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General Commentson my JLab talks

An experimental physicist talking on theoretical topics and
therefore elementary for theorists

A lot of the formula in my talks—mostly based on intituitive
perspectives and so

Listen to what | say—not what | write—they are mostly meant for
the experts, or for the those who would want to go over later

| have given a series of numerous courses/seminars at
TU/munich; and so, after some severe downsizing of the

material, those pressented here are necessarily sketchy and
rudimentary

Just relax and enjoy and
Consult the references Isited below—for further information
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Introduction

e References

e The Poincaré Group

Praiminaries

e Decay amplitudes for two- and three-body final states

e Comments on Helicity and Canonical approaches

e Reflectivity Operations

e Covariant Formulation of Helicity-Coupling Amplitudes

e Techniques of Partial-Wave Analysis—

Extended Maximum-Likelihood Methods

e Ambiguities in the Partial-Wave Amplitudes

Not covered: massless particles and fermions
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Perliminaries

References
e S. Weinberg:

‘The Quantum Theory of Fields, Cambridge, UK (1995), Volume I, Chapter 2:
Relativistic Quantum Mechanics, p.49—

The Poincaré Algebra

One-Particle States (Mass> 0 and = 0)

P-, T-, C-Operators

e M. Jacob and G. C. Wick, Ann. Phys. (USA) 7, 404 (1959)
‘ Helicity. ..’

e M. E. Rose, ‘Angular Momentum. .., Wiley, NY (1957)
Clebsch-Gordan coefficients
The d-functions.. .

e A.D. Martinand T. D. Spearman,
‘Elementary Particle Theory, John Wiley & Sons, NY (1970)

e S. U. Chung, ‘Spin Formalisms, CERN 71-8
http://cern.ch/suchung/

Zemach amplitudes. ..
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Perliminaries

S. U. Chung, PR D48, 1225 (1993)
‘The Helicity-coupling amplitudes in tensor formalism’
A Practical Guide—Examples with £ < 4 (BNL-QGS94-21)

http://www.phy.bnl.gov/™ e852/reviews.html
V. Filippini, A. Fontana, and A. Rotondi, PR D51, 2247 (1995)

S. U. Chung, PR D57, 431 (1998)
‘General formulation of covariant helicity-coupling amplitudes’
Rank-J Tensor for |Jm)
General v = E/m (the Lorentz factor) dependence

http://cern.ch/suchung/

S. Huang, T. Ruan, N. Wu, and Z. Zheng, Eur. Phys. J. C 26, 609 (2003)
Rank-.J Tensor for |Jm)
(independently derived)

S. U. Chung and Jan Friedrich, Phys. Rev. D78, 074027 (2008)
Online calculator for the Lorentz factors
The most general and recent paper on this topic

Hadron Spectroscopy/Mathematical Techniques JLab May 30—-June 13, 2012




Quantum Lorentz Transfor mations
The Poincaré Group

Primary References:

A. McKerrell, NC 34, 1289 (1964).
A. J. Macfarlane, J. Math. Phys. 4, 490 (1963).

Additional References:

‘The Quantum Theory of Fields, Steven Weinberg
Volume |—Foundations, Chapter 2 (Relativistic Quantum Mechanics)

‘A Modern Introduction to Quantum Field Theory,” Michele Maggiore
Chapter 2 (Lorentz and Poincaré Symmetries in QFT)
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Quantum Lorentz Transfor mations
The Poincaré Group

The general inhomogeneous Lorentz transformation (a, A)
(1) p'* =a* + A", p¥ and g, A", A" = g,r: The Lorentz Condition

[The latter comes from the condition p’? o p2.] Our Lorentz metric g*¥ = g, has
signature (+, —, —, —) so that

g,LLV = 5“1/ and g,uy — 5MV

(2) .
A7 AN =97, or (AT7)7 , =A°
and

(3) p'u:(Eaplap27p3):(E7pl‘apy7pz)
Pu = guv 0’ = (E,p1,p2,p3) = (E, =Pz, —Py, —Pz)

Let w be the mass associated with p and adopt a notation in which p indicates both the
four-momentum and the magnitude of the 3-momentum, i.e.

(@) E? =w®+p*, p°=pi+p.+Dp
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Quantum Lorentz Transfor mations

The group multiplication law is

(a1, A1) (a2, A2) = (a3, As),

(5)
a3 = a1+ A1az, A3 =A1A>

The corresponding unitary representations (or unitary operators) follow the same rule

U(a,A\) =U(a,1)U(0,A) =U(a) U(A),

(6)
U(a1,A1)U(az,A2) = U(as, As)

-,

Consider now an homogeneous Lorentz transformation A(8) [3 = 5/ E] without rotation
which takes ¢ to ¢’

(7) q¢" =AM q"

where

®) Nog=r, Aog=A%=n', Al;=674 ]
v+1

with v = E/w and n* = vB* = p*/w. Note

B 1
“ 1

2

9) v =1+n? n’ =mng +n. +n;
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Quantum Lorentz Transfor mations

Denote ¢ = (E4,4) and ¢’ = (E{, ¢’ ) and see that

(10)

@y (AH% =7 ATHo=@ATH% =" (ATH; =067+

so that

)
(12) (7-7")] -
7

One can check for consistency by substituting ¢’ into the equations above and see that
the equalities hold.
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Quantum Lorentz Transfor mations

Go over to infinitesimal transformations (a, A)
(13) a =€ and A, =g, +wly or A =9gur +wur
The unitary operators U (a, A) become

U(e) =U(e,1)=1—ie, P*, U () =1+1ie, PH

1 1
Ul4+w)=U(0,14w)=1-— 5 i W JW U 14 w) =1+ S i W JHV

P and M are Hermitian, and w and M are antisymmetric. That w is antisymmetric can
be worked out from the Lorentz Condition:

9pr = Guv (g'up +whp) (6" +w”r)
(14)

= gpr tWpr T Wrp — Wpr = —Wrp

Poincaré group: 6 parameters (w,, ) +4 parameters (/) =10 parameters
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Quantum Lorentz Transfor mations

Note that
(15) UMNU(a) =U(Aa)U(A)

so that, with b = A q,
(16) U YN ANUDB)UA) =UN 1)

For b infinitesimally small, one finds

U()=1-—1ib, P"
UA D) =1—i(A"1b), P

17)
=1—i(A Yt b, P

=1—iAty b, P®
using the identity (A=1),# = A#,. And so one obtains

(18) U~YA)PFU(A) = A*, P®
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Quantum Lorentz Transfor mations

Next, observe an obvious identity
(19) U N MNUE)UMN) =UNTZA)

andsetU(X) = U(1 + w)

1
( U(D) =1~ 5 iwu J*
1
UAISA) =1— =i (AP wA)yg JP
2
(20) { 1

= 1= Si(A ok wun A5 P

1

and find
(21) U™HA) J*Y UA) = AP AV g J¥P
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Quantum Lorentz Transfor mations

