Amplitudes
Ambiguities
Simple Methods

# Baryon Amplitude Analysis 

Ron Workman<br>Data Analysis Center<br>Institute for Nuclear Studies<br>George Washington University

Techniques of Amplitude Analysis
Jefferson Lab ASI2012
Williamsburg, VA

## Data

Amplitudes
Ambiguities
Simple Methods

Many possible reactions:

$$
\begin{aligned}
& \pi N \rightarrow \pi N, \pi \pi N, \ldots \\
& \gamma N \rightarrow \pi N, \pi \pi N, \ldots \\
& \gamma^{*} N \rightarrow \pi N, \pi \pi N, \ldots \\
& p p \rightarrow p p \pi^{0}, p p \pi \pi, \ldots \\
& J / \Psi \rightarrow p \bar{p} \pi^{0}, p \bar{n} \pi^{-}, \ldots
\end{aligned}
$$

Amplitudes
Ambiguities
Simple Methods

$J / \psi \rightarrow p \bar{n} \pi^{-}$

ep $\rightarrow$ epX Data Analysis Center
Amplitudes

## Ambiguities <br> Simple Methods

Observation of Two New $N^{*}$ Peaks in $J / \psi \rightarrow p \pi^{-} \bar{n}$ and $\bar{p} \pi^{+} n$ Decays

## (BES Collaboration)

The decay $J / \psi \rightarrow \bar{N} N \pi$ provides an effective isospin $1 / 2$ filter for the $\pi N$ system due to isospin conservation. Using $58 \times 10^{6} \mathrm{~J} / \psi$ decays collected with the Beijing Electromagnetic Spectrometer at the Beijing Electron Positron Collider, more than 100 thousand $J / \psi \rightarrow p \pi^{-} \bar{n}+$ c.c. events are obtained. Besides the two well-known $N^{*}$ peaks at around $1500 \mathrm{MeV} / c^{2}$ and $1670 \mathrm{MeV} / c^{2}$, there are two new, clear $N^{*}$ peaks in the $p \pi$ invariant mass spectrum around $1360 \mathrm{MeV} / c^{2}$ and $2030 \mathrm{MeV} / c^{2}$ with statistical significance of $11 \sigma$ and $13 \sigma$, respectively. We identify these as the first direct obseffation of the $N^{*}(1440)$ peak and a long-sought missing $N^{*}$ peak above $2 \mathrm{GeV} / c^{2}$ in the $\pi N$ invariant mass spectrum.
$I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}+\right)$ Status: *

The latest GWU analysis (ARNDT 06) finds no evidence for this resonance.

## $N(2100)$ BREIT-WIGNER MASS

| VALUE (MeV) | DOCUMENT ID |  | TECN | COMMENT |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 玉 2100 OUR ESTIMATE |  |  |  |  |  |
| $2125 \pm 75$ | CUTKOSKY | 80 | IPWA | $\pi N \rightarrow \pi N$ |  |
| $2050 \pm 20$ | HOEHLER | 79 | IPWA | $\pi N \rightarrow \pi N$ |  |
| - . We do not use the following data for averages, fits, limits, etc. - - |  |  |  |  |  |
| $2157 \pm 42$ | BATINIC | 10 | DPWA | $\pi N \rightarrow N \pi, N \eta$ |  |
| $2068 \pm 3_{-40}^{+15}$ | ABLIKIM | 06K | BES2 | $J / \psi \rightarrow\left(p \pi^{-}\right) \bar{n}$ | - |
| $2084 \pm 93$ | VRANA | 00 | DPWA | Multichannel |  |
| $1986 \pm 26_{-30}^{+10}$ | PLOETZKE | 98 | SPEC | $\gamma p \rightarrow p \eta^{\prime}(958)$ |  |

## Data

Data Analysis Center
Amplitudes
Ambiguities
Simple Methods

## Another BES result

## suggested a large $\mathrm{K}^{+} \Lambda$

coupling for the $N(1535) 1 / 2^{-}$


FIG. 1. Feynman diagram for $\psi \rightarrow \bar{p} K^{+} \Lambda$ through $N^{*}$

Amplitudes
Ambiguities
Simple Methods

$\pi \mathrm{N}$ cross sections have only two or three distinct ‘bumps'

Amplitudes
Ambiguities
Simple Methods

We will not be working with
data so suggestive as seen in Klaus Peters' Dalitz plot


# Data 

Amplitudes
Ambiguities
Simple Methods

Focus on two reactions:

$$
\begin{aligned}
& \pi N \rightarrow \pi N \\
& \gamma N \rightarrow \pi N
\end{aligned}
$$

- most PDG info from these sources (presently)
- $\pi N$ scattering is highly constrained
- resonance structure is correlated
- 2-body final state, fewer amplitudes

Amplitudes

Ambiguities
Simple Methods

Isospin $1 / 2 \mathrm{~N}^{*}$ states listed and rated by the PDG

Table 1. The status of the $N$ and $\Delta$ resonances. Only those with an overall status of $*^{* *}$ or $*^{* * *}$ are included in the main Baryon Summary Table.

| Particle | Overall $L_{2 I \cdot 2 J}$ status |  | Status as seen in - |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $N \pi$ | $N \eta$ | $\Lambda K$ | $\Sigma K$ | $\Delta \pi$ | $N \rho$ | $N \gamma$ |
| $N(939)$ | $P_{11}$ | **** |  |  |  |  |  |  |  |
| $N(1440)$ | $P_{11}$ | **** | **** | * |  |  | *** | * | *** |
| $N(1520)$ | $D_{13}$ | **** | **** | *** |  |  | **** | **** | **** |
| $N(1535)$ | $S_{11}$ | **** | **** | **** |  |  | * | ** | ** |
| $N(1650)$ | $S_{11}$ | **** | **** | * | *** | ** | *** | ** | *** |
| $N(1675)$ | $D_{15}$ | **** | **** | * | * |  | **** | * | **** |
| $N(1680)$ | $F_{15}$ | **** | **** | * |  |  | **** | **** | **** |
| $N(1700)$ | $D_{13}$ | *** | *** | * | ** | * | ** | * | ** |
| $N(1710)$ | $P_{11}$ | *** | *** | ** | ** | * | ** | * | *** |
| $N(1720)$ | $P_{13}$ | **** | **** | * | ** | * | * | ** | ** |
| $N(1900)$ | $P_{13}$ | ** | ** |  |  |  |  | * |  |
| $N(1990)$ | $F_{17}$ | ** | ** | * | * | * |  |  | * |
| $N(2000)$ | $F_{15}$ | ** | ** | * | * | * | * | ** |  |
| $N(2080)$ | $D_{13}$ | ** | ** | * | * |  |  |  | * |
| $N(2090)$ | $S_{11}$ | * | * |  |  |  |  |  |  |
| $N(2100)$ | $P_{11}$ | * | * | * |  |  |  |  |  |
| $N(2190)$ | $G_{17}$ | **** | **** | * | * | * |  | * | * |
| $N(2200)$ | $D_{15}$ | ** | ** | * | * |  |  |  |  |
| $N(2220)$ | $\mathrm{H}_{19}$ | **** | **** | * |  |  |  |  |  |
| $N(2250)$ | $G_{19}$ | **** | **** | * |  |  |  |  |  |
| $N(2600)$ | $I_{111}$ | *** | *** |  |  |  |  |  |  |
| $N(2700)$ | $K_{113}$ | ** | ** |  |  |  |  |  |  |

Amplitudes
Ambiguities
Simple Methods

Isospin $3 / 2 \mathrm{~N}^{*}$ states
listed and rated by the PDG

Rating is subjective
but only the ** $\left.\right|^{* * *}$ border is important

| Particle | $\begin{gathered} \text { Overall } \\ L_{2 I \cdot 2 J} \text { status } \end{gathered}$ |  | Status as seen in - |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $N \pi$ | $N \eta$ | $\Lambda K$ | $\Sigma K$ | $\Delta \pi$ | $N \rho$ | $N \gamma$ |
| $\Delta$ (1232) | $P_{33}$ | **** | **** | F |  |  |  |  | ** |
| $\Delta(1600)$ | $P_{33}$ | *** | *** | o |  |  | *** | * | ** |
| $\Delta$ (1620) | $S_{31}$ | **** | **** | r |  |  | **** | ** | *** |
| $\Delta(1700)$ | $D_{33}$ | ** | **** | b |  | * | *** | ** | *** |
| $\Delta(1750)$ | $P_{31}$ | * | * | i |  |  |  |  |  |
| $\Delta(1900)$ | $S_{31}$ | ** | ** |  |  | * | * | ** | * |
| $\Delta(1905)$ | $F_{35}$ | **** | **** |  | d | * | ** | ** | *** |
| $\Delta$ (1910) | $P_{31}$ | **** | **** |  | e | * | * | * | * |
| $\Delta$ (1920) | $P_{33}$ | *** | *** |  | n | * | ** |  | * |
| $\Delta$ (1930) | $D_{35}$ | *** | *** |  |  | * |  |  | ** |
| $\Delta$ (1940) | $D_{33}$ | * | * | F |  |  |  |  |  |
| $\Delta(1950)$ | $F_{37}$ | **** | **** | o |  | * | **** | * | ** |
| $\Delta(2000)$ | $F_{35}$ | ** |  | r |  |  | ** |  |  |
| $\Delta(2150)$ | $S_{31}$ | * | * | b |  |  |  |  |  |
| $\Delta(2200)$ | $G_{37}$ | * | * | i |  |  |  |  |  |
| $\Delta(2300)$ | $\mathrm{H}_{39}$ | ** | ** |  |  |  |  |  |  |
| $\Delta(2350)$ | $D_{35}$ | * | * |  | d |  |  |  |  |
| $\Delta(2390)$ | $F_{37}$ | * | * |  | e |  |  |  |  |
| $\Delta(2400)$ | $G_{39}$ | ** | ** |  | n |  |  |  |  |
| $\Delta(2420)$ | $H_{311}$ | **** | **** |  |  |  |  |  | * |
| $\Delta(2750)$ | $I_{313}$ | ** | ** |  |  |  |  |  |  |
| $\Delta(2950)$ | $K_{315}$ | ** | ** |  |  |  |  |  |  |

**** Existence is certain, and properties are at least fairly well explored.
*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determing $\mathrm{d}_{2010} \quad 14: 34$
** Evidence of existence is only fair.

