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Spin Formalisms
Applications

We are now ready to apply results of the previous section to a few physical problems
of practical importance. As a first application, we shall write down the invariant transition
amplitude for two-body reactions and derive the partial-wave expansion formula. We do
this in the helicity basis, following the derivation given in the “classic” paper by Jacob and
Wick. Our main purpose in this exercise is to show how the particular normalization of
single-particle states influences the precise definition of the invariant amplitudes and the
corresponding cross-section formula.
Next, we shall discuss the general two-body decays of resonances and give the
symmetry relations satisfied by the decay amplitude, as well as the coupling formula
which connects the helicity decay amplitude to the partial-wave amplitudes. Finally, we
take up the discussion of the spin density matrices, introduce the multipole parameters,
and then expand the angular distribution for two-body decays in terms of the multipole
parameters.
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Cross Section:

Consider a reaction

a+ b → 1 + 2 + · · ·+ n .(1)

In the over-all c.m. system, let w0 be the c.m. energy and pi(pf ) the over-all
four-momentum in the initial (final) state. In terms of the invariant amplitude Mfi,

dσ =
1

(2Ea)(2Eb)βrel
|Mfi|2dφn(1, 2, · · · , n) =

1

4F |Mfi|2dφn(1, 2, · · · , n) ,(2)

where F is the flux factor, which in the over-all c.m. is given by

F = Ea Eb βrel =
[

(pa · pb)2 − (wa wb)
2
]1/2

= pawb (stationary target) = pi
√
s (CM system) = p

L

√
s cos(θ

L
/2) (pp Collider)

(3)

and dφn is the n-body phase space:

dφn(1, 2, · · · , n) = (2π)4δ(4)(pf − pi)
n
∏

k=1

d̃pk, d̃pk =
d3~pk

(2π)3(2Ek)
.(4)

d̃pk is the invariant volume element of the kth particle.
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Phase Space:

The phase-space formula may be broken up into two factors as follows:

dφn = dφℓ(i → c,m+ 1, · · · , n)
(

dw2
c

2π

)

dφm(c → 1, 2, · · · ,m) ,(5)

where ℓ+m = n+ 1 and c denotes a system consisting of particles 1 to m, its effective
mass being wc. The expression above may be termed the Cluster Decomposition
Formula. Refer to the following figure:

i

1

2

n−1

n

i
m+1

n−1

n

c
m

m−1

1
2

Here the figure on the left side refer to dφn(1, 2, · · · , n), while that on the right side refer
to the cluster decomposition formula above.
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After repeated application of the formula above and using the explicit expression for
the two-body phase space, we may express the n-body phase-space succinctly as
follows:

dφn =
1

2n
· (2π)4

(2π)3n
· p

0

w0
dΩ0

n−2
∏

k=0

{p dw dΩ}k , dφ2(1, 2) =
1

(4π)2
p

w
dΩ .(6)

where w is the effective mass of the particles 1 and 2; and P and Ω denote the
magnitude and direction of the relative momentum in the (1,2) rest frame. Note that we
must set n ≥ 2 and {· · ·}0 = 1. Modify the formula above to include 3-body decays:

dφn =
1

2n
· (2π)4

(2π)3n
· p

0

w0
dΩ0

n2
∏

k=0

{p dw dΩ}k
n3
∏

ℓ=0

{w′ dw′ dR dE dE′ }ℓ(7)

where n2 ≥ 0, n3 ≥ 0 and n = n2 + 2n3 + 2 ≥ 2. Again, note n ≥ 2 and {· · ·}0 = 1.
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3-Body Phase Space:

The 3-body phase-space formula is

dφ3(1, 2, 3) =
1

23
· 1

(2π)5
· p

0

w0
dΩ0 p

′
1dw12 dΩ

′

→ 4

(4π)5
dR(α, β, γ)

p
3

w0
p′1 d cos θ′

dw2
12

2w12

(8)

where p = p1 + p2 + p3 and p2 = w2
0 ; and the primes in p′1 and cos θ′ indicate that they

are evaluated in the (12)-RF. But one sees that, in the (12)-RF,

w2
13 = (p1 + p3)

2 = w2
1 + w2

3 + 2E′
1 E

′
3 + 2p′3 p

′
1 cos θ

′(9)

so that, for a fixed w12,

dw2
13 = 2p′3 p

′
1 d cos θ′(10)

~p
1

~p
2

~p
3

~p ′

1

~p ′

2

θ
θ ′

z′
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One needs to relate p′3 to p3. For the purpose, write p = p12 + p3 evaluate the
4-momentum square in the (12)-RF

2w12 E
′
3 = (w2

0 − w2
12)− w2

3(11)

and square it again

4w2
12 p

′2
3 = (w2

0 − w2
12)

2 + w4
3 − 2(w2

0 + w2
12)w

2
3(12)

Now, start with p− p3 = p12 and evaluate it in the overall RF

2w0 E3 = (w2
0 − w2

12) + w2
3(13)

and square it

4w2
0 p23 = (w2

0 − w2
12)

2 + w4
3 − 2(w2

0 + w2
12)w

2
3(14)

So one concludes

p′3 =

(

w0

w12

)

p3(15)
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So the 3-body phase-space formula becomes

dφ3(1, 2, 3) =
4

(4π)5
dR(α, β, γ)

(

dw2
13 dw

2
12

4w2
0

)

→ Daltix-plot variables !(16)

This can be recast into a simple form involving energies in the overal RF. For the
purpose, note

(p13 = p− p2) → w2
13 = w2

0 + w2
2 − 2w0 E2

(p12 = p− p3) → w2
12 = w2

0 + w2
3 − 2w0 E3

(17)

where E2 and E3 are evaluated in the overall RF. Finally, one obtains a simple formula
for the 3-body phase space

dφ3(1, 2, 3) =
4

(4π)5
dR(α, β, γ) dE2 dE3(18)
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Two-body Kinematics:

Start with p = p1 + p2 where p2 = w2, p21 = w2
1 and p22 = w2

2 . Calculate energies for
1 and 2 in the (12)-RF:

(p− p1 = p2) → 2wE1 = w2 + w2
1 − w2

2

(p− p2 = p1) → 2wE2 = w2 + w2
2 − w2

1

(19)