The commutation relations can be obtained as follows. Observe
(22) U(a)U(b) =U(a+b)

and go over to infinitesimal translations

U(a):1—i(a-P)—%(a-P)2
(23) U(b)zl—z‘(b-P)—%(b-P)Q

1
U(a+b)=1—z’(a-P+b-P)—5(a-P+b-P)2

to see that
(24) (a-P)(b-P)=(b-P)(a-P) = aub, P,P, =a,b, P,P,
and find
(25) [P*, PY] =0
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Quantum Lorentz Transfor mations

Consider next an infinitesimal Lorentz transformation A = 1 + w. For the purpose, it

IS convenient to recast w, as it is antisymmetric,

1 —
wh,, = 5 wags (g"® 68, — guﬁ)
(26) 1
wz/B _ EwBOé (gz/ﬂ 5046 o gua)

where & A, acts on the variables on right and replaces the superscript o with 3.
One sees that, from U~1(A) PFU(A) = AFo P with A = 1 + w,

(27) [PH, P =i (g™ PP — gHP pe)
and find, from U =1 (A) JHY U(A) = AFq AY 5 JP with A = 1 + w,
(28) [J1 JOP) = =i (ghe V8 — gh @ JP 4 gV e — gk e

using the fact that both w and M are antisymmetric.
This completes construction of the Lie algebra for the Poincaré group.
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Quantum Lorentz Transfor mations
Define ‘relativistic spin’ via

1 1
(29) Wi = 2 el @PY Po Jgy = el F 7 Jog Py

where ¢ is the 4-dimensional totally antisymmetric tensor with

£o123 = +1, 0123 — 1
Since W* is a four-vector, one must have
(30) U YA WHU(A) = AH, WY

But this formula can be derived independently, noting that

1
U YA WHU(A) = 5 eHOPYUTHA) P UN)UTH(A) Jg U(A)
(31)
1
= 3 eMOPY NP Ag® Ay Py Jor
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Quantum Lorentz Transfor mations

One now makes use of an elegant identity (see Appendix, note on QLT)
(32) s”pUT:sMO‘ﬁVAM”AapAB"AJ

to show that

(33) AuygupoT:{suaﬂfyAapAﬁaAvT

Sustituting this to the equation above, one obtains the desired result.

PH P, and WH W, are invariants (i.e. they commute with all the operators), given by
w? and —w? j(j + 1), i.e.

Pt P, = w?
(34)
WHW, = —w?j(j+1)
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Quantum Lorentz Transfor mations

Define

1
Jt = 5 gk jik . Angular Momentum Operator
(35)

K*=J% . Boost Operator

so that, using P* = —P;, J;; = +JY, Jo; = —J% and J;o = +J%,

wl=pP.Jj=J.-P
W=P'J—-—PxK=JP" +K xP

: . 1 :
37) wSt = W — Pt WO
PO +w

so that

— — — — 1 — — —
(38) wS =P°J—-Px K — P(P-J)

PO +w
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Quantum Lorentz Transfor mations

The commutation relations are

(39) [P*,PY] =0, [P° J]=[P° S =0, [J'AI]=1icWF Ak
where

(40) At ={P*, J', K*, S'}

And

[PY, K" =4iP', [P, K/|=id;; P°, [P',S7]=0
(41) o g o g
(S%,87] =ik Sk [K' KI] = —igk gk

Define a general orbital angular momentum operator L via

(42) J=L+S5§
so that

- - o - 1 - = =
(43) wL = —(P° —w)J+ P x K + P(P-J)

PO+ w
and
(44) [J*, L) = [L', L] = ie¥* LF, [PY, L] = [L',87] = 0
(PP, L] =ik Pk P.L=0
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Quantum Lorentz Transfor mations

Recapitulate

(W=J.P
V[_}:J_’PO%—I?XJS
(45) ) J=L+S5
wS =P+ K x P B (] F)

Note that P°.J has been changed to JPY, since they commute. Note also that P x K

. . . 1 o - o
wl = —J(P° —w)— K x P+ P(J-P)

has been changed to —(I? x P ); this is possible because [K%, P/] = 0 for i # j. When

the operators above act on states with a given momentum p#, it is clear that (PP, P )
can be changed to (E, p’). We shall denote the resulting operators by writing W *(p),

SH(p) and L*(p). We see that

(46) P, WH =p, WH(p)=0

If a state is at rest, then S is equivalent to .J. The actions of S* and S* (p) are identical,

when applied to the states for which the P* operator has an eigenvalue of p*.
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One- and Two-Particle States
Single-Particle States

Define
Jt=J., J*=1J,, J=J.,
(47) .
Jr =Jotidy, J2=J2+J,+J;

The standard representation of angular momentum states are given by

(T2 |jm) = j(j + 1) |jm)

(48)

N\

Jz |jm) = m|jm)
\ J+ [im) = V(@G Fm)(G £m+1) [jm £ 1)

Rest states |k, jm) for a single particle with mass w and spin j are eigenstates of P, J?
and J. with corresponding eigenvalues k£ = (w, 0,0,0), j(7 + 1) and m. They have the
usual transformation property under rotation R

o) U(R) |k, jm) = 3" [k, jm") D], (R)

m/
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One- and Two-Particle States

The actions of the relativistic spin
(50) Wy WH = (W22 — (W - W)
on the rest states are, with

P¥ |k, jm) = k* |k, jm,)

(51) .
POk, jm) = w|k, jm), P |k,jm) =0

(52) Wy WH |k, jm) = —w? j(5 + 1) |k, jm)

So W, W has the eigenvalue indicated above for all, massive and relativistic
single-particle states. Note that

(T2 |k, jm) = 5(j + 1) |k, jm)

(53) ¢ S?k,gm) =j(j + 1) |k, jm)
\ L ° |kajm> — 0
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One- and Two-Particle States

Consider now a boost B (p) along the z-axis which takes k to p = (F,0,0,p), i.e

cosha 0 0 sinho
0 1 0 0
54 H =[B HoEY, B =
sinha 0 0O cosha«o

where tanha = g = p/FE, cosha = v = E/w and sinh o« = v = p/w. Define

(55) p= (E,p) = (FE,psinf cos ¢, psin 0 sin ¢, p cos 0)
and
(56) p" =[R@)"pY, R(P) = R(¢) Ry(6)
and
1 0 0 0 1 0 0 0
O cosf O sinf 0O cos¢p —singp O
7 v(0) 0 0 1 o |’ =(9) 0 sing cos¢p O
O —sinf® 0O cosb 0 0 0 1
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One- and Two-Particle States

The relevant unitary operators are

U|[B:(p)] = exp[—ia K]

(58)
UR(p)] = U[R:(¢)Ry(0)] = exp(—i¢ J2) exp(—i0 Jy)
Define
UIL(p)] = U[R(p)] U[B=(p)]
(59)