* Evidence of existence is poor.

Amplitudes
Ambiguities
Simple Methods

Could not see a new 4-star
state - or un-see an existing one
(now changed)
A passage in the 'Note on $N$ and $\Delta$ resonances' adds a restriction:

Table 1 lists all the $N$ and $\Delta$ entries in the Baryon Listings and gives our evaluation of the status of each, both overall and channel by channel. Only the "established" resonances (overall status 3 or 4 stars) appear in the Baryon Summary Table. We generally consider a resonance to be established only if it has been seen in at least two independent analyses of elastic scattering and if the relevant partial-wave amplitudes do not behave erratically or have large errors.

Amplitudes
Ambiguities
Simple Methods

## $\Delta(1232) P_{33}$

$$
I\left(J^{P}\right)=\frac{3}{2}\left(\frac{3}{2}+\right) \text { Status: } * * * *
$$

Most of the results published before 1975 were last included in our 1982 edition, Physics Letters 111B 1 (1982). Some further obsolete results published before 1984 were last included in our 2006 edition, Journal of Physics, G 331 (2006).

## $\Delta(1232)$ BREIT-WIGNER MASSES

| MIXED CHARGES <br> VALUE (MeV) | DOCUMENT ID |  | TECN | COMMENT |
| :---: | :---: | :---: | :---: | :---: |
| 1231 to 1233 ( $\approx$ 1232) OUR ESTIMATE |  |  |  |  |
| $1230 \pm 2$ | ANISOVICH | 10 | DPWA | Multichannel |
| $1233.4 \pm 0.4$ | ARNDT | 06 | DPWA | $\pi N \rightarrow \pi N, \eta N$ |
| $1231 \pm 1$ | MANLEY | 92 | IPWA | $\pi N \rightarrow \pi N \& N \pi \pi$ |
| $1232 \pm 3$ | CUTKOSKY | 80 | IPWA | $\pi N \rightarrow \pi N$ |
| $1233 \pm 2$ | HOEHLER | 79 | IPWA | $\pi N \rightarrow \pi N$ |

-     - We do not use the following data for averages, fits, limits, etc.

| $1232.9 \pm 1.2$ | ARNDT | 04 | DPWA $\pi N \rightarrow \pi N, \eta N$ |
| :--- | :--- | :--- | :--- |
| 1228 | $\pm 1$ | PENNER | $02 C$ DPWA Multichannel |
| $1234 \pm 5$ | VRANA | 00 | DPWA Multichannel |
| 1233 | ARNDT | 95 | DPWA $\pi N \rightarrow N \pi$ |

Amplitudes
Ambiguities
Simple Methods

Mass shift
given only for
the $\Delta(1232)$
VALUE (MeV) DOCUMENT ID TECN COMMENT

-     - We do not use the following data for averages, fits, limits, etc. - - -

| $2.86 \pm 0.30$ | GRIDNEV | 06 | DPWA $\pi N \rightarrow \pi N$ |
| :---: | :---: | :---: | :---: |
| $2.25 \pm 0.68$ | BERNICHA | 96 | Fit to PEDRONI 78 |
| $2.6 \pm 0.4$ | ABAEV | 95 | IPWA $\pi N \rightarrow \pi N$ |
| $2.7 \pm 0.3$ | 1 PEDRONI | 78 | See the masses |
| 1 Using $\pi^{ \pm} d$ as well, PEDRONI 78 determine $\left(\mathrm{M}^{-}\right.$ | $\left.-\mathrm{M}^{++}\right)+\left(\mathrm{M}^{0}-\mathrm{M}^{+}\right) / 3=$ |  |  |
| $4.6 \pm 0.2 \mathrm{MeV}$. |  |  |  |

## $\Delta(1232)$ BREIT-WIGNER WIDTHS

## MIXED CHARGES



-     - We do not use the following data for averages, fits, limits, etc.

| $118.0 \pm 2.2$ | ARNDT | 04 | DPWA $\pi N \rightarrow \pi N, \eta N$ |
| :--- | :--- | :--- | :--- |
| $106 \pm 1$ | PENNER | $02 C$ | DPWA Multichannel |
| $112 \pm 18$ | VRANA | 00 | DPWA Multichannel |
| 114 | ARNDT | 95 | DPWA $\pi N \rightarrow N \pi$ |

Amplitudes
Ambiguities
Simple Methods

Pole parameters given in addition to BW mass/width (less model-dependence)

## $\Delta(1232)$ POLE POSITIONS

## REAL PART, MIXED CHARGES

| VALUE (MeV) | DOCUMENT ID |  | TECN | COMMENT |
| :---: | :---: | :---: | :---: | :---: |
| 1209 to 1211 ( $\approx$ 1210) OUR ESTIMATE |  |  |  |  |
| $1211 \pm 1$ | ANISOVICH | 10 | DPWA | Multichannel |
| 1211 | ARNDT | 06 | DPWA | $\pi N \rightarrow \pi N, \eta N$ |
| 1209 | 2 HOEHLER | 93 | ARGD | $\pi N \rightarrow \pi N$ |
| $1210 \pm 1$ | CUTKOSKY | 80 | IPWA | $\pi N \rightarrow \pi N$ |

-     - We do not use the following data for averages, fits, limits, etc.

| 1210 | ARNDT | 04 | DPWA $\pi N \rightarrow \pi N, \eta N$ |
| :--- | :--- | :--- | :--- |
| 1217 | VRANA | 00 | DPWA Multichannel |
| 1211 | ARNDT | 95 | DPWA $\pi N \rightarrow N \pi$ |
| 1210 | ARNDT | 91 | DPWA $\pi N \rightarrow \pi N$ Soln SM90 |

- $2 \times$ IMAGINARY PART, MIXED CHARGES

| VALUE ( MeV ) | DOCUMENT ID |  | TECN | COMMENT |
| :---: | :---: | :---: | :---: | :---: |
| 98 to 102 ( $\approx 100$ ) OUR ESTIMATE |  |  |  |  |
| $100 \pm 2$ | ANISOVICH | 10 | DPWA | Multichannel |
| 99 | ARNDT | 06 | DPWA | $\pi N \rightarrow \pi N, \eta N$ |
| 100 | 2 HOEHLER | 93 | ARGD | $\pi N \rightarrow \pi N$ |
| $100 \pm 2$ | CUTKOSKY | 80 | IPWA | $\pi N \rightarrow \pi N$ |

-     - We do not use the following data for averages, fits, limits, etc.

| 100 | ARNDT | 04 | DPWA $\pi N \rightarrow \pi N, \eta N$ |
| ---: | :--- | :--- | :--- |
| 96 | VRANA | 00 | DPWA Multichannel |
| 100 | ARNDT | 95 | DPWA $\pi N \rightarrow N \pi$ |
| 100 | ARNDT | 91 | DPWA $\pi N \rightarrow \pi N$ Soln SM90 |

Amplitudes
Ambiguities
Simple Methods
$\mathrm{A}_{3 / 2}$ also given.
Values for $p$ p
and $n \gamma$ given for
isospin $1 / 2$ states

Values at the
pole for some
states

## $\boldsymbol{\Delta}$ (1232) PHOTON DECAY AMPLITUDES

Papers on $\gamma N$ amplitudes predating 1981 may be found in our 2006 edition, Journal of Physics, G 331 (2006).
$\Delta(\mathbf{1 2 3 2}) \rightarrow \boldsymbol{N} \boldsymbol{\gamma}$, helicity-1/2 amplitude $\mathrm{A}_{1 / 2}$

| $\operatorname{VALUE}\left(\mathrm{GeV}^{-1 / 2}\right)$ | DOCUMENT ID |  | TECN | COMMENT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{- 0 . 1 3 5} \pm 0.006$ OUR ESTIMATE |  |  |  |  |
| $-0.136 \pm 0.005$ | ANISOVICH | 10 | DPWA | Multichannel |
| $-0.139 \pm 0.004$ | DUGGER | 07 | DPWA | $\gamma N \rightarrow \pi N$ |
| $-0.137 \pm 0.005$ | AHRENS | 04A | DPWA | $\vec{\gamma} \vec{p} \rightarrow N \pi$ |
| $-0.129 \pm 0.001$ | ARNDT | 02 | DPWA | $\gamma p \rightarrow N \pi$ |
| $-0.1357 \pm 0.0013 \pm 0.0037$ | BLANPIED | 01 | LEGS | $\gamma p \rightarrow p \gamma, p \pi^{0}, n \pi^{+}$ |
| $-0.131 \pm 0.001$ | BECK | 00 | IPWA | $\vec{\gamma} p \rightarrow p \pi^{0}, n \pi^{+}$ |
| $-0.140 \pm 0.005$ | KAMALOV | 99 | DPWA | $\gamma N \rightarrow \pi N$ |
| $-0.1294 \pm 0.0013$ | HANSTEIN | 98 | IPWA | $\gamma N \rightarrow \pi N$ |
| $-0.135 \pm 0.005$ | ARNDT | 97 | IPWA | $\gamma N \rightarrow \pi N$ |
| $-0.1278 \pm 0.0012$ | DAVIDSON | 97 | DPWA | $\gamma N \rightarrow \pi N$ |
| $-0.141 \pm 0.005$ | ARNDT | 96 | IPWA | $\gamma N \rightarrow \pi N$ |
| $-0.135 \pm 0.016$ | DAVIDSON | 91B | FIT | $\gamma N \rightarrow \pi N$ |
| $-0.145 \pm 0.015$ | CRAWFORD | 83 | IPWA | $\gamma N \rightarrow \pi N$ |
| $-0.138 \pm 0.004$ | AWAJI | 81 | DPWA | $\gamma N \rightarrow \pi N$ |