Note this gives w = E1 + E2. Now take the squares and solve for p2

4w2 p2 = w4 + w4
1 + w4

2 − 2
[

(ww1)
2 + (ww2)

2 + (w1 w2)
2
]

= w4 + (w1 + w2)
2(w1 − w2)

2 − w2
[

(w1 + w2)
2 + (w1 − w2)

2
]

=
[

w2 − (w1 + w2)
2
] [

w2 − (w1 − w2)
2
]

= (w + w1 + w2)(w − w1 − w2)(w + w1 − w2)(w − w1 + w2)

(20)
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S-matrix for two-body reactions:

Let us denote a two-body reaction by

a+ b → c+ d(21)

with ~pa, sa, λa, and ηa standing for the momentum, spin, helicity, and the intrinsic parity
of the particle a, etc. Let w0 denote the centre-of-mass (c.m.) energy and let ~pi(~pf ) be
the c.m. momentum of the particle a(c). The invariant S-matrix element for the reaction
may be written, in the over-all c.m. system,

〈~pcλc; ~pdλd|S|~paλa; ~pbλb〉 = 〈~pfλc;−~pfλd|S|~piλa;−~piλb〉

= (4π)2
w0√
pfpi

〈Ωλcλd|S|00λaλb〉 ,
(22)

where we have used with the normalization constant given previously, and we have fixed
the direction ~pi at the spherical angles (0, 0) and ~pf at Ω = (θ, φ). Because of the
invariant normalization of the one-particle states, the absolute square of the amplitude
summed over the helicities λa, λb, etc., is a Lorentz invariant quantity. It is in this sense
that formula above is referred to as the “invariant S matrix”. Due to the
energy-momentum conservation, one may write

〈Ωλcλd|S|00λaλb〉 = (2π)4δ(4)(pc + pd − pa − pb) 〈Ωλcλd|S(w0)|00λaλb〉 .(23)
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If we define the T operator via S = 1 + iT , it is clear that we may write down the
T -matrix in the same way, simply replacing S by T . Now, the invariant transition
amplitude Mfi is defined from the T matrix by

(2π)4δ(4)(pc + pd − pa − pb) Mfi = 〈pcλc; pdλd|T |paλa; pbλb〉(24)

or

Mfi = (4π)2
w0√
pfpi

〈Ωλcλd|T (w0)|00λaλb〉 .(25)

The cross section for a+ b → c+ d can be cast into

dσ

dΩ
=

pf

pi

∣

∣

∣

∣

Mfi

8πw0

∣

∣

∣

∣

2

(26)

Let us now expand the transition amplitude in terms of the partial-wave amplitudes:

〈Ωλcλd|T (w0)|00λaλb〉 =
∑

JM

〈Ωλcλd|JMλcλd〉〈JMλcλd|T (w0)|JMλaλb〉

×〈JMλaλb|00λaλb〉

=
1

4π

∑

J

(2J + 1)〈λcλd|TJ (w0)|λaλb〉DJ ∗
λλ′ (φ0, θ0, 0) ,(27)

where λ = λa − λb and λ′ = λc − λd.
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If we define the “scattering amplitude” f(Ω) via

dσ

dΩ
=

pf

pi

∣

∣

∣

∣

Mfi

8πw0

∣

∣

∣

∣

2

→ dσ

dΩ
= |f(Ω)|2(28)

we obtain

f(Ω) =
(pf/pi)

1

2

8πw0
Mfi .(29)

This formula then relates to the “non-relativistic” scattering amplitude f(Ω) to the
Lorentz-invariant transition amplitude Mfi. One sees immediately that

f(Ω) =
1

pi

∑

J

(

J +
1

2

)

〈λcλd|TJ (w0)|λaλb〉DJ ∗
λλ′ (φ, θ, 0) .(30)

The partial-wave T -matrix appearing is related to the partial-wave S-matrix by

〈λcλd|SJ (w0)|λaλb〉 = δfiδλcλa
δλdλb

+ i〈λcλd|TJ (w)|λaλb〉 ,(31)

where δfi = 1 for elastic scattering and zero, otherwise.
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If parity is conserved in the process, it follows that the partial-wave amplitude should
satisfy the following symmetry relation:

〈−λc − λd|SJ (w0)| − λa − λb〉 = η 〈λcλd|SJ (w0)|λaλb〉 ,(32)

where

η =
ηcηd

ηaηb
(−)sc+sd−sa−sb .

Next, we examine the consequences of time-reversal invariance. Let us denote by |i〉
and |f〉 the initial and final system in a scattering process. Then, the time-reversed
process takes the initial state |T f〉 into the final state |T i〉, so that time-reversal
invariance implies the following relation for the S-matrix:

〈f |S|i〉 = 〈T i|S|T f〉 .(33)

One finds immediately

〈λcλd|SJ (w0)|λaλb〉 = 〈λaλb|SJ (w0)|λcλd〉 ,(34)

where the right-hand side refers to the process c+ d → a+ b.

– p.16
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Decay Width:

Decay rates for a state a with a 4-momentum pa and mass w decaying into n

particles of 4-momenta p1. . . pn, i.e. for a process pa → p1 + · · ·+ pn can be written

dΓ =
1

2w
|Mfi|2 dφn(1, 2, . . . , n)(35)

For a two-body decay, i.e. pa → p1 + p2, one has

dφ2(1, 2) =
1

(4π)2
p

w
dΩ → dΓ

dΩ
=

1

2(4π)2
|Mfi|2

( p

w2

)

→ w−2 dependence(36)

Consider a ππ elastic scattering in a partial wave ℓ. The invariant amplitude takes on the
form

Mfi ∝
w

p
(2ℓ+ 1)Pℓ(cos θ) e

iδℓ sin δℓ(37)

cot δℓ =
w2

0 − w2

w0Γ(w)
(38)

so that

Mfi ∝
w

p
(2ℓ+ 1)Pℓ(cos θ)

w0Γ(w)

w2
0 − w2 − iw0Γ(w)

from unitarity(39)
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Let ~pi and ~pf be the initial and final CM momenta, i.e |~pi| = |~pf | = p

and (~pi · ~pf ) = p2 cos θ. And so, if one sets

Γ ∝ 1

w
p2ℓ+1(40)

then one finds the simplest invariant amplitude

Mfi ∝ (~pi · ~pf )ℓ(41)

The width formula can be written

Γ(w)|w=w0
= Γ0, Γ(w) = Γ0

(w0

w

)

(

p

p0

) [

Fℓ(p)

Fℓ(p0)

]2

→ w−1 dependence !(42)

where Fℓ(p) is the Blatt-Weisskopf barrier factor (BW Barrier Factor), given by

F0(p) = 1, F1(p) =

√

z

z + 1
, F2(p) =

√

z2

(z − 3)2 + 9z
(43)

where z = (p/pr)2 and pr is an additional ‘scale’ parameter in the problem which is
presumably close to 0.1973 GeV/c corresponding to the length of 1 fermi. Note that one
has adopted a normalization such that Fℓ(p) = 1 for z → ∞.