The canonical and helicity states can now be defined via

B, jm) = U[L(p)] |k, jm) = U[R(p)| U[B: (p)] U [R(p)] |k, jm)
(60)
5, ) = U[L(D)] [k, \) = U[R(p)] U[B=(p)] |k, \) = U[L(p)] U[R(p)] |k, \)

where |k, \) = |k, jm) with A = m.
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One- and Two-Particle States

The helicity and canonical states are related through
61) Z D? \(¢,0,0)|5,jm), |, jm) = Z DI* (¢,0,0) |5, \)

from orthonormality of the D-functions. The ket states are normalized according to

(62) (B, gmlp’, 5'm) = 2B (2m)2 6@ (5 — 57) 8, 1 Sy = 6B — B7) 85 j1 Sy
(

(B, GNP’ 5N ) = 2B (2m) 65 (51— 57) 85 j1 Sx v = 6(F = B7) 6 4+ 6x
Together with the invariant volume element

N d3p
63 dp =
©3) P~ 2n)P(2E)

the closure relations can be written

> [ 15.3m) dp (5 jm] = 1
jm

(64)
> [ 1593 dp @A = 1
JA
‘"I Hadron Spectroscopy/Mathematical Techniques JLab May 30-June 13, 2012 —p.24




One- and Two-Particle States
Let R be a general rotation R(af37)
(65) U(R) = U[R(afv)| = exp[—ia J:] exp[—i 8 Jy] exp[—ivy J.]

The canonical and helicity states transform under a pure rotation R (p — p")

U(R)|p,jm) = _ |Rp,jm/)D? , (R)=>_|p’,jm’) D!, (R)
(66) m/’ m/
UR) P, A) = RE,A) =5, A)

Canonical states transform as if they were rest-frame states and helicity is conserved
under a pure rotation.
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One- and Two-Particle States

One needs similar transformation laws for S and L. For the purpose, one defines

wS*(p) = U[L(p)] W (p) U~ " [L(p)]
(67) = UL~ (p)] WH(p) UL~ (p)]

=L (p)*, W (p)

so that

, . . 1 .

wS*(p) = W'(p) = =——p' WO (p)
+ w
(68) < | | 1 |
wS' =W — P*W?Y . Original Definition

. PO+ w
Note
(69) wS"(p) |p, jm) = U[L(p)] W* |k, jm) = wU[L(p)] J* |k, jm)
Or

S (p)17gm) = UIL)] Jxlk, jm) = V(G Fm)(G £ m + 1) |7 jm & 1)
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One- and Two-Particle States

Define
(71) U®(R) = U°[R(afy)] = exp[—iaS.] exp[—i 8 Sy] exp[—iv S-]

It is clear that
(72) *(R) |P, jm) = Z P, jm’y D? , (R)

So the operator U° (R) acts on the angular momentum part of the canonical states
|p, 7m) and leaves the momentum p’ unpertubed.

Hadron Spectroscopy/Mathematical Techniques JLab May 30—-June 13, 2012

—p.27




One- and Two-Particle States
Define
(73) U"(R) = U"[R(afv)] = exp|—ia L] exp[—i 8 Ly] exp[—iy L]
Because S and L commute, it is clear that
(74) U(R) =US(R)U"(R) = U"(R)U*(R)

Noting that
UM(R) =[U°(R)]"'UR) =U (R U(R)

and using the group property of the D7 functions, one finds
(75) U (R) |7, jm) = |RP, jm)

So, for the canonical states, U~ (R) acts on the spin while leaving the momentum
invariant, whereas U’ (R) rotates the momentum but leaves the spin unchanged.
This is to be contrasted with the actions of U (R), which act on both the spin and the
momentum.
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One- and Two-Particle States
Two-Particle States

Consider a system of two spinless particles with momenta p; and p2 and masses w;
and ws. Let w be the effective mass of the two-particle system and let p = p; + p2 be
the total 4-momentum and let ¢ be the breakup momentum in the rest frame of the
two-particle system. Q = (6, ¢) describes to the direction of p; in the rest frame. We
work out the normalization of the product of the two ket states

/ dpydps (1|51 (DaP3)
(76)
— /dpldpg 6(p1 — P1) 6(p2 — py) =1

provided p| = p1 and p; = p>. Adopt a normalization for the two-particle system

(77) Ip,2) = a|p1) |p2), a = anormalization constant
by requiring
(78) (p,Q|p, Q) = (2m)* WM (p—p)sP(Q- Q)
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One- and Two-Particle States

It is seen that six variables contained in p; and p> have been transformed into the
4-momentum p and €. To find a, perform a change of variables

/ dp1dps (p, Q| P, ) = a? / dp1dps (515 (Ba15%) = a?
= (2m)* /aplaPQ §H(p—pH)sP( Q-

1 2dqd?Q
i RF = = s /<%> §(w — By — E2) 6 (Q — Q)
7T

E; = \Jw?+¢%? = = (4;)2 (%)

where RF stands the two-particle rest frame, and ¢ = 1 or 2. So we see that

(79)

1
(80) a=—/+
47V w
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One- and Two-Particle States

Define, in the rest frame of the two-particle system of arbitrary spin,

{ q= (E1,q) = (F1,qsin 6 cos ¢, gsin 0 sin ¢, q cos 0)
(81)

= (FE2,—q) = (F2,—qsinf cos ¢, —qsin O sin ¢, —q cos 0)

Using the boost operators U[B.(q)] and U[B_-(q)] along the positive and negative
z-axis and with R(q) = R.(¢)Ry(0),

{ U[L(q)] = U[R(§)) U[B=(q)] U [R(q)]

(82)
UIL(9)] = U[R(@) U[B-=(9)] U [R(q)]
one sets
1 o v
Qmama) = —, /L UIL(@)]ls1m1) U[L()]|s2ms)
4TV w
(83)
1 /q .
= — 4/ — |@,s1m1) | — ¢, s2m2)
4\ w
Adopt a normalization
(84) <Q mima2 ‘ Q/ mllm/2> — 5(2) (Q o Q/) 5m1m/1 5m2m/2
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One- and Two-Particle States

Define
(85) J=Jb 4 j2 -804 5@ -4

and

(86) { U°[R(Q)] = exp(—i$S.) exp(—if Sy)
| ULIR(Q)] = exp(—i ¢ L,) exp(—if L)

Introduce a new ket state of a given S

|2 Sms) = Z (s1m1 sama|Sms) |Q2mims2)

mims2a

(87)

It follows, from

m
that
US[R(Q)]|Q2Sms) =Y  |QSmL) DS /0,0
(88) [R(Q)][25ms) = )  |QSmg) D2, ., (¢,6°,0)
m
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One- and Two-Particle States

Now construct a ket state of a given ¢ and S

) tmSms) = 3 (s1ma 82m2|Sms)/dQYTﬁ(Q)|Qm1m2>

mima2

Apply UL on the states above and find

ULIR(Q)] [em Sms) = Z (s1mq Sng\SmS)/dQYTﬁ(Q)\R(Q’)lemﬂ

mima2

(Q"=RQ) — = Z (s1m1 Sng\SmS)/dQ” YA (RTIQ Q" mima)

m11Mmo
(group property) — Z DE* DY (sima same \Sms)/dQ” Y (Q)Q mima
mi1Mmso
(unitary property) — Z lém’ Sms) D ,m(¢,0,0)

