〉 = η1η2|π + φ, π − θ,m1m2〉 ,(85)

where η1(η2) is the intrinsic parity of particle 1(2). We then obtain immediately

Y ℓ
m(π − θ, π + φ) = (−)ℓ Y ℓ

m(θ, φ), Π|JMℓs〉 = η1η2(−)ℓ|JMℓs〉 ,(86)

so that the “ℓ-s coupled” states are in an eigenstate of Π with the eigenvalue η1η2(−)ℓ, a
well known result. Using the recoupling formula and the symmetry relations of
Clebsch-Gordan coefficients, one finds for the helicity states

Π |JMλ1λ2〉 = η1η2(−)J−s1−s2 |JM −λ1 −λ2〉 .(87)

Again, the helicities reverse sign, as was the case for the single-particle states.
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Consequences of the time-reversal operation may be explored in a similar fashion.
one finds

T |φθm1m2〉 = (−)s1−m1 (−)s2−m2 |π + φ, π − θ,−m1 −m2〉 .(88)

and so

T |JMℓs〉 = (−)J−M |J −Mℓs〉(89)

and

T |JMλ1λ2〉 = (−)J−M |J −Mλ1λ2〉 .(90)
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Now, we investigate the effects of symmetrization required when the particles 1 and 2
are identical— No field theory here—

|JMℓs〉s = as[1 + (−)2s1 P12] |JMℓs〉 , P12|JMℓs〉 = (−)ℓ+s−2s1 |JMℓs〉(91)

where P12 is the particle-exchange operator and as is the normalization constant. Again,
using the defining equation, one obtains

|JMℓs〉s = as[1 + (−)ℓ+s] |JMℓs〉 ,(92)

so that ℓ+ s = even for a system of identical particles in an eigenstate of orbital
angular momentum ℓ and total spin s and as = 1/2. Now, the symmetrized helicity state
may be written

|JMλ1λ2〉s = bs(λ1λ2)[1 + (−)2s1 P12] |JMλ1λ2〉(93)

where bs(λ1λ2) is another normalization constant. Using |JMℓs〉s, one finds

|JMλ1λ2〉s = bs(λ1λ2)
{

|JMλ1λ2〉+ (−)J |JMλ2λ1〉
}

,(94)

where bs(λ1λ2) = 1/
√
2 for λ1 6= λ2 and bs(λ1λ2) = 1/2 for λ1 = λ2 (and J = even).

Note that, for a system of identical particles, the symmetrized states in both canonical
and helicity bases have the same forms, regardless of whether the particles involved are
fermions or bosons.
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To Be Continued. . .
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