BW barrier factor: F. von Hippel and C. Quigg, Phys. Rev. 5, 624 (1972)

– p.18
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Two-body decays:

Let us consider a resonance of spin-parity Jη and mass w (to be called the
resonance J), decaying into a two-particle system with particles 1 and 2:

J → 1 + 2 ,(44)

and let s1(s2) and η1(η2) denote the spin and intrinsic parity of the particle 1(2). In the
rest frame of the resonance J (JRF), let ~p be the momentum of the particle 1 with the
spherical angles given by Ω = (θ, φ). Then, the amplitude A describing the decay of spin
J with the z-component M into two particles with helicities λ1 and λ2 may be written

AJ
λ1λ2

(M ; Ω) =〈~pλ1;−~pλ2|M|JM〉

=4π

(

w

p

) 1

2

〈φθλ1λ2|JMλ1λ2〉〈JMλ1λ2|M|JM〉

AJ
λ1λ2

(M ; Ω) =NJF
J
λ1λ2

DJ ∗
Mλ(φ, θ, 0), λ = λ1 − λ2 ,

(45)

The “helicity decay amplitude” F is given by

FJ
λ1λ2

= 4π

(

w

p

) 1

2

〈JMλ1λ2|M|JM〉 .(46)

Since M is a rotational invariant, the helicity amplitude F can depend only on the
rotationally invariant quantities, namely, J , λ1, and λ2.

– p.19
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It is easy to expand the helicity decay amplitude F in terms of the partial-wave
amplitudes. Using the recoupling coefficient, we may write

〈JMλ1λ2|M|JM〉 =
∑

ℓs

〈JMλ1λ2|JMℓs〉〈JMℓs|M|JM〉

=
∑

ℓs

(

2ℓ+ 1

2J + 1

) 1

2

(ℓ0 sλ|Jλ)(s1λ1 s2 −λ2|sλ)〈JMℓs|M|JM〉

so that F may be expressed

FJ
λ1λ2

=
∑

ℓs

(

2ℓ+ 1

2J + 1

) 1

2

aJℓs (ℓ0 sλ|Jλ) (s1λ1 s2 −λ2|sλ) ,(47)

where the partial-wave amplitude aJℓs is defined by

aJℓs = 4π

(

w

p

) 1

2

〈JMℓs|M|JM〉 .(48)

The normalizations have a simple relationship

∑

λ1 λ2

|FJ
λ1λ2

|2 =
∑

ℓ s

|aJℓs|2(49)

– p.20
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If parity is conserved in the decay, we have

FJ
λ1λ2

= ηη1η2(−)J−s1−s2FJ
−λ1−λ2

,(50)

where η1 and η2 are the intrinsic parities of the particles 1 and 2. If the particles 1 and 2
are identical, we have to replace the state |JMλ1λ2〉 by its symmetrized state, so that
we obtain the following symmetry relation:

FJ
λ1λ2

= (−)JFJ
λ2λ1

.(51)

Note that J= integer always!
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It is possible to obtain a further symmetry relation on F by considering the
time-reversal operations. For the purpose, let us consider the elastic scattering of
particles 1 and 2 in the angular momentum state |JMλ1λ2〉, i.e.

〈JMλ′
1λ

′
2|T (w)|JMλ1λ2〉 ≡ 〈λ′

1λ
′
2|TJ (w)|λ1λ2〉 ,(52)

where w is the c.m. energy and coincides with the effective mass of the resonance J .
Now, we make the assumption that the Jth partial wave for the elastic scattering of
particles 1 and 2 is completely dominated by the resonance at the c.m. energy w

�

1

�

2

jJMi

mass = w

�

0
1

�

0
2

Fig. 2: Elastic scattering of particles 1 and 2, mediated by a resonance J in the
s-channel.
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Then, we may write

T (w) ∼
∑

M

M|JM〉D(w)〈JM |M† ,

where D(w) is the Breit-Wigner function for the resonance and M is an appropriate
“decay operator.” We obtain

〈λ′
1λ

′
2|TJ (w)|λ1λ2〉 ∼ D(w)FJ

λ′
1
λ′
2

FJ ∗
λ1λ2

,

so that time-reversal invariance for elastic scattering implies

〈λ′
1λ

′
2|TJ (w)|λ1λ2〉 = 〈λ1λ2|TJ (w)|λ′

1λ
′
2〉 → FJ

λ′
1
λ′
2

FJ ∗
λ1λ2

= FJ
λ1λ2

FJ ∗
λ′
1
λ′
2

.(53)

This means that the phase of the complex amplitude F does not depend on the helicities
λ1 and λ2. Therefore, we can consider F a real quantity without loss of generality:

FJ
λ1λ2

= real .(54)
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We emphasize that this result follows only from the assumption that the Jth partial
wave is dominated by the resonance J at the energy w. This condition is fulfilled, for
example, in the P -wave amplitudes of the π+π− or pπ+ elastic scattering at the c.m.
energies corresponding to ρ0 and ∆(1232) masses, where it is known that these
resonances saturate the unitarity limit. It is clear, however, that this condition may not be
satisfied for all resonances. In this sense, the reality constraint may be considered only
an “approximate” symmetry. We will show later in the discussion of the sequential decay
modes that this symmetry can actually be tested experimentally.