Under a general rotation then, the ket states transform according to

U[R(Q)] |tm Sms) = UF[R(Q)] US[R(Q)] |em Sms)

~_—

(90) = > |em'Sml)Dt, (¢/,0',0)D5,  (¢,6',0)
m’ m/ )
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It is apparent that

One- and Two-Particle States

Construct next a ket state

|JMLS) = > (bm Sms|JM) |[6m Sms)

(91)

— Z (ﬁmSms|JM)(31m1 82m2|SmS)/dQYT€L(Q)|Qm1m2>
normalized
(92) <JM€S|J/M/£/S/> :5JJ’5MM/5£€/(SSS’

UIR(Q)] |JMLSy = " |JM'LS)y D, (¢',6',0)

(93)
M/
so that
( J2|JMLS) = J(J + 1) |JMLS)
(94) $ S2|JMLS) = S(S+1)|JMLS)
| L2 |JMES) = 0(¢ + 1) |TMLS)
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One- and Two-Particle States

Consider two-particle states in the helicity basis. Define

UlB:(q)], UlL(q)] = q)

\/ ‘Qa)\l

—2(q)]

Q2 A1A2) = UL(@)]ls1A1) U[L(@)][s2 —X2)

q, _)\2>

Construct, with | A = A1 — Ao |,

2+ 1
[TMAiAs) = 4/ + /dQD (6,0,0) 2\ Aa)

<JM)\]_)\2‘J/M )\/ )\/ — 5JJ/5MM/ 5>\1>\/ 5>\2>\/

= |JM'X1x2) Dy (6,6,0)
M/

U[R(Q)] [JMA1A2)

Recoupling coefficient:

20 + 1
(95) <J’J\4’£’S’|JJ\4AM2>:,/QJTr (00 SA|JN)(s1 A1 59 ~Aa|SA) 65 718177
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One- and Two-Particle States
Two-body Decays

In the two-body rest frame, the decay amplitude is

A% = 3 {@ Ml (=@ el fMlTM)

A1 Ao

—dm = S QM A2 [ IM A A2) (TMAL A2 | M| M)

(96) P
A1 Ao
2J 11
=\ D DEAB,0,0) gy A=2a—o
T A1A2

where
(97) F{ \, = 4m, /% (J MM A2| M| M)

and, from parity conservation in the decay,

J J—s1— J
(98) F>\1>\2 =157 N2 (=) eme2 F—Al,—Ag
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One- and Two-Particle States

Alternatively, the decay amplitude may be written

A}{AQ): Z {(@81m1|(—(f,82m2|}M|JM>

mimo
=3 > {(@ simal (= sama| I MES)(TMES|M|TM)
£S5 mima2
(99) w
=dm, /= > Y (Qmimag|JMLS)(JMLS|M|JM)
1 45 myma
— Z Z (Im Smg|JM)(s1m1 sama|Smg) qub(ﬂ) GEJS
eS mmg
where
(100) Gilg = 4m, | Z(IMES|M|TM), n, =mn, 1, (—)° (Parity)
q
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One- and Two-Particle States

Recoupling coefficient:

/’lU

—47“/ Z (TM X1 Aa| JMES)(JMES|M|JM)

(101) J

= (IMXi x| JMLS) GYg

LS
20+ 1

_Z + EOSA|J>\)(31>\1 s2 —A2|SA) Gig
where
(102) GEJS X qe for ¢ — 0
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Spin-1 Statesin Momentum Space

Homogeneous Lorentz transformations are given by

(103) A= exp[—% Wy JEY]

so that J#¥ is now an operator imbedded in the momentum space. For infinitesimal
transformations, we have

(104) APy =6Py — %Wuv (JH7)P

g

As this must be equal to
Apa = 5[)0_ + Wpa

we can deduce that

(105) (JH)P =1 (gM"P 65 — g"P 6"5); see M. Maggiore, Capter 2
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Spin-1 Statesin Momentum Space

Explicitly, we find

0O 0 0 O 0O +2 0 O
0O 0 0 O +: 0 0 O
J:)P = K\ =
(J2)" 00 0 —il’ (K2)"s 0O 0 0 O
0 0 4+ O 0O 0 0 0
0O 0 0 O 0O 0 +2 O
0O 0 0 +2 0O 0 0 O
106 Jy)’ = (K =
0o S 0 0 0 0 (K)o +i 0 0 0
0 —2 0 O 0O 0 0 O
O 0 0 O 0 0 0 +4e
0O 0 —2 O 0O 0 0 O
J)P = . (KL =
(=% 0 +i 0 0 (K=)" 0 00 0
0O 0 0 O +: 0 0 O
and
(107) [JE, J9] =itk gk [J1, K] = iR KR K KT = —igik gk
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Spin-1 Statesin Momentum Space

The spin-1 wave functions at rest are

0 0

0 1 1
108 H(0) = F(4+1) = = ——
(109 s =yl rEn=F4|

1 0

It can be shown that

( J?e(m)=jG+1)e(m), j=1, m=-1,0, +1

(109) { Jze(m)=me(m), m=-1,0, +1

[ J+e(0) =V2e(£1), Jre(Fl)=+v2e(0), Jre(£l)=0

Define

1 1 .. .
(110) sziswkwjkziswkwjk, o' = woi

so that the homogeneous Lorentz transformations take on the form

—

(111) A=exp[—if-J—id K]
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Spin-1 Statesin Momentum Space

for a boost along the z-axis, we know that

cosha 0 0 sinha

. 0 1 O 0

(112) [Bz(p)lF; = exp[—ia(K:)", | = O 01 0
sinha 0 0 cosha

Here cosha = E/w and sinh o = p/w. After a boost along the z-axis, the wave
functions become

(113) el (p,m) = [Bz(p)]", " (m)

or, writing out the components explicitly,

p/w
0 1 1
114 et (p,0) = ’ et (P, +1) = F——
(114) (7, 0) 0 (p,£1) =F 75 | =i
E/w 0
Note that p,, e/ (p, m) = 0 in any Lorentz frame.
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Spin-1 Statesin Momentum Space
Define ‘relativistic spin’ via

1 1
(115) W“(p):is“O‘BVpaszge”o‘BwJaﬁpv

where p#’s are c-numbers, i.e. not operators. Given a momentum p# = (E, p’) and
p* p, = w?, we can define the modfied form of the relativistic spin W# and their
derivatives S* and L*

(WOop)=J-p
Wp)=EJ+K x§
(116) { = > P P)
S =FJ+ K Xp —
wS(p) + p o
—»t]_’.
wi(p) = —(E—w)J— R xj + 2L P)

Here (FE, p) are not operators but merely c-numbers. These are the operators acting on
ket states with 4-momenta (E,p ).
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Spin-1 Statesin Momentum Space

Consider a special case of p along the z-direction, i.e. p, = p, = 0 and p. = p. Then,
we see that

—WH(p) Wu(p) =w? J? +p* (JZ + J; + K; + K)

(117)
We find
—p2 0 0 Ep
0 w2 0 0
118 —WH %% — observe: 0
(118) (p) Wu(p) 0 0 w?® 0 ( p —0)
—Ep 0 0 FE?
so that
—WH(p) Wy (p) e (p,0) = 2w? e (5, 0)
(119)

—WH(p) Wy (p) e(p, £1) = 2w e (p, +1)

So, from considering a special case, we have proven a general formula
(120) —WHPYWL(p) : jG+Dw*I=2w*1 j=1

where, again, I is the 4 x 4 identity matrix.