Amplitudes
Ambiguities
Simple Methods

E2/M1 ratio
given at
resonance
'mass' and pole

$$
\begin{aligned}
& \Delta(1232) \rightarrow N \gamma, E_{2} / M_{1} \text { ratio } \\
& -0.0307 \pm 0.0026 \pm 0.0024 \quad \text { BLANPIED } 01 \text { LEGS } \gamma p \rightarrow p \gamma, p \pi^{0}, n \pi^{+} \\
& -0.016 \pm 0.004 \pm 0.002 \quad \text { GALLER } 01 \text { DPWA } \gamma p \rightarrow \gamma p \\
& -0.025 \pm 0.001 \pm 0.002 \quad \text { BECK } 00 \text { IPWA } \vec{\gamma} p \rightarrow p \pi^{0}, n \pi^{+} \\
& -0.0233 \pm 0.0017 \\
& \text { HANSTEIN } 98 \text { IPWA } \gamma N \rightarrow \pi N \\
& { }^{5} \text { ARNDT } 97 \text { IPWA } \gamma N \rightarrow \pi N \\
& \text { DAVIDSON } 97 \text { DPWA } \gamma N \rightarrow \pi N
\end{aligned}
$$

## $\Delta(1232) \rightarrow N \gamma$, absolute value of $E_{2} / M_{1}$ ratio at pole

-     - We do not use the following data for averages, fits, limits, etc. - - -

| $0.065 \pm 0.007$ | ARNDT | 97 | DPWA $\gamma N \rightarrow \pi N$ |
| :--- | :--- | :--- | :--- |
| 0.058 | HANSTEIN | 96 | DPWA $\gamma N \rightarrow \pi N$ |

$\Delta(1232) \rightarrow N \gamma$, phase of $E_{2} / M_{1}$ ratio at pole
VALUE DOCUMENT ID TECN COMMENT

-     - We do not use the following data for averages, fits, limits, etc. - - -

| $-122 \pm 5$ | ARNDT | 97 | DPWA $\gamma N \rightarrow \pi N$ |
| :--- | :--- | :--- | :--- |
| -127.2 | HANSTEIN | 96 | DPWA $\gamma N \rightarrow \pi N$ |

## Ambiguities

Simple Methods

Changes of format and some new states in 2012 edition

Table 1. The status of the $N$ resonances. Only those with an overall status of *** or **** are included in the main Baryon Summary Table.

Status as seen in -

| Particle $J^{P}$ |  |  |  | Status as seen in - |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | overa | $\begin{aligned} & \text { Statu } \\ & 11 \pi N \end{aligned}$ | $\gamma N$ | $N \eta$ | $N \sigma$ | $N \omega$ | $\Lambda K$ | $\Sigma K$ | $N \rho$ | $\Delta \pi$ |
| N $1 / 2^{+}$ | **** |  |  |  |  |  |  |  |  |  |
| $N(1440) 1 / 2^{+}$ | **** | **** | **** |  | *** |  |  |  | * | *** |
| $N(1520) 3 / 2^{-}$ | **** | **** | **** | *** |  |  |  |  | *** | *** |
| $N(1535) 1 / 2^{-}$ | **** | **** | **** | **** |  |  |  |  | ** | * |
| $N(1650) 1 / 2^{-}$ | **** | **** | *** | *** |  |  | *** | ** | ** | *** |
| $N(1675) 5 / 2^{-}$ | **** | **** | *** | * |  |  | * |  | * | *** |
| $N(1680) 5 / 2^{+}$ | **** | **** | **** | * | ** |  |  |  | *** | *** |
| $N(1685) \quad ?$ | * |  |  |  |  |  |  |  |  |  |
| $N(1700) 3 / 2^{-}$ | *** | *** | ** | * |  |  | * | * | * | *** |
| $N(1710) 1 / 2^{+}$ | *** | *** | ** | *** |  | ** | *** | ** | * | ** |
| $N(1720) 3 / 2^{+}$ | **** | **** | *** | *** |  |  | ** | ** | ** | * |
| $N(1860) 5 / 2^{+}$ | ** | ** |  |  |  |  |  |  | * | * |
| $N(1875) 3 / 2^{-}$ | *** | * | *** |  |  | ** | *** | ** |  | *** |
| $N(1880) 1 / 2^{+}$ | ** | * | * |  | ** |  | * |  |  |  |
| $N(1895) 1 / 2^{-}$ | ** | * | ** | ** |  |  | ** | * |  |  |
| $N(1900) 3 / 2^{+}$ | *** | ** | *** | ** |  | ** | *** | ** | * | ** |
| $N(1990) 7 / 2^{+}$ | ** | ** | ** |  |  |  |  | * |  |  |
| $N(2000) 5 / 2^{+}$ | ** | * | ** | ** |  |  | ** | * | ** |  |
| $N(2040) 3 / 2^{+}$ | * |  |  |  |  |  |  |  |  |  |
| $N(2060) 5 / 2^{-}$ | ** | ** | ** | * |  |  |  | ** |  |  |
| $N(2100) 1 / 2^{+}$ | * |  |  |  |  |  |  |  |  |  |
| $N(2150) 3 / 2^{-}$ | ** | ** | ** |  |  |  | ** |  |  | ** |
| $N(2190) 7 / 2^{-}$ | **** | **** | *** |  |  | * | ** |  | * |  |
| $N(2220) 9 / 2^{+}$ | **** | **** |  |  |  |  |  |  |  |  |
| $N(2250) 9 / 2^{-}$ | **** | **** |  |  |  |  |  |  |  |  |
| $N(2600) 11 / 2^{-}$ | *** | *** |  |  |  |  |  |  |  |  |
| $N(2700) 13 / 2^{+}$ | ** | ** |  |  |  |  |  |  |  |  |

**** Existence is certain, and properties are at least fairly well explored.
*** Existence is very likely but further confirmation of quantum numbers and branching fractions is required.
** Evidence of existence is only fair.

- Evidence of existence is poor.


## Data

Amplitudes
Ambiguities
Simple Methods

## Plan of the talks:

- Explain what data are measured
- `Look' at them
- Outline the amplitude structure
- Show some tools to explore data
- Try some simple amplitude reconstructions (ambiguities)
- Do a simple fit
- Consider a few simple methods applied to the Delta
- Do pion photoproduction overview
- Do pion-nucleon scattering overview

Data
Amplitudes
Ambiguities
Simple Methods

$$
\pi \mathrm{N} \text { scattering data: }
$$

| $\mathrm{d} \sigma / \mathrm{d} \Omega$ | (unpolarized) |
| :--- | :--- |
| P | (polarized target or recoil nucleon) |
| R and A | (polarized target and recoil measured) |

Not Independent: $\mathrm{P}^{2}+\mathrm{R}^{2}+\mathrm{A}^{2}=1$

Abundant $\mathrm{d} \sigma / \mathrm{d} \Omega$ and P data Very limited $R$ and $A$ data

$$
\begin{aligned}
& \text { Alekseev et al., } \\
& \text { EPJ C45,383(2006) } \\
& \mathrm{P}_{\text {beam }}=1.43 \mathrm{GeV} / \mathrm{c} \\
& \mathrm{~W}_{\mathrm{cm}} \sim 1.9 \mathrm{GeV} / \mathrm{c}^{2}
\end{aligned}
$$

(A)


| $U=A\left\|P_{i}\right\|$ |
| :--- |
| $V=-R\left\|P_{1}\right\|$ |

( $\left.{ }^{( }\right)$


Amplitudes
Ambiguities
Simple Methods

$\pi^{+} p$ scattering at $\mathrm{T}_{\text {Lab }}=500 \mathrm{MeV}$


Amplitudes
Ambiguities
Simple Methods
Plotted data is for TLAB=495.00 to $\operatorname{TLAB}=505.00$

Different fits agree even where rapid variation is
unconstrained by data


Data
Amplitudes
Ambiguities
Simple Methods

## mN photo-production data:

Barker,
Donnachie, and Storrow coord. system


Fig. 1. Definition of axes. If $\boldsymbol{k}$ is the incoming photon momentum and $\boldsymbol{q}$ the outgoing meson momentum (both in the c.m. system) then the axes are defined by

$$
\begin{array}{rlrl}
z=k /|k|, & y & =k \times a /|k \times q|, & \\
z^{\prime}=q /|q|, & y^{\prime}=y, & x^{\prime}=y \times z^{\prime}
\end{array}
$$