– p.24
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Three-Particle Systems:

A system consisting of three particles may be treated most elegantly in the helicity
basis, as was done by

M. Berman and M. Jacob, Phys. Rev. 139 B, 1023 (1965).

In this section, we shall first construct a three-particle system in a definite angular
momentum state and then apply the formalism to a case of a resonance decaying into
three particles. We will give the decay angular distribution in terms of the spin density
matrix and discuss the implications of parity conservation. Finally, we will show that in a
Dalitz-plot analysis different spin-parity states of the three-particle system do not
interfere with one another.
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Consider a system of three particles 1, 2, and 3. Let us use the notations si, ηi, λi,
and wi for the spin, intrinsic parity, helicity, and mass of the particle i. In the rest frame
(RF) of the three particles, the momentum and energy of the particle i will be denoted by
~pi and Ei. In the RF, we define the “standard orientation” of the three-particle system, as
shown in Fig. 3. this coordinate system is then the “body-fixed” coordinate system,
which may be rotated by the Euler angles α, β, and γ to obtain a system with arbitrary
orientation.

x

y

~p

1

~p

2

~p

3

Fig. 3: Standard orientation of the three-particle rest system. Note that the y-axis is
defined along the negative direction of ~p3, and the z-axis along ~p1 × ~p2.
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A system with the standard orientation can be written

|000, Eiλi〉 = b
3
∏

i=1

|~pisiλi〉 ,(55)

where b is a normalization constant and the helicity basis vectors for each individual
particle are given in the usual way:

|~psiλi〉 = U [RiLz(pi)] siλi〉, Ri = R(φi, π/2, 0) .(56)

A three-particle system with an arbitrary orientation in the RF can now be obtained by
applying a rotation R(α, β, γ) to the state:

|αβγ, Eiλi〉 = U [R(α, β, γ)] |000, Eiλi〉 .(57)

If we impose the normalization of the above states via

〈α′β′γ′, E′
iλ

′
i|αβγ,Eiλi〉 = δ(3)(R′ − R) δ(E′

1 − E1) δ(E
′
2 − E2)

∏

i

δλiλ
′
i

(58)

we obtain easily (see Appendix C) that the normalization constant b should be chosen as
follows:

b−1 = 8π2
√
4π .(59)
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Let us now define a state of definite angular momentum:

|JMµ,Eiλi〉 =
NJ√
2π

∫

dRDJ ∗
Mµ(α, β, γ)|αβγ,Eiλi〉 ,(60)

where NJ is the normalization constant given before. That this state represents a state
of definite angular momentum is easy to show following steps identical to those for
two-body decays. Therefore, the states above transform under a rotation R′ according to

U [R′] |JMµ,Eiλi〉 =
∑

M′

DJ
M′M (R′)|JM ′µ,Eiλi〉 .(61)

This relation also shows that, in addition to the obvious invariants Ei and λi, the quantity
µ is also a rotational invariant.
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Let us examine the transformation property of the states under parity operations

Π|000, Eiλi〉 = b
∏

i

Π|Ri, pi, siλi〉

= b
∏

i

ηie
−iπsi |R̄i, pi, si − λi〉

=

{

∏

i

ηie
−iπsi

}

U [R(π, 0, 0)] |000, Ei − λi〉 ,(62)

where R̄i = R(π + φi, π/2, 0) = R(π, 0, 0)Ri, so that

Π|αβγ,Eiλi〉 =
{

∏

i

ηie
−iπsi

}

U [R(α, β, γ + π)] |000, Ei − λi〉 .(63)

Changing the integration over γ into one over γ′ = γ + π, we obtain finally

Π|JMµ,Eiλi〉 = η1η2η3(−)s1+s2+s3+µ|JMµ,Ei − λi〉 .(64)

We note that this formula is not the same as that given in Berman and Jacob. The
reason for this is that their definition of one-particle helicity states involves a rotation
R(φ, θ,−φ), instead of our convention R(φ, θ, 0).
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In order to treat the case when two of the three particles are identical, we shall work
out a transformation formula for exchanging the particles 1 and 2. The exchange
operator P12 is equivalent to performing a rotation by π around the body-fixed y-axis
(see Fig. 3). Using an identity

R(π + α, π − β, π − γ) = R(α, β, γ)R(0, π, 0)(65)

we obtain

P12|αβγ,E1λ1, E2λ2, E3λ3〉 = |π + α, π − β, π − γ, E2λ2, E1λ1, E3λ3〉 ,(66)

Combining this formula with the defining formula for |JMµ,Eiλi〉, and using an identity

Dj
m′m

(π + α, π − β, π − γ) = (−)j−mDj
m′−m

(α, β, γ)(67)

we find

P12|JMµ,E1λ1, E2λ2, E3λ3〉 = (−)J+µ|JM −µ,E2λ2, E1λ1, E3λ3〉 .(68)

Again, this formula is not the same as that given in Berman and Jacob. This arises
because their standard orientation for the three-particle system has been defined
differently from our convention; their coordinate system has been set up with the
negative x-axis along the momentum ~p3.
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Our angular momentum states are normalized according to

〈J ′M ′mu′E′
iλ

′
i|JMµEiλi〉 = δJJ′δMM′δµµ′δ(E1 − E1)δ(E2 − E2)

∏

i

δλiλ
′
i
.(69)

The completeness relation is given by

∑

JM
µλi

∫

|JMµEiλi〉dE1dE2〈JMµEiλi| = I .(70)

The recoupling matrix element

〈αβγ, E′
iλ

′
i|JMµ,Eiλi〉 =

NJ√
2π

DJ ∗
Mµ(α, β, γ)δ(e

′
1 − E1)δE

′
2 − E2)

∏

1

δλiλ
′
i
.(71)
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We are now ready to discuss the process in which a resonance J with spin-parity η

and mass w decays into three particles 1, 2, and 3. In the rest frame of the resonance
(JRF), let the angles (α, β, γ) describe the orientation of the three-particle system.
Then, the decay amplitude may be written, with R(α, β, γ),

AJ
µλi

(M ;R) = 〈R,Eiλi|M|JM〉 = 〈R,Eiλi|JMµEiλi〉〈JMµEiλi|M|JM〉

AJ
µλi

(M ;R) =
NJ√
2π

FJ
µ (Eiλi)D

J ∗
Mµ(R)

(72)

If the “decay operator” M is rotationally invariant, the decay amplitude F should depend
only on the rotational invariants, i.e.