V) Hadron Spectroscopy/Mathematical Techniques JLab May 30—-June 13, 2012

—p.44




Spin-1 Statesin Momentum Space

Consider now the spin operator S. Once again we confine ourselves to p along the
z-direction, i.e. p, = py, = 0 and p, = p. Its z-component is

2

E 4+ w
O 0 0 O
(121)
0O 0 — O
= w .
0O +2 0 O
O 0 0 O

(122)
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Spin-1 Statesin Momentum Space

Next, we evaluate

0O 0 +Hp 0
, 0O O 0 0
wSy(p) =EJs+pKy =1 p 0 0 _E
0O 0 +FE 0
(123)
0 —p 0 0
| =p 0 0 +E
w Sy (p) y=PRe=0 0 0 0 0 0
0O —FE O 0

Setting S+ (p) = Sz (p) £1.5,(p), we obtain the desired result

[ wS+(p) e (7,0) = V2weH (p, £1)

(124) ¢ wS+(p) e (P, F) = V2weH(p,0)
| w S (p) et (7, %) = 0
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Spin-1 Statesin Momentum Space

Under a finite rotation R°(a, 8, ), one has

(125) R%(a, B,7) e (F,m) = > e*(@m’) D)) (a,B,7)

m’

Consider a rank-2 tensor

(126) el (p, Sm) = Z (Imy Imz|Sm) e (p1, m1) e” (P2, m2)

mi1 m2

where p=p1 +p2and S = 0,1 or 2. Itis clear that

(127) R®(a, B,7) e (B, Sm) = Z e’ (p, Sm"YDS ,  («, B,7)

m’

General Formulation of Covariant Helicity-Coupling Amplitudes

S. U. Chung, PR D57, 431 (1998)
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Spin-1 Statesin Momentum Space

To Be Continuned. . .
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Spin Formalisms
One-Particle States at Rest

States of a single particle at rest (mass w > 0) may be denoted by |jm), where j is
the spin and m the z-component of the spin. The states |jm) are the canonical basis
vectors by which the angular momentum operators are represented in the standard way.
Since the angular momentum operators are the infinitesimal generators of the rotation
operator, the spin of a particle characterizes how the particle at rest transforms under
spatial rotations.

Let us denote the three components of the angular momentum operator by J,., J,, and
J. (or Ji, Jo, and J3). They are Hermitian operators satisfying the following
commutation relations:

(1) 1 Ji, Jj] =€k Ji s

where i, 7, and k£ run from 1 to 3. The operators J; act on the canonical basis vectors
|7m) as follows:

J2|jm) = j(j + 1)|jm)
(2) Jz|jm) = m|jm)
Jxlim) =[G Fm)(j £m+1)]2[jm+1)

where J? = JZ + J7 + JZ and J+ = J, +iJy,.
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The states |jm) are normalized in the standard way and satisfy the completeness
relation:

im

where I denotes the identity operator.

A finite rotation of a physical system (with respect to a fixed coordinate axis) may be
denoted by R(«, 8,~), where («, 8, ~) are the standard Euler angles. We use the
so-called active rotations.
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Euler Angles

X Yy

UlR(a, 8,7)] = exp|—ia J:]| exp|—i f Jy| exp[—i~y J:]
= exp[—iv J. | exp[—i 3 J, ] exp[—ic J,]
D, (a,8,7) = (§m/|U[R(a, B,7)]|jm)

M. E. Rose,
‘Elementary Theory of Angular Momentum,’
John Wiley & Sons, Inc. (see Chapter V)
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To each R, there corresponds a unitary operator U[R], which acts on the states |jm),

and preserves the multiplication law:
U[R2 R1] = U[R2] U[R;] .
Now the unitary operator representing a rotation R(«, 3,~y) may be written
@ UlR(a, B,7)] = e~ 'z e 7P v 717
corresponding to the rotation of a physical system (active rotation!) by ~ around the

z-axis, B around the y-axis, and finally by o around the z-axis, with respect to a fixed
(z,y, z) coordinate system. Then rotation of a state |jm) is given by

(5) UlR(, B,7)] ljm) = Z\Jm 2 (@ B,7)

D’ (o, B, v) Is the matrix representation of the rotation group.

m’'m
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Dfn,m is the standard rotation matrix as given by M. E. Rose:

DI, (R) =D, (a,B,%) = (jm'|U[R(a, B,7)][jm)

. / . .
T m ad%/m(ﬁ)e 7 My

(6)

—e

and
@) d?, (B) = (jm |e"*P7v|jm) .

momm

In Appendix A of the “Spin Formalisms” (S. U. Chung), some useful formulae
involving D’ , andd’, are listed.

m m m m
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Relativistic One-Particle States

Relativistic one-particle states with momentum g may be obtained by applying on the

states |jm) a unitary operator which represents a Lorentz transformation that takes a
particle at rest to a particle of momentum p. There are two distinct ways of doing this,
leading to canonical and helicity descriptions of relativistic free particle states.

Let us first consider an arbitrary four-momentum p* defined by

8) p* = (p°,p,p%,p°) = (B, pa,py,p2) = (E,7) .

With the metric tensor given by

9) g,uz/ = guv =

o )

we can also define a four-momentum with lower indices:

(10) Pp = Guv p” = (E7 _ﬁ) -

My convention: p is used to denote both the four-momentum
and the magnitude of the three-momentum.
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The proper homogeneous orthochronous Lorentz transformation takes the
four-momentum p* into p’# as follows:

(11) p't = Aty p”,
where A*, is the Lorentz transformation matrix defined by
(12) 9o ANy APy = g, det A =1, A% >0.

The Lorentz transformation given by A#,, includes, in general, rotations as well as the
pure Lorentz transformations. Let us denote by L*, (3 ) a pure time-like Lorentz
transformation, where g is the velocity of the transformation. Of particular importance is

the pure Lorentz transformation along the z-axis, denoted by L. (3):

( cosha 0 0 sinhao \
0 1 0 0
(13) L.(B) =
0 0 1 0
K sinha 0O O cosha /

where 3 = tanh «.
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In terms of L, (p3), itis easy to define a pure Lorentz transformation along an arbitrary
direction 3
(14) L(B) = R(¢,0,0)L-(8)R™"(,0,0) ,
where R(¢, 0, 0) is the rotation which takes the z-axis into the direction of 3 with
spherical angles (8, ¢):
(15) B = R(¢,0,0)% .