## Ambiguities

Simple Methods

Un-polarized, single-, and double-polarization measurements

## Not universally adopted

| Usual symbol | Helicity representation | Transversity representation | Experiment required ${ }^{\text {a) }}$ | Type |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{d} \sigma / \mathrm{d} t$ | $\|N\|^{2}+\left\|S_{1}\right\|^{2}+\left\|S_{2}\right\|^{2}+\|D\|^{2}$ | $\left\|b_{1}\right\|^{2}+\left\|b_{2}\right\|^{2}+\left\|b_{3}\right\|^{2}+\left\|b_{4}\right\|^{2}$ | $\{-;-;-\}$ |  |
| $\Sigma \mathrm{d} a / \mathrm{d} t$ | $2 \operatorname{Re}\left(S_{1}^{*} S_{2}-N D^{*}\right)$ | $\left\|b_{1}\right\|^{2}+\left\|b_{2}\right\|^{2}-\left\|b_{3}\right\|^{2}-\left\|b_{4}\right\|^{2}$ | $\begin{aligned} & \left\{L\left(\frac{1}{2} \pi, 0\right) ;\right. \\ & \{-; y ; y\} \end{aligned}$ |  |
| $\mathrm{T} \mathrm{d} \sigma / \mathrm{d} t$ | $2 \operatorname{Im}\left(S_{1} N^{*}-S_{2} D^{*}\right)$ | $\left\|b_{1}\right\|^{2}-\left\|b_{2}\right\|^{2}-\left\|b_{3}\right\|^{2}+\left\|b_{4}\right\|^{2}$ | $\left\{\begin{array}{l} \{-y ;-\} \\ L\left(\frac{1}{2} \pi, 0\right) \end{array}\right.$ | S |
| $\mathrm{Pd} \sigma / \mathrm{d} t$ | $2 \operatorname{Im}\left(S_{2} N^{*}-S_{1} D^{*}\right)$ | $\left\|b_{1}\right\|^{2}-\left\|b_{2}\right\|^{2}+\left\|b_{3}\right\|^{2}-\left\|b_{4}\right\|^{2}$ | $\left\{\begin{array}{l} \{-;-y\} \\ L\left(\frac{1}{2} \pi, 0\right) ; \end{array}\right.$ |  |
| Gdo/d | $-2 \operatorname{Im}\left(S_{1} S_{2}{ }^{*}+N D^{*}\right)$ | $2 \operatorname{Im}\left(b_{1} b_{3}^{*}+b_{2} b_{4}{ }^{*}\right)$ |  |  |
| $\mathrm{Hd} \sigma / \mathrm{d} t$ | $-2 \operatorname{Im}\left(S_{1} D^{*}+S_{2} N^{*}\right)$ | $-2 \operatorname{Re}\left(b_{1} b_{3}{ }^{*}-b_{2} b_{4}{ }^{*}\right) \leftarrow$ | $\left\{L\left( \pm \frac{1}{4} \pi\right) ; x ;\right.$ | BT |
| Eda/d $t$ | $\left\|S_{2}\right\|^{2}-\left\|S_{1}\right\|^{2}-\|D\|^{2}+\|N\|^{2}$ | $-2 \operatorname{Re}\left(b_{1} b_{3}{ }^{*}+b_{2} b_{4}{ }^{*}\right)$ | $\{c ; z ;-\}$ | BT |
| $\mathrm{Fd} \sigma / \mathrm{d} t$ | $2 \mathrm{Re}\left(S_{2} D^{*}+S_{1} N^{*}\right)$ | $2 \operatorname{lm}\left(b_{1} b_{3}{ }^{*}-b_{2} b_{4}{ }^{*}\right)$ | $\{c ; x ;-\}$ |  |
| $\mathrm{O}_{x} \mathrm{~d} \sigma / \mathrm{d} t$ | $-2 \operatorname{lm}\left(S_{2} D^{*}+S_{1} N^{*}\right)$ | $-2 \operatorname{Re}\left(b_{1} b_{4}{ }^{*}-b_{2} b_{3}{ }^{*}\right)$ | $\left\{L\left( \pm \frac{1}{4} \pi\right)\right.$; |  |
| $\mathrm{O}_{z} \mathrm{~d} a / \mathrm{d} t$ | $-2 \operatorname{Im}\left(S_{2} S_{1}{ }^{*}+N D^{*}\right)$ | $-2 \operatorname{Im}\left(b_{1} b_{4}{ }^{*}+b_{2} b_{3}{ }^{*}\right)$ | $\left\{L\left( \pm \frac{1}{4} \pi\right)\right.$; - | BR |
| $\mathrm{C}_{x} \mathrm{~d} \sigma / \mathrm{d} t$ | $-2 \operatorname{Re}\left(S_{2} N^{*}+S_{1} D^{*}\right)$ | $2 \operatorname{Im}\left(b_{1} b_{4}{ }^{*}-b_{2} b_{3}{ }^{*}\right)$ | $\left\{c ;-; x^{\prime}\right\}$ | BR |
| $\mathrm{C}_{z} \mathrm{~d} \sigma / \mathrm{d} t$ | $\left\|S_{2}\right\|^{2}-\left\|S_{1}\right\|^{2}-\|N\|^{2}+\|D\|^{2}$ | $-2 \operatorname{Re}\left(b_{1} b_{4}{ }^{*}+b_{2} b_{3}{ }^{*}\right)$ | $\left\{c ;-; z^{\prime}\right\}$ |  |
| $\mathrm{T}_{x} \mathrm{~d} \sigma / \mathrm{d} t$ | $2 \mathrm{Re}\left(S_{1} S_{2}{ }^{*}+N D^{*}\right)$ | $2 \mathrm{Re}\left(b_{1} b_{2}{ }^{*}-b_{3} b_{4}{ }^{*}\right)$ | $\left\{-; x ; x^{\prime}\right\}$ |  |
| $\mathrm{T}_{z} \mathrm{~d} \sigma / \mathrm{d} t$ | $2 \operatorname{Re}\left(S_{1} N^{*}-S_{2} D^{*}\right)$ | $2 \operatorname{Im}\left(b_{1} b_{2}{ }^{*}-b_{3} b_{4}^{* *}\right)$ | $\left\{-; x ; z^{\prime}\right\}$ | TR |
| $\mathrm{L}_{x} \mathrm{~d} \sigma / \mathrm{d} t$ | $2 \operatorname{Re}\left(S_{2} N^{*}-S_{1} D^{*}\right)$ | $2 \operatorname{Im}\left(b_{1} b_{2}{ }^{*}+b_{3} b_{4}{ }^{*}\right)$ | $\left\{-; z ; x^{\prime}\right\}$ | TR |
| $\mathrm{L}_{z} \mathrm{~d} \sigma / \mathrm{d} t$ | $\left\|S_{1}\right\|^{2}+\left\|\left\|S_{2}\right\|^{2}-\|N\|^{2}-\|D\|^{2}\right.$ | $2 \operatorname{Re}\left(b_{1} b_{2} *+b_{3} b_{4}^{*}\right)$ | $\left\{-; z ; z^{\prime}\right\}$ |  |
| ${ }^{\text {a) }}$ Notation is $\left\{P_{\gamma} ; P_{\mathrm{T}} ; P_{\mathrm{R}}\right\}$ where: |  |  |  |  |
| $P_{\gamma}=$ polarisation of beam, $L(\theta)=$ beam linearly polarised at angle $\theta$ to scattering plane, |  |  |  |  |
| $P_{\mathrm{T}}=$ direction of target polarisation; |  |  |  |  |
| $P_{\mathrm{R}}=$ component of recoil polarisation measured. |  |  |  |  |
| In the case of the single polarisation measurements we also give the equivalent double |  |  |  |  |

Amplitudes
Ambiguities
Simple Methods


Amplitudes
Ambiguities
Simple Methods


- Ratios defined with $d \sigma^{\mathrm{BITR}}\left(\overrightarrow{\boldsymbol{P}}^{\gamma}, \overrightarrow{\boldsymbol{P}}^{T}, \overrightarrow{\boldsymbol{P}}^{R}\right)$ specified by $\overrightarrow{\boldsymbol{p}}_{\gamma}$ (photon) \& $\vec{p}_{m}$ (meson)
- construct $\hat{p}_{1}=\frac{\left(\vec{p}_{\gamma} \times \vec{p}_{m}\right) \times \vec{p}_{\gamma}}{\left|\left(\vec{p}_{\gamma} \times \vec{p}_{m}\right) \times \vec{p}_{\gamma}\right|}, \vec{p}_{2}=\frac{\left(\vec{p}_{\gamma} \times \vec{p}_{m}\right)}{\left|\vec{p}_{\gamma} \times \vec{p}_{m}\right|}$ and $\vec{p}_{3}=\frac{\left(\vec{p}_{\gamma} \times \vec{p}_{m}\right) \times \vec{p}_{m}}{\left|\left(\vec{p}_{\gamma} \times \vec{p}_{m}\right) \times \vec{p}_{m}\right|}$


## single-pol ratios:

$$
\begin{aligned}
& \boldsymbol{R}_{S}=\frac{\left[d \sigma_{1}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\left(\phi_{\gamma}^{L}=+\pi / 2, \text { ave init, sum final }\right)-d \sigma_{2}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\left(\phi_{\gamma}^{L}=0, \text { ave init, sum final }\right)\right]}{\left[d \sigma_{1}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}+d \sigma_{2}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\right]} \\
& \boldsymbol{R}_{\boldsymbol{T}}=\frac{\left[d \sigma_{1}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\left(\text { ave init, } \vec{P}^{T}=+\hat{p}_{2}, \text { sum final }\right)-d \sigma_{2}^{\mathrm{B}, \mathrm{~T}, \mathbb{R}}\left(\text { ave init, } \vec{P}^{T}=-\hat{p}_{2}, \text { sum final }\right)\right]}{\left[d \sigma_{1}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}+d \sigma_{2}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\right]}
\end{aligned}
$$

$$
\boldsymbol{R}_{P}=\frac{\left[d \sigma_{1}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\left(\text { ave init, ave init, } \vec{P}^{R}=+\hat{p}_{2}\right)-d \sigma_{2}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\left(\text { ave init, ave init, } \vec{P}^{R}=-\hat{p}_{2}\right)\right]}{\left[d \sigma_{1}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}+d \sigma_{2}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\right]}
$$