FJ
µ (Eiλi) = 〈JMµEiλi|M|JM〉 .(73)

If parity is conserved in the decay, we have the symmetry:

FJ
µ (Eiλi) = ηη1η2η3(−)s1+s2+s3+µF j

µ(Ei − λi) .(74)

And, if particles 1 and 2 are identical,

FJ
µ (E1λ1, E2λ2, E3λ3) = ±(−)J+µFJ

−µ(E2λ2, E1λ1, E3λ3) ,(75)

where the plus sign holds for two identical bosons and the minus sign for fermions.
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Dalitz-Plot Analysis:

The overall amplitude for the production and decay of a three-particle system is, for
R(α, β, γ),

∑

JMη

P (JMη)FJη
µ (Eiλi)D

J ∗
Mµ(R)

where P (JMη) is the production amplitude of state |JMη〉 in which η is its intrinsic
parity. The distribution function takes on the form

I(R,Ei) ∝
∑

λi

∑

JMηµ

J′M′η′µ′

P (JMη)P ∗(J ′M ′η′)FJη
µ (Eiλi)F

J′η′ ∗
µ′ (Eiλi)D

J ∗
Mµ(R)DJ′

M′µ′ (R)

(76)

Integrating over dR(α, β, γ), we obtain

∫

I(R,Ei) dR ∝
∑

λi

∑

JMµ

∑

η η′

P (JMη)P ∗(JMη′)FJη
µ (Eiλi)F

Jη′ ∗
µ (Eiλi)

(parity in decay) → ∝ ηη′
∑

λi

∑

JMµ

∑

η η′

P (JMη)P ∗(JMη′)FJη
µ (Eiλi)F

Jη′ ∗
µ (Eiλi)

Conclude: No interference between different J or η in a Dalitz-plot analysis.
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Decay Modes: Examples
Recapitulate:

Within the helicity formalism, we have seen

AJ
λ1λ2

(M ; Ω) = NJF
J
λ1λ2

DJ ∗
Mλ(φ, θ, 0) , NJ =

√

2J + 1

4π
, λ = λ1 − λ2 ,(77)

where

FJ
λ1λ2

=
∑

ℓs

(

2ℓ+ 1

2J + 1

) 1

2

aJℓs (ℓ0 sλ|Jλ) (s1λ1 s2 −λ2|sλ) ,

Symmetry properties

FJ
λ1λ2

= η η1η2(−)J−s1−s2FJ
−λ1−λ2

(parity) , FJ
λ1λ2

= (−)JFJ
λ2λ1

(identical)

Obtain their counterparts for the ℓs amplitude. Starting from

aJℓs = 4π

(

w

p

) 1

2

〈JMℓs|M|JM〉(78)

we see that

η = η1η2(−)ℓ (parity), ℓ+ s− 2s1 = even (identical)
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Two-pion Decays:

Two famous examples are ρ → ππ and f2(1270) → ππ. Let ℓ be the spin. Again, we
use η to denote the intrinsic parity of the resonance decaying into two pions. The decay
amplitude is

Aℓ(m; Ω) ∝ F ℓ Dℓ ∗
m 0(φ, θ, 0) ∝ F ℓ Y ℓ

m(Ω)(79)

From parity conservation in the decay, we must have F ℓ = η (−)ℓ F ℓ, so that

η (−)ℓ = +1(80)

If the π’s are identical (i.e. the same charge), then we must F ℓ = (−)ℓ F ℓ. So we see
that

ℓ = even(81)

Examples: ρ 6→ π0π0 and f2(1270) → π0π0.
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Three-pion Decays:

We consider the decays ω → π+π0π− and a2(1320) → 3π. The decay amplitude is

AJ
µ(M ;R) ∝ FJ

µ (Ei)D
J ∗
Mµ(R)(82)

From parity conservation, we see that FJ
µ (Ei) = η (−)µ+1 FJ

µ (Ei), so that

η (−)µ = −1(83)

So we conclude that µ = even if η = −1 and µ = odd if η = +1. This shows that there is
one amplitude (µ = 0) for the ω decay

ω → 3π; AJ
0 (M ;R) ∝ FJ

0 (Ei)D
J ∗
M 0(R), J = 1

Integrate over γ; AJ
0 (M ; Ω) ∝ FJ

0 (Ei)D
J ∗
M 0(φ, θ, 0) ∝ FJ

0 (Ei)Y
J
M (Ω)

(84)

So ω → 3π decay is ‘formally’ equivalent to ρ → 2π, if the analyzer is the decay normal.
There are two decay amplitudes (µ = ±) for a2(1320) → 3π.

a2(1320) → 3π; AJ
±(M ;R) ∝ FJ

±(Ei)D
J ∗
M ±(R), J = 2(85)

Consider now the decays of the charged a2, i.e. a±2 (1320) → π±π+π−. Then we must
have FJ

±(E1, E2) = −FJ
∓(E2, E1), i.e. the π’s 1 and 2 are identical.
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Decays into ρπ and ωπ:

Let λ be the helicity of the ρ or ω. The decay amplitude takes on the form

AJ
λ(M ; Ω) ∝ FJ

λ DJ ∗
Mλ(φ, θ, 0)

FJ
λ =

∑

ℓ

(

2ℓ+ 1

2J + 1

) 1

2

aJℓ (ℓ0 sλ|Jλ), s = 1
(86)

(a) Consider the decay a2(1320) → ρπ.

Because of parity conservation, we must have ℓ = 2 (D wave) only. For this case, we
obtain

FJ
λ =

(

2ℓ+ 1

2J + 1

) 1

2

aJℓ (ℓ0 sλ|Jλ); J = ℓ = 2, s = 1(87)

There is one single complex amplitude aJℓ (J = ℓ = 2) in the problem:

FJ
+ = −

√

1

2
aJℓ , FJ

0 = 0, FJ
− =

√

1

2
aJℓ , J = ℓ = 2(88)

Zemach amplitudes → aJℓ ∝ pℓ =⇒ aJℓ ∝ Fℓ(p/pR
) (Blatt-Weisskopf barrier factors).