The relation L(E) IS an obvious one, but the reader can easily check for a special case
with ¢ = 0:

cos 6 O sinf
(16) R(¢,0,0) = , Ri; = 0 1 0

—sinf® 0 cosf
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Now the action of an arbitrary Lorentz transformation A on relativistic particle states
may be represented by a unitary operator U[A]. The operator preserves the
multiplication law, called the group property:

(17) U[AQAl] = U[AQ] U[Al] .

Let us denote by L(p ) the “boost” which takes a particle with mass w > 0 from rest to
momentum p and the corresponding unitary operator acting on the particle states by

UIL )] )
(18) UL(p)] = e "oP

)

where tanh o = p/F, sinha = p/w, and cosha = E /w.
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A boost operator defines a Hermitian vector operator K, and the components k; are
then the infinitesimal generators of “boosts”. The three components K; together with J;
form the six infinitesimal generators of the homogeneous Lorentz group, and they satisfy
definite commutation relations among them. We do not list the relations here, for they
are not needed for our purposes.

—

From the relation L( ) and the group property, one obtains

(19) UIL(p )] = ULR(¢,0,0)]U[L=(p)]U ' [R(¢,0,0)] ,
where the rotation ;% takes the z-axis into the direction of p'with spherical angles (6, ¢):

(20 b= R($,0,0)% .
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We are now ready to define the “standard” or canonical state describing a single
particle with spin 5 and momentum p:

P, jm) = |9,0,p,jm) = U[L(p )] |im)

(21) o o
= U[R(#,0,0)] U[L=(p)] U [R(¢,6,0)] [im) ,

where |jm) is the particle state at rest as defined in the previous section. We emphasize
that the z-component of spin m is measured in the rest frame of the particle and not in
the frame where the particle has momentum p.

The advantage of the canonical state is that the state transforms formally under rotation
in the same way as the “rest-state” |jm):

o

(22)
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It is clear from the rottional property of the canonical states that one may take over all
the non-relativistic spin formalisms and apply them to situations involving relativistic
particles with spin. One ought to remember, however, that the z-component of spin is
defined only in the particle rest frame obtained from the frame where the particle has
momentum f'via the pure Lorentz transformation L= (7). See Fig. la.

<

Fig. 1a: The orientation of the coordinate systems associated with a particle at rest in
the canonical description (¢, e, Zc).
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Next, we shall define the helicity state describing a single particle with spin 5 and
momentum p’[see Fig. 1Db]:

‘ﬁ?]A> — ‘¢,9,p,j>\>

= U[R(6,6,0)] U[L-(p)] i) = U[L(F )] U[R(¢, 0, 0)] |5)

O

(23)

Fig. 1b: The orientation of the coordinate systems associated with a particle at rest in
the helicity description (&, = 9n X 2n, Un X 2 X D, Zn = D).
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Helicity states may be defined in two different ways. One may first rotate the rest state
o
|7A\) by R, so that the quantization axis is along the p direction and then boost the

system along p'to obtain the helicity state |p, j\). Or, equivalently, one may first boost
the rest state |j\) along the z-axis and then rotate the system to obtain the state |p, j\).
That these two different definitions of helicity state are equivalent is obvious from the
relation for U[L(p')| given previously.

One sees that, by definition, the helicity quantum number X is the component of the spin
along the momentum p, and as such it is a rotationally invariant quantity, simply because
the quantization axis itself rotates with the system under rotation. This fact may be seen
easily from the definition of helicity states:

U[R] |5, j\) = UIRR) U[L-] |j\)
(24)
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In addition, the helicity A remains invariant under pure Lorentz transformation that takes
pinto o/, which is parallel to p. The invariance of A under L’ may be seen by

UIL]IF, 5N = ULUIL@E)ULR] i)

@5) = UILEULR i)

= |p’. 5N .

There is a simple connection between the canonical and helicity descriptions. From the
definitions of canonical and helicity states, on finds easily that

O O O

7, 5\) = U[RJU[L.)U " *[RIU[R] |5 )\)

(26) . o
=> D! \(R)|p,jm) .
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We shall adopt here the following normalizations for the one-particle states:

@' §'m/|pim) = 6B — D)8 1 S

(27) ~
(B J' NNy =0 — D)0 Oanr

where §(p’ — p') is the Lorentz invariant §-function given by

(28) S(p' —p)=(2m)32E) s E 7).

It can be shown that, with the invariant normalization given above, an arbitrary Lorentz
transformation operator U[A] acting on the states |p, jm) or |p, jA) is indeed a unitary
operator, i.e. UTU = I. With the invariant volume element as defined by

- d3ﬁ
29 dp =
(29) P (2m)3 (2E) ;

the completeness relations may be written as follows:

0 S / imy dp @iml =1, 3 / 7N dp (N =1,
jm G

where I denotes the identity operator.
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Parity and Time-Reversal Operations

Classically, the action of parity and time-reversal operations, denoted P and T', may
be expressed as follows:

P: T— —&, p——p, J—o J
. (31)
T: x— x, p—-—-p, J——J

where Z, p, and J stand for the coordinate, momentum, and angular momentum,
respectively. It is clear that P and T' commute with rotations, i.e.

(32) [P,R|=0, [T,R]=0.

By definition, one sees also that the pure Lorentz transformations (in particular, boosts)
act under P and T according to

39) PL(5) = L(-§)P,  TL(7)=L(—)T .
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Let us now define operators acting on the physical states, representing the parity and
time-reversal operations:

(34) I=U[P], T=0U[T],

where II is a unitary operator and T is an anti-unitary (or anti-linear unitary) operator. T'
IS represented by an anti-unitary operator due to the fact that the time-reversal operation
transforms an initial state into a final state and vice versa. Operators 11, T, U[R], and
U|[L(p )] acting on the physical states should obey the same relations

(35) {H,U[R]} —0 [T,U[R]} —0

and

(36)
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We are now ready to express the actions of IT and T on the rest states |jm). It is

clear that the quantum numbers 5 and m do not change under 1I:

(37) II|jm) = n|jm) ,

where 7 is the intrinsic parity of the particle represented by |jm). Let us write the action

of T as follows:
T|jm) = > Timlik) .
k

Remembering the anti-unitarity of T,

ZDJ ) (R) T, = ZT ' DL*(R) .

The above relation may be satisfied, if 7,,,/,,, IS given by
Trtm = dqz@/m(ﬂ-) — (_)j_mém’,—m ) D] g (O{ B, ’7) — ( )m mD_m/

so that the action of T on the states |jm) may be expressed as

(38) Tljm) = (=)~ ™[j —m) .

- (aBy)

Hadron Spectroscopy—Mathematical Techniques JLab May 30—June 13, 2012

- p.20




One can show that the canonical state with momentum p transforms under IT and T
as follows:

(39)
and |

T |ﬁ7]m> — (_)j—m| _ﬁaj o m>
(40)

T|¢799p7]m> — (_)j_m|7r+ ¢97T - 97paj - m> .