## B-T ratios:

$$
\begin{aligned}
& \boldsymbol{R}_{E}=\frac{\left[d \sigma_{1}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\left(P_{h}^{\gamma}=+1, \vec{P}^{T}=-\hat{p}_{\gamma}, \text { sum final }\right)-d \sigma_{2}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\left(P_{h}^{\gamma}=+1, \vec{P}^{T}=+\hat{p}_{\gamma}, \text { sum final }\right)\right]}{\left[d \sigma_{1}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}+d \sigma_{2}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\right]} \\
& \boldsymbol{R}_{F}=\frac{\left[d \sigma_{1}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\left(P_{h}^{\gamma}=+1, \vec{P}^{T}=+\hat{p}_{1}, \text { sum final }\right)-d \sigma_{2}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\left(P_{h}^{\gamma}=-1, \vec{P}^{T}=+\hat{p}_{1}, \text { sum final }\right)\right]}{\left[d \sigma_{1}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}+d \sigma_{2}^{\mathrm{B}, \mathrm{~T}, \mathrm{R}}\right]}
\end{aligned}
$$

# Data 

Amplitudes

Evolution of $\pi \mathrm{N}$ photoproduction observables:

- Low-energy region ( low partial waves dominate)
- $\Delta(1232)$ resonance region ( a single partial wave dominates)
- Upper resonance region ( many partial waves interfere)

Amplitudes
Ambiguities
Simple Methods


Amplitudes
Ambiguities
Simple Methods


## Data

Amplitudes
Ambiguities
Simple Methods
$\mu \mathrm{L} / \mathrm{sr}$
Compare
$\gamma p \rightarrow p \pi^{0}$
to
$\pi^{-} p \rightarrow n \pi^{0}$



Simple Methods


## Data

# Amplitudes 

## Ambiguities <br> Simple Methods

$\pi \mathrm{N}$ elastic scattering amplitudes
Some references:
B.H. Bransden and R.G. Moorhouse, The Pion-Nucleon System
T. Ericson and W. Weise, Pions and Nuclei
G. Höhler, Pion Nucleon Scattering Landolt-Börnstein Vol. I/9b2

Amplitudes
Ambiguities
Simple Methods
Pick 3 independent 4 -vectors and combine with Dirac matrices

$$
1, \gamma_{\mu}, \gamma_{5}, \gamma_{5} \gamma_{\mu}, \quad \sigma_{\mu \nu}
$$

then reduce to the simplest form


$$
\bar{U}\left[A+B Q_{\mu} \gamma^{\mu}\right] U
$$

with $Q=\left(q_{i}+q_{f}\right) / 2$. In terms of Pauli spinors, this can be written as

$$
\chi^{\dagger}\left[f_{1}+f_{2} \vec{\sigma} \cdot \overrightarrow{q_{i}} \vec{\sigma} \cdot \overrightarrow{q_{f}}\right] \chi
$$

Notice that $\overrightarrow{q_{i}} \times \overrightarrow{q_{f}}$ is normal to the scattering plane to re-write this as

$$
\chi^{\dagger}[g+i h \vec{\sigma} \cdot \hat{n}] \chi
$$

Pick $\hat{n}$ along $\hat{y}$,

$$
(g+i h \vec{\sigma} \cdot \hat{n}) \chi \Rightarrow\left(\begin{array}{cc}
g & h \\
-h & g
\end{array}\right)\binom{0}{1}=g\binom{0}{1}+h\binom{1}{0}
$$

Hence, $h$ is a 'spin flip' amplitude.

## Data

Amplitudes
Ambiguities
Simple Methods
In terms of these amplitudes, the cross section is:

$$
\begin{aligned}
d \sigma / d \Omega & =|g|^{2}+|h|^{2} \\
\mathrm{~d} \sigma / \mathrm{d} \Omega & =-2 \operatorname{lm} \mathrm{~g}^{*} \mathrm{~h}
\end{aligned}
$$

In terms of transversity amplitudes

$$
\mathrm{F}^{+}=\mathrm{g}+\mathrm{ih}, \mathrm{~F}^{-}=\mathrm{g}-\mathrm{ih}
$$

there is a more compact relation:
$\left|F^{+}\right|^{2}=d \sigma / d \Omega(1+P), \quad\left|F^{-}\right|^{2}=d \sigma / d \Omega(1-P)$

Amplitudes
Ambiguities
Simple Methods
(One way) to get the partial-wave decomposition:
Since the pion is spin 0 and the nucleon spin $1 / 2$,
$J=\ell \pm 1 / 2$ (notation is $\ell_{ \pm}$for amplitudes).
Write down projection operators for $\ell_{ \pm}$and replace

$$
\sum_{\ell}(2 \ell+1) f_{\ell} P_{\ell}(\cos \theta)
$$

with

$$
\sum_{\ell}(2 \ell+1)\left[f_{\ell+} P_{+}+f_{\ell-} P_{\ell-}\right] P_{\ell}(\cos \theta)
$$

The projection operators will generate $P_{\ell}^{\prime}$ terms. Compare with

$$
g+i h \vec{\sigma} \cdot \hat{n}
$$

to find:

$$
g=\sum_{\ell}\left[(\ell+1) f_{\ell+}+\ell f_{\ell-}\right] P_{\ell}(\cos \theta)
$$

and

$$
h=\sum_{\ell}\left[f_{\ell+}-f_{\ell-}\right] P_{\ell}^{\prime}(\cos \theta) \sin \theta
$$

Helicity formalism: Ch. 5 of
Martin/Spearman

See, for example, Levi Setti and Lasinski, Strongly Interacting Particles

Since one goal of this analysis is the extraction of $N$ and $\Delta$ resonances - we really want isospin amplitudes.

Must first account for electromagnetic corrections which add Coulomb scattering and Coulomb-nuclear interference terms (also mass-splitting).

$$
\begin{gathered}
f_{\ell \pm}=f_{\ell \pm}^{3 / 2} \quad\left(\pi^{+} p \rightarrow \pi^{+} p\right) \\
f_{\ell \pm}=\frac{1}{3}\left(f_{\ell \pm}^{3 / 2}+2 f_{\ell \pm}^{1 / 2}\right) \quad\left(\pi^{-} p \rightarrow \pi^{-} p\right)
\end{gathered}
$$



Isospin triangle

$$
f_{\ell \pm}=\frac{\sqrt{2}}{3}\left(f_{\ell \pm}^{3 / 2}-f_{\ell \pm}^{1 / 2}\right) \quad\left(\pi^{-} p \rightarrow \pi^{0} n\right)
$$

## Data

Amplitudes
Ambiguities
Simple Methods

# TN photoproduction amplitudes 

Some references:

CGLN, Phys Rev 106, 1345 (1957).
F.A. Berends, A. Donnachie, and D.L. Weaver, Nucl Phys B4, 1 (1967).
R.L. Walker, Phys Rev 182, 1729 (1969).
B.H. Bransden and R.G. Moorhouse, The Pion-Nucleon System

Amplitudes
Ambiguities
Simple Methods


CGLN choose the 3 independent 4 -vectors, $k, q$, and $\left(p_{1}+p_{2}\right) / 2$.

With a spin 1 photon replacing the spin 0 pion, we have to construct invariants using both $\gamma_{\mu}$ and $\epsilon_{\mu}$. The result must be linear in $\epsilon_{\mu}$, contain a $\gamma_{5}$ factor (for the single pion), and go to zero with $\epsilon_{\mu} \rightarrow k_{\mu}$.
There are four independent terms:

$$
\begin{gathered}
\gamma_{5} \epsilon \cdot \gamma k \cdot \gamma \\
\gamma_{5}(P \cdot \epsilon \gamma \cdot k-\epsilon \cdot \gamma P \cdot k) \\
\gamma_{5}(q \cdot \epsilon \gamma \cdot k-\epsilon \cdot \gamma q \cdot k) \\
\gamma_{5}(P \cdot \epsilon q \cdot k-q \cdot \epsilon P \cdot k)
\end{gathered}
$$

CGLN choose a linear combination of these.

As with the $\pi \mathrm{N}$ amplitudes, there is a useful conversion from matrix elements involving Dirac to Pauli states, yielding the CGLN $\mathscr{\mathscr { F }}_{1}, \mathscr{V}_{2}, \mathscr{F}_{3}, \mathscr{F}_{4}$

Expansion in terms of partial-wave amplitudes is given in CGLN and a conversion to helicity amplitudes $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}$ is given by Berends, Donnachie and Weaver.

As in the $\pi N$ case, the transversity amplitudes simplify expressions for some of the observables.