Here p is the ρ momentum in the a2RF.
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Include the decay of the ρ → π1 + π2. Then the overall amplitude is

AJ (M ; Ω;w,Ωh) ∝
∑

λ

FJ
λ DJ ∗

Mλ(φ, θ, 0)∆(w)DJ ∗
λ 0 (φh, θh, 0); J = 2, |λ| ≤ 1(89)

where Ω = (θ, φ) describes the direction of the ρ momentum in the JRF, and
Ωh = (θh, φh) describes the direction of the momentum π1 in the ρ helicity frame. The
ρ decay amplitude (a complex constant) has been abosrbed into FJ

λ . w is the effective
mass for the ρ and ∆(w) is the Breit-Wigner form

∆(w) =
w0 Γ0

w2
0 − w2 − i w0 Γ(w)

, Γ(w) = Γ0

(w0

w

)

(

q

q0

)(

q

q0

)2

(90)

where q is the breakup momentum of the ρ in the ρRF.

(b) Consider now the decay b1(1235) → ωπ.

Because of parity conservation, we must have ℓ = 0 (S wave) or ℓ = 2 (D wave). So we
see that

FJ
λ =

√

1

3
aJ0 +

√

5

3
aJ2 (20 sλ|Jλ), J = s = 1(91)
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Evaluating the Clebsch-Gordan coefficients, we find



































FJ
+ =

√

1

3
aJ0 +

√

1

6
aJ2

FJ
0 =

√

1

3
aJ0 −

√

2

3
aJ2

FJ
− =

√

1

3
aJ0 +

√

1

6
aJ2

(92)

Note that
∑

λ |FJ
λ |2 =

∑

ℓ |aJℓ |2 in which the interference terms cancel out.

Include the decay of the ω → π1 + π2 + π3. Then the overall amplitude is

AJ (M ; Ω,Ωh) ∝
∑

λ

FJ
λ DJ ∗

Mλ(φ, θ, 0)D
s∗
λ 0(φh, θh, 0), J = s = 1, |λ| ≤ 1(93)

where Ω = (θ, φ) describes the direction of the momentum ω in the JRF, and
Ωh = (θh, φh) describes the direction of the momentum π1 × π2 in the ω helicity frame.
The ω decay amplitude can be integrated over

g2 =

∫

|F s
0 (Ei)|2 dE1 dE2, s = 1 for ω

g has been aborbed into the FJ
λ .
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Decay Modes involving γ’s in the final states:

(a) Consider the decays ω → γ + π0 and f1(1285) → γ + ρ0.

The relevant decay amplitude is

AJ
λ1λ2

(M ; Ω) ∝ FJ
λ1λ2

DJ ∗
Mλ(φ, θ, 0), λ = λ1 − λ2, λ1 = ±1, |λ| ≤ J(94)

Observe

ω → γ + π0; AJ
±(M ; Ω) ∝ FJ

±DJ ∗
M ±(φ, θ, 0); FJ

± = −FJ
∓, J = 1

where s1 = 1 and γ1 = ±1 for γ. There is one non-zero helicity-coupling amplitude, i.e.
FJ
+ . And further note

f1(1285) → γ + ρ0; AJ
±, λ2

(M ; Ω) ∝ FJ
±, λ2

DJ ∗
Mλ(φ, θ, 0); J = 1, λ = ±1− λ2

where s1 = 1 and γ1 = ±1 for γ; and s2 = 1 and γ2 = {−1, 0, +1} for the ρ0. From
parity conservation in the decay, one must have

FJ
±, λ2

= −FJ
∓,−λ2

(95)

There are two non-zero amplitudes, FJ
++ and FJ

+0.
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(b) Consider the decays π0 → γ + γ or a0(980) → γ + γ.

Once again, we start with

AJ
λ1λ2

(M ; Ω) ∝ FJ
λ1λ2

DJ ∗
Mλ(φ, θ, 0), λ = λ1 − λ2, |λ| ≤ J(96)

where s1 = s2 = 1 and λ1 = ±1 and λ2 = ±1. From parity conservation, we have

FJ
λ1 λ2

= η (−)J FJ
−λ1 −λ2

(97)

By Bose symmetry, we should also have

FJ
λ1 λ2

= (−)J FJ
λ2 λ1

(98)

There is one non-zero element FJ
++ for π0 or a0(980).

Suppose J = 1. There is again one non-zero element FJ
++ but FJ

++ = 0 by Bose
symmetry. So, spin-one particles cannot decay into two photons—Landau-Yang
Theorem.

Consider now J = 2. There are two non-zero elements FJ
++ and FJ

+− if η = +1, but

there exist only one element FJ
++ if η = −1.
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Density Matrix
Here we derive the symmetry properties of the general spin-density matrix for a

system c produced in

a+ b → c+ d(99)

where the participating particles are arbitrary and include mesons, baryons as well as
photons. We assume that c is an intermediate state, mesonic or baryonic, and it couples
to any number of allowed decay channels.

The density matrices in the reflectivity basis were given by
S. U. Chung and T. L. Trueman, Phys. Rev. D 11, 633 (1975).

For a deeper understanding of the quantum treatment of one-particle states, the reader
is referred to the book by

Steven Weinberg, ‘The Quantum Theory of Fields,’ Volume I
(Cambridge University Press, Cambridge, 1995), Chapter 2.
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General Angular Distributions in Reflectivity Basis:

Let |jm〉 be the spin statea for c where the quantization axis is defined in the
production plane, i.e. one takes either the helicity or the Jackson frame for c. The
amplitude for production and decay of the c is

A ∝
∑

χm

〈~pc χm, ~pdλd |T | ~paλa, ~pbλb〉Dχ
m(τ)(100)

where χ specifies the complete quantum state for c, which includes its spin j, its parity,
its C-parity, its isotopic spin, and its decay products with the phase-space element given
by τ ; λ’s refer to the helicities; T is the transition operator of the process ab → cd; and D

is the decay amplitude for c, which may consist of a product of the ‘rotation functions’ as
well as the Breit-Wigner forms. The distribution function follows immediately

I(τ) ∝
∑

λaλbλd

∑

χm χ′m′

× 〈~pc χm, ~pdλd |T | ~paλa, ~pbλb〉〈~pc χ′m′, ~pdλd |T | ~paλa, ~pbλb〉∗

×Dχ
m(τ)Dχ′ ∗

m′ (τ)