Next, we wish to express the consequences of IT and T operations on the helicity states
|p, jA). One finds

(41) I1|¢,0,p,5A) =ne "™ |x + ¢, 7 —0,p,5 =)

(42) T|¢,0,p,j\) = e ™ Mm + ¢, — 0,p, 5N .

Now the helicity A is an eigenvalue of J - . Note that J - p — —.J - p under P and
J-p — J-punder T. This explains why the helicity X\ changes sign under II, while it
remains invariant under T.
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Two-Particle States

A system consisting of two particles with arbitrary spins may be constructed in two
different ways; one using the canonical basis vectors |p, jm), and the other using the
helicity basis vectors |p, 7). We shall construct in this section both the canonical and
helicity states for a two-particle system having definite spin and z-component, and then
derive the recoupling coefficient which connects the two bases. Afterwards, we
investigate the transformation properties of the two-particle states under II and T, as well
as the consequences of the symmetrization required when the two particles are identical.
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Construction of two-particle states:

Consider a system of two particles 1 and 2 with intrinsic spins s; and s, and masses
wi and ws. In the two-particle rest frame, let p° be the momentum of the particle 1, with
its direction given by the spherical angles (¢, ¢). we define the two-particle state in the
canonical basis by

(43) [¢Omima) = aU[L(p')] [s1m1)U[L(=p)] [s2m2) ,

where |s1m1) is the rest-state of particle ¢ and « is the normalization constant to be
determined later. L.(4+p") is the boost given by

o—1

(44) L(+F) = R(¢,0,0)L+-(p)R  ($,6,0) ,

O
where R(¢, 0, 0) is again the rotation which carries the z-axis into the direction of p’ and
L+ . (p) is the boost along the +z-axis.
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Owing to the rotational property of canonical one-particle states, one may define a
state of intrinsic total spin s by

(45) |pOsms) = Z (s1m1 samalsms)|pOmima) ,

mims

where (s1m1 soma|smg) is the usual Clebsch-Gordan coefficient. Using the formula

(46) D, D2 = | Z (j1p1 japz|japs)(jima jameljzsms)DIE,, .
J3m3MM3

and the orthonormality of the Clebsch-Gordan coefficients, one may easily show that, if
R is a rotation which takes €2 = (6, ¢) into R’ = R,

(47) U[R]|Q2sms) ZDm m. R)|R sm’) |

so that the total spin s is a rotational invariant.
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The state of a fixed orbital angular momentum is constructed in the usual way:

(48) [tmsms) = / dQ YL (Q)|Qsms) ,

where d{2 = d¢ d cos 6. Let us investigate the rotational property of the formula above

(49) U|[R] |fmsms) = /dQ Yyﬁ(Q)DS (R)|R'sml) ,

where R’ = R'(a/,8",7") = R, dQ = da’dcosp’, and, from

20 + 1
47

YE(Q) =4/ 2€+ 1D o(R™'R)
(51) (group property of D's) — = 4/ 2t + ! Z YD, (R

(unitarity of D's) Z Dt o (B0,

(50) YE(Q) = Do (¢, 8,0)

we see that
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one obtains the result

mimsg

(52) UIR]|[tmsms) = > D&, (R)D:, . (R)|fm'sm) .

This shows that the states |¢msm) transform under rotation as a product of two “rest
states” [¢m) and |sms).
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Now, it is easy to construct a state of total angular momentum J:

|JMZUs) Z (Im smg|JM)|[fmsms)

mmg

— Z (Im smg|JM)(s1m1 sama|sms) X

mmg
mim2

X /dQ YA (Q)|Qmims) .

(53)

One sees immediately

(54) U[R] |JM£s) = ZDM,M )| JM'Es) .

Note that, as expected, / and s are rotational invariants: This is the equivalent of the
non-relativistic L-S coupling.

Hadron Spectroscopy—Mathematical Techniques JLab May 30—June 13, 2012

—p.27




Next, we turn to the problem of constructing two-particle states from the helicity basis
vectors |p, jA). we write

(©)

6671 M) — aU[R]{U[Lz<p>] 1A UTL—2 (p)] [s2 —A2>}
(55)

= U[R(¢,6,0)] |00 A1 \2) |

where |s; ;) is the rest state of particle 7 and a the normalization constant introduced
previously. We have constructed the helicity state for the particle 2 in such a way that its
helicity quantum number is +\s.
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States of a definite total angular momentum J may be constructed as follows:

N
(56) TMA ) = 57 / dR DI}, (R)U[R] [00A1 M) |
7T

where N ; is a normalization constant to be determined later. Let us apply an arbitrary
rotation R’ on this state

7

N
UIR']1TMA2) = S /dRDm(R)U[R“] 00A A2) |

where R = R’ R. But, by using the multiplication law and the unitarity of the
D-functions,
Dy, (R) = Dy, (R ~'R")
=>_ Dify (R 1Dyl (R)
(57) M/

Unitarity — = >~ Dy, (R) D5 (R").
M/
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Using this relation, as well as the fact that dR = dR’/, one obtains the result

(58) U[R']|JMA1 o) ZDM,M RO[JM' X 2)

so that the states are indeed states of a definite angular momentum J. Note that, as
expected, A1 and )2 are rotational invariants.

Now, let us specify the rotation R by writing R = R(¢, 60, ~). Then,

(59) UlR(¢,0,7)]100A1A2) = U[R(¢,0,0)]U[R(0,0,v)] [00A1A2)
= M= 22) Y UIR(¢,0,0)] [00A1 N2) .

The last relation follows because of the commutation relation: [R(0,0,~), L+.(p)] = 0.
Integrating over d-y, one obtains

(60) TMALAg) = NJ/dQD < (6,6,0) |67 \a) |

where \ = A1 — Ao.
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Normalization:

For simplicity of notation, we shall deal with spinless particles. Two-particle states are
normalized

(61) (P1D3P1P2) = 8(P] — P1) 6(P5 — P2) |
where
(62) 55! —pi ) =2m)3QE)s® (@ —p;), i=1lor2.

A system consisting of two momenta p; and p> may be described, in general, by one
four-momentum p representing the sum of the four-momenta of particles 1 and 2 and 2
describing the orientation of the relative momentum in the (1,2) rest frame, i.e.

(63) p,Q) = alpip2) , where p=pi+p> and p?=w?.