Data
Amplitudes
Ambiguities
Simple Methods

## Helicity Amplitudes (Walker)

Norm issues:
BDS,
NPB79,431(1974)

$$
\begin{array}{ll}
H_{1}=A_{1 / 2}, 3 / 2 & H_{2}=A_{1 / 2,1 / 2} \\
H_{3}=A_{-1 / 2,3 / 2} & H_{4}=A_{-1 / 2,1 / 2} \\
H_{1}=S_{1}, & H_{2}=N, \quad H_{3}=D, \quad H_{4}=S_{2}(\text { BDS notation })
\end{array}
$$

$$
\begin{aligned}
& H_{1}=\frac{1}{\sqrt{2}} \cos \frac{\theta}{2} \sin \theta \sum_{\ell=1}^{\infty}\left[E_{\ell+}-M_{\ell+}-E_{(\ell+1)-}-M_{(\ell+1)-}\right]\left(P_{\ell}^{\prime \prime}-P_{\ell+1}^{\prime \prime}\right), \\
& H_{2}=\frac{1}{\sqrt{2}} \cos \frac{\theta}{2} \sum_{\ell=0}^{\infty}\left[(\ell+2) E_{\ell+}+\ell M_{\ell+}+\ell E_{(\ell+1)-}-(\ell+2) M_{(\ell+1)-}\right]\left(P_{\ell}^{\prime}-P_{\ell+1}^{\prime}\right) \\
& H_{3}=\frac{1}{\sqrt{2}} \sin \frac{\theta}{2} \sin \theta \sum_{\ell=1}^{\infty}\left[\left(E_{\ell+}-M_{\ell+}+E_{(\ell+1)-}+M_{(\ell+1)-}\right]\left(P_{\ell}^{\prime \prime}+P_{\ell+1}^{\prime \prime}\right),\right. \\
& H_{4}=\frac{1}{\sqrt{2}} \sin \frac{\theta}{2} \sum_{\ell=0}^{\infty}\left[(\ell+2) E_{\ell+}+\ell M_{\ell+}-\ell E_{(\ell+1)-}+(\ell+2) M_{(\ell+1)-}\right]\left(P_{\ell}^{\prime}+P_{\ell+1}^{\prime}\right)
\end{aligned}
$$

Amplitudes
Ambiguities
Simple Methods
Transversity amplitudes

$$
\begin{aligned}
& b_{1}= \frac{1}{2}\left[\left(H_{1}+H_{4}\right)+i\left(H_{2}-H_{3}\right)\right], \\
& b_{2}= \frac{1}{2}\left[\left(H_{1}+H_{4}\right)-i\left(H_{2}-H_{3}\right)\right], \\
& b_{3}= \frac{1}{2}\left[\left(H_{1}-H_{4}\right)-i\left(H_{2}+H_{3}\right)\right], \\
& b_{4}= \frac{1}{2}\left[\left(H_{1}-H_{4}\right)+i\left(H_{2}+H_{3}\right)\right], \\
& \frac{d \sigma}{d t}=\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}+\left|b_{3}\right|^{2}+\left|b_{4}\right|^{2}, \\
& P \frac{d \sigma}{d t}=\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}+\left|b_{3}\right|^{2}-\left|b_{4}\right|^{2}, \\
& \Sigma \frac{d \sigma}{d t}=\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}-\left|b_{3}\right|^{2}-\left|b_{4}\right|^{2}, \\
& T \frac{d \sigma}{d t}=\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}-\left|b_{3}\right|^{2}+\left|b_{4}\right|^{2} .
\end{aligned}
$$

For $\pi \mathrm{N}$ scattering, moduli of transversity amplitudes from: $d \sigma / d \Omega, P$

For $\pi N$ photoproduction moduli of transversity amplitudes from: $\mathrm{d} \sigma / \mathrm{d} \Omega, \mathrm{P}, \Sigma, \mathrm{T}$

Isospin Decomposition of Multipoles and Amplitudes

$$
4 \text { different sets can be selected: }
$$

$$
\left(A_{p}^{1 / 2}, A_{n}^{1 / 2}, A^{3 / 2}\right),\left(A^{1 / 2}, A^{0}, A^{3 / 2}\right),\left(A^{0}, A^{+}, A^{-}\right),\left(A_{\pi^{+} n}, A_{\pi^{-} p}, A_{\pi^{0} p}, A_{\pi_{n}^{0} n}\right)
$$

relations among the different sets:

$$
\begin{aligned}
A_{\pi^{+} n} & =\sqrt{2}\left(A_{p}^{1 / 2}-\frac{1}{3} A^{3 / 2}\right)=\sqrt{2}\left(A^{0}+\frac{1}{3} A^{1 / 2}-\frac{1}{3} A^{3 / 2}\right) \\
A_{\pi^{-} p} & =\sqrt{2}\left(A_{n}^{1 / 2}+\frac{1}{3} A^{3 / 2}\right)=\sqrt{2}\left(A^{0}-\frac{1}{3} A^{1 / 2}+\frac{1}{3} A^{3 / 2}\right) \\
A_{\pi^{0} p} & =A_{p}^{1 / 2}+\frac{2}{3} A^{3 / 2}=A^{0}+\frac{1}{3} A^{1 / 2}+\frac{2}{3} A^{3 / 2} \\
A_{\pi^{0} n} & =-A_{n}^{1 / 2}+\frac{2}{3} A^{3 / 2}=-A^{0}+\frac{1}{3} A^{1 / 2}+\frac{2}{3} A^{3 / 2}
\end{aligned}
$$

Amplitudes
Ambiguities
Simple Methods
Notation and Conventions

| Photon State | J | Parity | Final $\pi N$ state |
| :---: | :---: | :---: | :---: |
| E1 | $\frac{1}{2}$ | - | $\mathrm{s}_{1 / 2}$ |
|  | $\frac{3}{2}$ | - | $\mathrm{d}_{3 / 2}$ |
| M1 | $\frac{1}{2}$ | + | $\mathrm{p}_{1 / 2}$ |
|  | $\frac{3}{2}$ | + | $\mathrm{p}_{3 / 2}$ |
| E2 | $\frac{3}{2}$ | + | $\mathrm{p}_{3 / 2}$ |
|  | M2 | $\frac{5}{2}$ | + |
| $\mathrm{f}_{5 / 2}$ |  |  |  |
|  | $\frac{3}{2}$ | - | $\mathrm{d}_{3 / 2}$ |
|  | $\frac{5}{2}$ | - | $\mathrm{d}_{5 / 2}$ |

Multipole notation: ${ }_{\mathrm{p}, \mathrm{n}}(\mathrm{E}, \mathrm{M})_{\ell \pm}^{\mathrm{I}}$ or $L_{2 I, 2 J}(\mathrm{p}, \mathrm{n})(\mathrm{E}, \mathrm{M})$
e.g. ${ }_{\mathrm{p}} \mathrm{M}_{2-}^{1 / 2}$ versus $D_{13 \mathrm{P}} \mathrm{M}$

Intermediate particle notation:
Either based on $\pi N$ notation or $(N, \Delta)($ mass $) J^{P}$
e.g. $\mathrm{P}_{33}(1232) \Rightarrow \Delta(1232) 3 / 2^{+}$

## PDG notation 2010

## $\Delta(1232) P_{33}$

$$
I\left(J^{P}\right)=\frac{3}{2}\left(\frac{3}{2}^{+}\right) \text {Status: } \quad * * * *
$$

Most of the results published before 1975 were last included in our 1982 edition, Physics Letters 111B 1 (1982). Some further obsolete results published before 1984 were last included in our 2006 edition, Journal of Physics, G 331 (2006).

## PDG notation 2012

## $\Delta(1232) 3 / 2^{+}$

$$
I\left(J^{P}\right)=\frac{3}{2}\left(\frac{3}{2}+\right) \text { Status: } * * * *
$$

Most of the results published before 1975 were last included in our 1982 edition, Physics Letters 111B 1 (1982). Some further obsolete results published before 1984 were last included in our 2006 edition, Journal of Physics, G 331 (2006).

Data and amplitudes are available on a number of sites: http://gwdac.phys.gwu.edu http://wwwkph.kph.uni-mainz.de/MAID// http://pwa.hiskp.uni-bonn.de/

## MAID

Photo- and Electroproduction of Pions, Etas and Kaons on the Nucleon


Amplitudes
Ambiguities
Simple Methods

## The SAID site has the most interactive tools



CNS DAC Home
CNS DAC [SAID]
CNS Home

## Partial-Wave Analyses at GW

[See instructions]
Pion-Nucleon
$\mathrm{Pi}-\mathrm{Pi}-\mathrm{N}$ (under construction) Kaon-Nucleon
Nucleon-Nucleon
Pion Photoproduction Pion Electroproduction Kaon Photoproduction
Eta Photoproduction Eta-Prime Photoproduction Pion-Deuteron (elastic) Pion-Deuteron to Proton+Proton

Analyses From Other Sites
Mainz (MAID - Analjses)
Nijmegen (Nucleon-Nucleon OnLlne) Bonn-Gatchina (PNA)

## CNS DAC Services [SAID Program]

- The SAID Partial-Wave Analysis Facility is based at GWU.
- New features are being added and will first appear at this site. Suggestions for improvements are always welcome.


## Instructions for Using the Partial-Wave Analyses

The programs accessible with the left-hand side navigation bar allow the user to access a number of features available through the SAID program. Contact a member of our group if you are unfamiliar with the SSH version. If you enter choices which are unphysical, you may still get an answer (in accordance with the 'garbage in, garbage out' rule). Please report unexpected garbage-out to the management.

Note: These programs use HTML forms to run the SAID code. If unfamiliar with the options, run the default setup first. The output is an (edited) echo of an interactive session which would have resulted had you used the SSH version. If the default example fails to clarify the specific task you have in mind, we can help (just send an e-mail message).