(101)

a
We use j to denote the spin and NOT J as used in the previous sections.
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Note that the helicities of a, b and d are the ‘external’ unobserved variables and therefore
summed over outside of the absolute square of the amplitude A. In terms of the
generalized spin-density matrix

ρχχ′

mm′ ∝
∑

λaλbλd

〈~pc χm, ~pdλd |T | ~paλa, ~pbλb〉〈~pc χ′m′, ~pdλd |T | ~paλa, ~pbλb〉∗(102)

the distribution function assumes an elegant form

I(τ) ∝
∑

χm
χ′m′

ρχχ′

mm′ D
χ
m(τ)Dχ′ ∗

m′ (τ)
(103)
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We are now ready to introduce the reflection operator through the production plane
for ab → cd. Let this plane be defined to be the x-z plane, i.e. the production normal is
along the y-axis. Then the reflection operator defined by

Πy = U [Ry(π)] Π = ΠU [Ry(π)](104)

where U [Ry(π)] is a unitary operator representing a rotation by π around the y-axis, i.e.

U [Ry(π)] = exp(−iπ Jy)(105)

which is simply given by the standard d-function

Um′ m[Ry(π)] = d j
m′ m

(π) = (−)j−m δm′,−m(106)

Note also that

Um′ m[Ry(−π)] = d j
m′ m

(−π) = (−)j+m δm′,−m(107)

Let Λ is a general operator in the xz-plane. Then, we see that

[

Πy , U [Λ(~pc)]
]

= 0, Πy |~pc χm〉 = ηc (−)j−m |~pc χ −m〉, Π2
y = (−)2j I(108)

where ηc is the intrinsic parity of the c. Also true for helicity states ( |~pi λi〉, i = a, b, d ).
Also true for massless particles (m → λ = ±j).
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We move over to the reflection-basis states for c, i.e.

|~pc ǫ χm〉 = θ(m)
{

|~pc χm〉+ ǫ ηc (−)j−m |~pc χ −m〉
}

(109)

where

θ(m) =
1√
2
, m > 0; θ(m) =

1

2
, m = 0; θ(m) = 0, m < 0(110)

These basis states constitute eigenvectors of the reflection operator

ǫ2 = (−)2j → Πy |~pc ǫ χm〉 = ǫ (−)2j |~pc ǫ χm〉(111)

so that we have ǫ = ±1 for bosons and ǫ = ±i for fermions. Note, in addition, that
ǫǫ∗ = |ǫ|2 = 1 for both bosons and fermions.
The generalized density matrix in the reflectivity basis is, with m ≥ 0 and m′ ≥ 0,

ǫ ǫ′ρχχ′

mm′ ∝
∑

λaλbλd

〈ǫ ~pc χm, ~pdλd |T | ~paλa, ~pbλb〉〈ǫ′ ~pc χ′m′, ~pdλd |T | ~paλa, ~pbλb〉∗(112)
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We shall explore the consequences of a reflection operation applied to the transition
matrices above. The key observation is that Πy leaves the transition operator T
unperturbed, i.e. [Πy, T ] = 0. The three-vectors ~pi ( i = a, b, c, d ) are left unchanged
under Πy , i.e. the boost operators and/or the rotations about the y-axis, which enter in
the definitions of the helicity or the Jackson frames, remain invariant under Πy .
Therefore, the parity conservation is relegated to exploring the consequences of Πy

acting on the ‘rest’ states. Insert Πy
−1 Πy = Πy

† Πy = I next to each T and propagate
Π†

y and Πy backwards and forwards, respectively, to find

ǫ ǫ′ρχχ′

mm′ ∝ ǫǫ′
∗
(−)2(j−j′)

∑

λaλbλd

〈ǫ ~pc χm, ~pd,−λd |T | ~pa,−λa, ~pb,−λb〉 〈ǫ′ ~pc χ′m′, ~pd,−λd |T | ~pa,−λa, ~pb,−λb〉∗
(113)

so that
ǫ ǫ′ρχχ′

mm′ = ǫ ǫ′
∗ × ǫ ǫ′ρχχ′

mm′
(114)

So we see that ǫ ǫ′ ∗ = +1. Multiply it by ǫ′ from the right and noting that
ǫ′ ǫ′ ∗ = |ǫ′|2 = +1, we find ǫ = ǫ′. Here we have carefully handled the derivation, so
that the formula above applies to both bosons and fermions.
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The density matrix can be written, quite generally, in a block-diagonal form

ǫρχχ′

mm′ ∝
∑

λaλbλd

〈ǫ ~pc χm, ~pdλd |T | ~paλa, ~pbλb〉〈ǫ ~pc χ′m′, ~pdλd |T | ~paλa, ~pbλb〉∗(115)

a fundamental formula which incorporates parity conservation in the production process
ab → cd. The distribution function in the reflectivity basis is

I(τ) ∝
2

∑

ǫ

∑

χm
χ′m′

ǫρχχ′

mm′
ǫDχ

m(τ) ǫDχ′ ∗
m′ (τ), m ≥ 0, m′ ≥ 0(116)

where ǫD is the decay amplitude in the reflectivity basis. Consider a simple decay

c → s1(λ1) + s2(λ2)

In the cRF, we have, with ~pc = 0 and τ = R(φ, θ, 0),

ǫDχ
m(τ) = 〈~qλ1;−~qλ2|M|ǫ jm〉

= Nj F
j
λ1 λ2

θ(m)
{

Dj ∗
mλ(R) + ǫ ηc (−)j−m Dj ∗

−mλ(R)
}

, λ = λ1 − λ2

(117)
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The rank of the density matrix is determined by the number of independent terms in
the summation on helicities. Let

ni = 2si + 1 or ni = 2 (photons) for i = a, b, d

depending on whether a particle is massive or massless. The total number in the sum is

N = na nb nd(118)

So the rank of the density matrix is (N + 1)/2 if N is odd, and it is N/2 if N is even.
Note that the reduction in the rank comes from parity conservation in the production
process (to show this, apply Πy again to the amplitudes).
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Table I. Rank of Spin-Density Matrix for X

Reaction Rank

π−p → π−X+ 1

π−p → X−p 2

π+n → X−∆++ 4

p̄p → X−p 4

n̄p → X−∆++ 8

γp → X0p 4

γp → π+X0 2

νp → e−X++ 1 †

e−p → e−X+ 1 †

φp → X0p 6

φp → π+X0 3

π−η → π−X0 1

π−φ → π−X0 2
† The electrons are assumed to come with one helicity.