We adopt the normalization for this state as follows:
(64) (', p, Q) = (2m)*6W (p' —p) s (Q - Q).
Multiply the formula above by the invariant volume element dp; dp2, where

- d3p
65 dp =
(65) P (2m)3 (2E) )

and integrate over these variables.
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Using the notation for which d¢,, is the n-body phase space so that
(66) dg2(1,2) = (2#)45(4) (p" —p) dpi1 dpo

we need to evaluate an integration, in the two-particle rest frame (RF),

a2:/ﬁ®@w—9ywﬂLm

1 p? dpdQ

d*pa; p1 — P = ‘/5E By —w)sP(Q — Q) —"—

7 (/ 72 p1—>p>—> g [ O+ Br —w) s (@ ) Tt
I p
dQ; E; = 1/p2 + w? — =
(/ ’ y “"z)% (4m)? w

where p is the relative momentum in the two-particle RF and w = E; + F is the
effective mass of the two-particle system. We see immediately that

(68) a —
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We are now ready to specify the normalizations for the two-particle states with
arbitrary spin.
(69) (' mlmb|Qmima) =62 (Q = Q)8 /6

mimy mgm’2

and
(70) (QAAGQNA2) = 8PN (Q — )8y, 31 0,0 -

The states |J M /{s) obey the following normalizations:

(71) <J/M/£/S/‘JM£S> = 5JJ/5MM/5€€/5SS/ .
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Since the D-functions are normalized according to

872

(72) /dRDilljn1 (R)Dj2 (R) = m 172001 po

H21mM2 5m1m2 )

where R = R(«, 8,7v) and dR = da d cos 3 dv, the state |JM A1 \2) is seen to be
normalized according to

(73) <J/M/>\i)\/2|JM>\1>\2> :5JJ/5MM/5>\1>\/15>\2>\/2 ;
if the constant IV is set equal to

2 1
(74) Ny =2 L
47
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The completeness relations may now be written

(75) > | JMes)(JMLs| =T
JM
ls
and
(76) D> TMAA) (JMA A2 =1 .
JM
A1 o

Finally, we note the relation

(77) QN[ TMAA2) = NyDif5 (6,6,0) 83, 51 63,7 -
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Connection between canonical and helicity states:

We start from

60MAs) = aU[fz]{U[Lz@)] 1)UL (p)] |52 —A2>}
79) —  QUIL()U[R] s 2M)U[L(—5 )JU[R] |s2 —A2)
— Z Din%l)\l(¢7070)Df32_>\2(¢7070)|¢0m1m2>7
we see that

MM =Ny S0 /dQDﬁ;(@e,O)D;;m(¢,0,0)1);32_A2(¢,0,0)|¢9m1m2>.

mima2

(79)
The product of three D-functions appearing may be reduced as follows:

(80) D3t | D?®2 = Z(slm182m2|sms)(sl)\1$2 — )\2|8>\)Dfn8>\

mi1A1~ ma2—Ag
Smg
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and

2041 ,
81 (m sms| JM) (00 sA|JN)YE
@ 2=\ 5t (g emomalaanieo i)

we obtain finally

1

204+ 1\ 2

(82) |JMA1A2) = E <2J—-i|_- 1) (L0 sA|JA)(s1A1 s2 —A2|sA\)|JMUs) |
ls

so that the recoupling coefficient between canonical and helicity states is given by

20 + 1
2J +1

1
(83) <J/M/€8|JM>\1>\2> = ( ) ’ (60 S>\|J>\)(81>\1 S9 _>‘2|5>‘)5JJ’5MM’ .

This relation may be inverted to give

[JMEs) = Y |JTMA1A2) (J M1 A2|JMLs)
A1 o
(84)

1
20+ 1\ 2
= Z( i ) (€0 sA|JN) (5121 52 —A2|sA)|JMA1A2) .
5o \27 +1
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Symmetry relations:

The canonical states |J M {¢s) transform in a particularly simple manner under
symmetry operations (e.g. parity and time-reversal), and the derivation is also much
simpler than for helicity states. For this reason, we shall first investigate the
consequences of symmetry operations on the canonical states, and then obtain the
corresponding relations for the states |JM A1 A2).

We shall first start with the parity operation. We find

(85) II[gOmim2) = mnz|m + ¢, m — 6, mima2) ,

where 71 (n2) is the intrinsic parity of particle 1(2). We then obtain immediately

86) Yo (m—0,m+¢)= (=) Yn(0,¢), I[JMls)=mnin(—)"|JMls),

so that the “/-s coupled” states are in an eigenstate of IT with the eigenvalue n1n2(—)*, a
well known result. Using the recoupling formula and the symmetry relations of
Clebsch-Gordan coefficients, one finds for the helicity states

(87) I |JM>\1>\2> — ?71?72(—)‘]_81_82|JM —A\1 —>\2> .

Again, the helicities reverse sign, as was the case for the single-particle states.
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Consequences of the time-reversal operation may be explored in a similar fashion.
one finds

(88) T |p0mima) = (=)t~ " (=)2""2|mr + p,m — 0, —m1 — m2) .
and so

(89) T |JMis) = (=) =M |J — Mts)

and

(90) T[JMA o) = (=) = M|J — M) .
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Now, we investigate the effects of symmetrization required when the particles 1 and 2
are identical— No field theory here—

1) [JTMls)s = as[l + (=)251 Pro] [JMLs),  Pio|JMLs) = (—)C+5=251| JM10s)

where P2 is the particle-exchange operator and as is the normalization constant. Again,
using the defining equation, one obtains

(92)

so that

¢+ s = even

|TMEs)s = as[1 4+ (=)T5] [T MLs) |

for a system of identical particles in an eigenstate of orbital

angular momentum ¢ and total spin s and as = 1/2. Now, the symmetrized helicity state
may be written

(93)

|JM>\1>\2>3 = bs()\l)\g)[l —+ (—)281 Plg] |JM>\1>\2>

where bs (A1 A2) is another normalization constant. Using |.J M {s) s, one finds

(94)

[TMAa)s = bs(AiA2) {|JM>\1>\2) i (—)J|JM>\2>\1)} ,

where bs (A1 Xo) = 1/v/2for A1 # Ao and bs(A1Xo) = 1/2 for A1 = A2 (and J = even).
Note that, for a system of identical particles, the symmetrized states in both canonical
and helicity bases have the same forms, regardless of whether the particles involved are
fermions or bosons.
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To Be Continued. ..

Hadron Spectroscopy—Mathematical Techniques JLab

May 30—June 13, 2012

—p41




	Chung_lecture1.pdf
	
	cntr {General Comments on my JLab talks}
	
ightline {OG {Preliminaries}}
	
ightline {OG {Perliminaries}}
	
ightline {OG {Perliminaries}}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {Quantum Lorentz Transformations}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {One- and Two-Particle States}
	cntr {Spin-1 States in Momentum Space}
	cntr {Spin-1 States in Momentum Space}
	cntr {Spin-1 States in Momentum Space}
	cntr {Spin-1 States in Momentum Space}
	cntr {Spin-1 States in Momentum Space}
	cntr {Spin-1 States in Momentum Space}
	cntr {Spin-1 States in Momentum Space}
	cntr {Spin-1 States in Momentum Space}
	cntr {Spin-1 States in Momentum Space}
	cntr {Spin-1 States in Momentum Space}

	Chung_lect1continued.pdf
	
	cntr {OG {Spin Formalisms}}
	
	small OG {Euler Angles}
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