All programs expect energies in $\mathbf{M e V}$ units. All of the solutions and potentials have limited ranges of validity. Some are unstable beyond their upper energy limits. Extrapolated results may not make much sense.
Increments: The programs will not allow an arbitrary number of points to be generated. As a rule, stay below $\mathbf{1 0 0}$.

## ACKNOWLEDGMENTS

The CNS Data Analysis Center is partially funded by the U.S. Department of Energy, and the Research Enhancement Funds of The George Washington University, with strong support from the GW Northern Virginia Campus.

Data Analysis Center
Amplitudes
Ambiguities
Simple Methods


SAID Web Tutorials
Webpage overview
SAID SSH Tutorials
SSH Overview
SSH Comparisons
Model Tutorial
Model Fit
Resonances

## Media and Tutorials for the Jefferson Lab Advanced Study Institute

EXTRACTING PHYSICS FROM PRECISION EXPERIMENTS:
Techniques of Amplitude Analysis
(audio for these videos is a bit green and will be improved - and posted on the SAID site.)

## Amplitude reconstruction

For $\pi N$ scattering, $d \sigma / d \Omega$ and $P$ determine moduli of transversity amplitudes. There is a relative and an overall angle remaining. Measuring R or A gives sin/cos of relative angle (leaves ambiguities - need to measure both). The overall angle is not determined.

For $\pi N$ photoproduction, there are 4 complex amplitudes. Measuring $d \sigma / d \Omega, P, \Sigma, T$ again determines moduli of transversity amplitudes. Now have 3 relative angles.

The solution to this problem turns out to be much less obvious than was the case for $\pi \mathrm{N}$ elastic scattering.

Amplitudes
Ambiguities
Simple Methods

General approach:

Observables have the form:
$\mathrm{O}^{\mathrm{i}}=\mathrm{M}^{\mathrm{i}}{ }_{\alpha \beta} \mathrm{F}_{\alpha}{ }^{*} \mathrm{~F}_{\beta}$
where the $\mathrm{M}^{\mathrm{j}}{ }^{\beta}$ are Hermitian
Find transformations under which the $\mathrm{O}^{i}$ are invariant (or a subset are).
`Complete experiment' : determines the set of amplitudes up to an overall phase ambiguity.

## Data

Amplitudes
Ambiguities
Simple Methods
Simple example:

In the BDS table of observables, change:

$$
\begin{aligned}
& \mathrm{S}_{1} \rightarrow-\mathrm{S}_{1}{ }^{*} \\
& \mathrm{~S}_{2} \rightarrow-\mathrm{S}_{2}{ }^{*} \\
& \mathrm{~N} \rightarrow \mathrm{~N}^{*} \\
& \mathrm{D} \rightarrow \mathrm{D}^{*}
\end{aligned}
$$

All type-S, half of BT, BR, TR observables are invariant.

$$
\begin{aligned}
& 8=4 \times 2 \\
& 7=8-1
\end{aligned}
$$

$10=7+3$
$9=7+2$
all points connected by solid and/or dashed lines. By complete, we of course mean that the 7 measurements are sufficient to determine 7 independent bilinears, from which the amplitudes and phases can be extracted - up to the previously mentioned ${ }_{1} 1+$ icent ambiguities. Thus, there will be a discrete set of solutions for the amplitudes, when the theorem is satisfied. In order to obtain a single solution, 3 more measurements (that only determine signs) are required to remove phase ambiguities.

Our results differ from those of Goldstein et al. [4] who claim that three measurements are necessary to solve the ambiguities in addition to the seven necessary to obtain the amplitudes up to the ambiguities. This is perhaps what one would naively expect as we have three twofold ambiguities. However, they do not give a proof or even an example of this, and, as we have seen, one measurement can resolve two twofold ambiguities.

In summary, the examination of ambiguity relations provides a simple and useful check of proposed complete sets of experiments. We have found that the rules for choosing observables are more complicated than those given in Ref. [3].
$8=7+1$
four transversity amplitudes without discrete ambiguities. That number of measurements is one less than previously believed. We approach this problem in two distinct ways: (1) solving for the amplitude magnitudes and phases directly, and (2) using a bilinear helicity product formulation to map an algebra of measurements over to the well-known algebra of the $4 \times 4$ gamma matrices. It is shown that the latter method leads to an alternate proof that eight carefully chosen experiments suffice for determining the transversity amplitudes along with the set $\mathcal{S}$, can completely determine the transversity amplitudes. In these tables, ' X 's' indicate three initially selected measurements, and ' O 's' indicate the possible choices for fourth observable that can resolve all the ambiguities.


Amplitudes
Ambiguities
Simple Methods
These relations and consistency relations between observables ( like $P^{2}+R^{2}+A^{2}=1$ for $\pi N$ ) have been applied in kaon photoproduction. For example, the measured observable combinations

$$
\begin{gathered}
\Sigma P-C_{x^{\prime}} O_{z^{\prime}}+C_{z^{\prime}} O_{x^{\prime}}-T \\
O_{x^{\prime}}^{2}+O_{z^{\prime}}^{2}+C_{x^{\prime}}^{2}+C_{z^{\prime}}^{2}+\Sigma^{2}-T^{2}+P^{2}-1
\end{gathered}
$$

should be zero - which provides a test for systematic errors.

Sandorfi et al.,
J. Phys G38, 053001 (2011)

Amplitudes
Ambiguities
Simple Methods

## Angular distilbution of Re[ $\left[H_{1}, H_{4}\right]$

- Beam energy $\omega=320 \mathrm{MeV}, \gamma p \rightarrow p \pi^{0} \quad$ amplitude analysis with a $\mathrm{W}=1217 \mathrm{MeV}, \Delta$ resonance region from observables $\sigma_{0}, \Sigma, T, P, E, G, C_{x^{\prime}}, O_{x^{\prime}}$
minimal complete set of 8 observables

Lothar Tiator, NSTAR 2011



Amplitudes

## Ambiguities

Simple Methods

## Angular distribution of Re[H1 $\left.H_{1}, H_{4}\right]$

- Beam energy $\omega=320 \mathrm{MeV}, \gamma p \rightarrow p \pi^{0}$
$\mathrm{W}=1217 \mathrm{MeV}, \Delta$ resonance region
from observables $\sigma_{0}, \Sigma, T, P, E, F, G, H, C_{x^{\prime}}, O_{x^{\prime}}$
overcomplete set






## Data

## Amplitudes

## Ambiguities

Simple Methods

## Isospin decomposition

$$
\pi p+\sqrt{ } 2 \pi^{0} n=\pi^{+} p
$$

3 charge channels 2 isospin states (triangle relation)


4 charge channels 3 isospin states (quadrilateral relation)


Schematically, we start from amplitudes $f$ at $(E, \theta)$ points

$$
f=\sum_{\ell}(2 \ell+1) f_{\ell}(E) P_{\ell}(\cos \theta)
$$

and have $f$ only up to a phase $\phi(E, \theta)$, but want $f_{\ell}(E)$, which requires an integral we can't do (since $\phi$ is unknown).

Can try to determine the $f_{\ell}$ and sum to give $f$, but need to cut off (or estimate) the high- $\ell$ terms.

Now the ambiguities, and requirements for a solution, are different. Fit at single $E$ and all $\theta$.

## Data

Amplitudes
Ambiguities
Simple Methods

## Some references:

G. Höhler, Pion Nucleon Scattering Landolt-Börnstein, Vol. I/9b2
A. Gersten, NPB12, 537 (1969).
E. Barrelet, NCA8, 331 (1972).
N.W. Dean and P. Lee, PRD5, 2741 (1972).
A.S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981).
V.F. Grushin et al., Sov. J. Nucl. Phys. 38, 881 (1983).

Ambiguities
Simple Methods

Write the transversity amplitude as a product

$$
F(w)=\frac{F(1)}{w^{N}} \prod_{i=1}^{2 N} \frac{w-w_{i}}{1-w_{i}}
$$

where $w=e^{i \theta}$.
$|w|=1$ corresponds to the physical region.
Since $F^{+}(-\theta)=F^{-}(\theta)$,
we have only a single function.
The change $w_{i} \rightarrow 1 / w_{i}^{*}$
preserves $d \sigma / d \Omega$ and $P$.

Alternate trajectories branch at unit circle where $w_{i}$ and $1 / w_{i}^{*}$ are equal.