True in general for odd-half-integer spins in the limit of zero mass.
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S. U. Chung and T. L. Trueman, Phys. Rev. D 11, 633 (1975)

Consider an Nǫ ×Nǫ density matrix, with i = {χm} and j = {χ′ m′},

ǫρij =

Kǫ
∑

k=1

ǫV ik
ǫV ∗

jk, =⇒ ǫρ = ǫV ǫV †, =⇒ ǫρ = ǫρ†(119)

where i, j = 1, · · · , Nǫ; k = 1, · · · ,Kǫ, and Kǫ (= 1, · · · ,∞) is the rank of the density
matrix. Note that ǫρ is an Nǫ ×Nǫ square matrix, whereas ǫV is, in general, a retangular
matrix Nǫ ×Kǫ. The ‘Cholesky’ decomposition of ǫV is, e.g. for Nǫ = 6 or for 6× 6 ǫρ,

ǫV = {ǫV ik} =



















ǫV 11 0 0 0 0 0
ǫV 21

ǫV 22 0 0 0 0
ǫV 31

ǫV 32
ǫV 33 0 0 0

ǫV 41
ǫV 42

ǫV 43
ǫV 44 0 0

ǫV 51
ǫV 52

ǫV 53
ǫV 54

ǫV 55 0
ǫV 61

ǫV 62
ǫV 63

ǫV 64
ǫV 65

ǫV 66



















(120)

where ǫV ik is complex in general but ǫV ii = real ≥ 0. There are 6 real diagonal
elements and 15 complex off-diagonal elements of ǫV , for a total of 36 parameters
required to describe a 6× 6 ǫρ. The rank is given by the number of columns counting
from the left, with the rest being zero. For example, if the rank=2, then we must have
ǫV ik = 0, i ≥ k ≥ 3. In this case, there are 2 real diagonal elements and 9 complex
off-diagonal elements, for a total of 20 parameters in the problem.
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Now go back to the notation {χm} and {χ′ m′}

ǫρχχ′

mm′ =

Kǫ
∑

k=1

ǫV χ
mk

ǫV χ′ ∗
m′ k

, m ≥ 0, m′ ≥ 0(121)

and define

ǫUk(τ) =

Nǫ
∑

χm

ǫV χ
mk

ǫDχ
m(τ), m ≥ 0(122)

The distribution function

I(τ) ∝
2

∑

ǫ

Nǫ
∑

χm
χ′m′

ǫρχχ′

mm′
ǫDχ

m(τ) ǫDχ′ ∗
m′ (τ)

becomes

I(τ) ∝
2

∑

ǫ

Kǫ
∑

k=1

∣

∣

∣

ǫUk(τ)
∣

∣

∣

2
(123)
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Maximum-Likelihood Method
Introduce the so-called extended likelihood function for finding ‘n’ events in a given

mass bin

L ∝
[

n̄n

n!
e−n̄

] n
∏

i

[

I(τi)
∫

I(τ) η(τ) φ(τ) dτ

]

(124)

where η(τ) is the experimental finite acceptance at τ and the invariant phase-space
element given by

dφ =

(

dφ

dτ

)

dτ = φ(τ) dτ(125)

The first bracket in L represents the Poisson probability for finding ‘n’ events in the mass
bin, and the expectation value n̄ is

n̄ ∝
∫

I(τ) η(τ) φ(τ) dτ(126)

The likelihood function L can now be written, dropping the factors depending on n alone,

L ∝
[

n
∏

i

I(τi)

]

exp

[

−
∫

I(τ) η(τ) φ(τ) dτ

]
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The ‘log’ of the likelihood function now has the form,

lnL =
n
∑

i

ln I(τi) −
∫

I(τ) η(τ) φ(τ) dτ(127)

We shall adopt the following shorthand notation

α = {ǫk;χm} and α′ = {ǫk;χ′ m′}(128)

and write
I(τ) =

∑

αα′

Vα V ∗
α′ Dα(τ) D

∗
α′ (τ)(129)

The so-called ‘experimental’ normalization integral is given by

Ψx
αα′ =

∫

[

Dα(τ) D
∗
α′ (τ)

]

η(τ) φ(τ) dτ(130)

so that

lnL =
n
∑

i

ln
[

∑

αα′

Vα V ∗
α′ Dα(τi) D

∗
α′ (τi)

]

−
∑

αα′

Vα V ∗
α′ Ψ

x
αα′(131)
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We explore the normalization for V ’s by setting V = xW ,
where x is independent of α,

lnL =

n
∑

i

ln
[

x2
∑

αα′

Wα W ∗
α′ Dα(τi) D

∗
α′ (τi)

]

− x2
∑

αα′

Wα W ∗
α′ Ψ

x
αα′(132)

At the maximum, we should have

0 =
∂ lnL
∂x2

=
n
∑

i

[ 1

x2

]

−
∑

αα′

Wα W ∗
α′ Ψ

x
αα′(133)

so that
∑

αα′

Vα V ∗
α′ Ψ

x
αα′ = n(134)

We can define the theoretical normalization integral, with η(τ) = 1,

Ψαα′ =

∫

[

Dα(τ) D
∗
α′ (τ)

]

φ(τ) dτ(135)
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The predicted number of events is

N =
∑

αα′

Vα V ∗
α′ Ψαα′

≡
∑

αα′

Nαα′ , Nαα′ = Vα V ∗
α′ Ψαα′

(136)

So the predicted number of events for a partial wave α is

Nαα = |Vα|2 Ψαα , Ψαα =

∫

∣

∣

∣Dα(τ)
∣

∣

∣

2
φ(τ) dτ(137)

The predicted number of events for the interference between the partial waves α and α′

is

Nαα′ +Nα′α = 2ℜ
{

Vα V ∗
α′ Ψαα′

}

, α 6= α′(138)
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To Be Continuned. . .

– p.57


	
	
ightline {OG {Preliminaries}}
	
ightline {OG {Perliminaries}}
	
ightline {OG {Perliminaries}}
	centerline {OG {Spin Formalisms}}
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