Amplitudes

Ambiguities
Simple Methods

Simple exercises:

Show that

$$
F^{+}(-\theta)=F^{-}(\theta)
$$

and
The change $w_{i} \rightarrow 1 / w_{i}^{*}$ preserves $d \sigma / d \Omega$ and $P$

Amplitudes
Ambiguities
Simple Methods


Ambiguities
Simple Methods
$R$ and $A$ are not invariant under
Barrelet conjugation

Solutions related by

$$
\pi^{+} p T_{\text {lab }}=1.3 \mathrm{GeV}
$$



Amplitudes
Ambiguities
Simple Methods
$\pi N$ photoproduction (Omelaenko )
Gersten method ( similar to Barrelet ) applied to transversity amplitudes:

$$
\begin{array}{ll}
b_{1}=c a_{2 L} \frac{e^{i \theta / 2}}{\left(1+x^{2}\right)^{L}} \prod_{i=1}^{2 L}\left(x-\alpha_{i}\right) & \prod_{i=1}^{2 L} \alpha_{i}=\prod_{i=1}^{2 L} \beta_{i} \\
b_{3}=-c a_{2 L} \frac{e^{i \theta / 2}}{\left(1+x^{2}\right)^{L}} \prod_{i=1}^{2 L}\left(x-\beta_{i}\right) & x=\tan \theta / 2 \\
b_{1}(\theta)=-b_{2}(-\theta) \text { and } b_{3}(\theta)=-b_{4}(-\theta) &
\end{array}
$$

Applied to $\pi^{0} \mathrm{p}$ photoproduction

Amplitudes
Ambiguities
Simple Methods

$$
b_{1}=c a_{2 L} \frac{e^{i \theta / 2}}{\left(1+x^{2}\right)^{L}} \prod_{i=1}^{2 L}\left(x-\alpha_{i}\right) \quad x=\tan \theta / 2
$$

Why pick $\tan \Theta / 2$ ? (Gersten)
The $b_{i}$ involve $P_{L}$ and derivatives $\rightarrow \cos \Theta$ terms with some factors of $\sin \Theta$

Combined using:

$$
\sin \theta=\frac{2 \tan (\theta / 2)}{1+[\tan (\theta / 2)]^{2}}, \quad \cos \theta=\frac{1-[\tan (\theta / 2)]^{2}}{1+[\tan (\theta / 2)]^{2}}
$$

Data

Amplitudes
Ambiguities
Simple Methods
Low-energy zero trajectories ( $\Pi^{0} \mathrm{p}$ )


$\alpha: \bullet$
$\beta: o$
(accidental symmetries give additional solutions)

$$
\prod_{k=1}^{2 L} \alpha_{k}=\prod_{k=1}^{2 L} \beta_{k}
$$

[ see Omelaenko, Yad. Fiz. 34, 730 (1981) ]

## Problems:

Methods of Barrelet and Omelaenko may violate unitarity.

Cutting off the expansion at $\mathrm{L}_{\text {max }}$ may (at low energy) be okay for $\pi^{0} \mathrm{p}$ photoproduction but not okay for $\pi^{+} n$ (due to $t$-channel pole).

Consider a fit to $\pi^{0} \mathrm{p}$ and $\pi^{+} n$ photoproduction at low energies (above $\pi^{+} n$ threshold) where Watson's can give the multipole phases in terms of the corresponding $\pi \mathrm{N}$ elastic scattering phase.

## Data

Amplitudes
Ambiguities
Simple Methods

## Method:

$$
\mathrm{M}_{\mathrm{L}} \rightarrow \mathrm{H}_{\mathrm{i}} \rightarrow \text { Observables }
$$

Fit the individual multipoles.

Assume $\mathrm{M}_{\mathrm{L}}$ phases known
or
(Grushin) assume only equality of phases for ( $\mathrm{E}^{1 / 2}{ }_{1+}, \mathrm{M}^{1 / 2}{ }_{1+}$ ) and for ( $E^{3 / 2}{ }_{1+}, M^{3 / 2}{ }_{1+}$ )
[ determine phases from the fit ]
or
only assume the phases of ( $\mathrm{E}^{3 / 2}{ }_{1+}, \mathrm{M}^{3 / 2}{ }_{1+}$ ) are given by $\pi \mathrm{N}$ scattering

Amplitudes
Ambiguities
Simple Methods
$A^{3 / 2}=A_{\pi^{\mathrm{o}} p}-\frac{1}{\sqrt{2}} A_{\pi^{+} n}$

$\pi N$ photoproduction
Fixing overall phases
$\pi+n$ phase fixed
[ by 'known' high-L part (real)]
(200)

Grushin method:

$$
\operatorname{Im} M_{1+}^{\pi^{0} p} E_{1+}^{\pi^{0} p^{*}}+\operatorname{Im} M_{1+}^{\pi^{+} n} E_{1+}^{\pi^{+} n^{*}}=0
$$

$$
\operatorname{Im} M_{1+}^{\pi^{0} p} E_{1+}^{\pi^{+} n^{*}}+\operatorname{Im} M_{1+}^{\pi^{+} n}\left(E_{1+}^{\pi^{0^{0}}}+\frac{1}{\sqrt{2}} E_{1+}^{\pi^{+} n}\right)^{*}=0
$$

Amplitudes
Ambiguities
Simple Methods
$\pi^{+} n$ and $\pi^{-} p$ phases fixed


Grushin fit to $\pi^{0} p$ and $\pi^{+} n$ photoproduction data qualitatively gives the associated $\pi \mathrm{N}$ elastic scattering phase shifts

Simple exercise - re-do the Grushin fits.

Details in
A.A. Komar, Photoproduction of pions on nucleons and nuclei
(a) Fit $\mathrm{E}_{0+}, \mathrm{M}_{1-}, \mathrm{E}_{1+}, \mathrm{M}_{1+}$ multipoles to data around the $\Delta(1232)$ resonance
(b) Compare to existing global fits
(c) Are there multiple solutions?

Amplitudes
Ambiguities
Simple Methods

> Here's an example of a simple fit using the 'Model' routine.


SAID Web Tutorials
Webpage overview
SAID SSH Tutorials
SSH Overview
SSH Comparisons
Model Tutorial
Model Fit
Resonances

## Media and Tutorials for the <br> Jefferson Lab Advanced Study Institute

EXTRACTING PHYSICS FROM PRECIIION EXPERIMENTS:
Tecfiniques of Ampitude Analysis

Amplitudes

Ambiguities
Simple Methods

Fit to $280 \mathrm{MeV} \pi^{+} \mathrm{n}$ photo

| Multipole | Grushin [1] | SES | Fit1 | Fit2 |
| :--- | :---: | :---: | :---: | :---: |
| Re $E_{0+}$ | $17.18(0.29)$ | 16.2 | $16.72(0.18)$ | $16.17(0.23)$ |
| $\operatorname{Im} E_{0+}$ | $-3.10(0.98)$ | 0.57 | $-3.41(0.87)$ | 0.5 |
| $\operatorname{Re} M_{1-}$ | $3.84(0.19)$ | 3.46 | $3.74(0.18)$ | $3.75(0.29)$ |
| $\operatorname{Im} M_{1-}$ | $-0.70(0.84)$ | -0.13 | $-2.02(0.87)$ | $0.33(0.58)$ |
| $\operatorname{Re} E_{1+}$ | $2.64(0.08)$ | 2.96 | $2.99(0.06)$ | $2.70(0.11)$ |
| $\operatorname{Im} E_{1+}$ | $0.00(0.26)$ | 0.70 | $-0.08(0.29)$ | $0.78(0.19)$ |
| $\operatorname{Re} M_{1+}$ | $-16.00(0.30)$ | -14.85 | $-16.24(0.24)$ | $-14.76(0.18)$ |
| $\operatorname{Im} M_{1+}$ | $-6.76(1.10)$ | -9.63 | $-5.96(0.98)$ | $-10.06(0.35)$ |

Quality of data fit?


Amplitudes

## Ambiguities

Simple Methods

Difference mainly in lowest quality data


FIG. 1: Fits to $\pi^{+} n$ type- $S$ observables at 280 MeV . Fit1 (solid), SES (dashed), Fit2 (dot-dashed).

Amplitudes
Ambiguities
Simple Methods
Fit to $340 \mathrm{MeV} \pi^{+} n$ photo

| Multipole | Grushin [1] | SES | Fit1 | Fit2 |
| :--- | :---: | :---: | :---: | :---: |
| $\operatorname{Re} E_{0+}$ | $10.29(0.42)$ | 11.36 | $11.19(0.41)$ | $12.42(0.30)$ |
| $\operatorname{Im} E_{0+}$ | $2.00(0.52)$ | -0.14 | $2.15(0.55)$ | 0.0 |
| $\operatorname{Re} M_{1-}$ | $1.82(1.40)$ | 4.53 | $2.89(1.45)$ | $4.32(1.27)$ |
| $\operatorname{Im} M_{1-}$ | $-0.11(0.22)$ | -0.17 | $1.17(0.30)$ | $0.50(0.31)$ |
| $\operatorname{Re} E_{1+}$ | $0.30(0.35)$ | 1.79 | $0.69(0.38)$ | $1.22(0.29)$ |
| $\operatorname{Im} E_{1+}$ | $-0.41(0.10)$ | 0.30 | $0.47(0.14)$ | $0.18(0.16)$ |
| $\operatorname{Re} M_{1+}$ | $1.34(0.98)$ | -1.82 | $1.11(0.24)$ | $-1.66(0.61)$ |
| $\operatorname{Im} M_{1+}$ | $-19.26(0.46)$ | -18.29 | $-18.84(0.22)$ | $-18.31(0.21)$ |

Amplitudes

## Ambiguities

Simple Methods

Differences due to new $\Sigma$ data and freedom of fit to P data


FIG. 2: Fits to $\pi^{+} n$ type- $S$ observables at 340 MeV . Fit1 (solid), Ref. [1] (dashed), Fit2 (dotdashed). Data as in Fig. 1.

Amplitudes
Ambiguities
Simple Methods
Fits to $350 \mathrm{MeV} \pi^{0} \mathrm{p}$ photo
Fit 1: fix one phase
Fit 2: use $M_{1+}^{\pi^{0} p}=\alpha e^{i \delta_{33}}+\frac{1}{\sqrt{2}} M_{1+}^{\pi+n}$
Fit 3: conjugate roots (Omelaenko)

Fits 1-3 have the same chi-squared

| Multipole | Grushin [1] | SES | Fit1 | Fit2 | Fit3 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Re $E_{0+}$ | $-1.64(0.46)$ | -2.69 | $-2.33(0.46)$ | $-1.58(0.42)$ | -1.20 |
| $\operatorname{Im} E_{0+}$ | $1.03(0.24)$ | 2.81 | $1.27(0.24)$ | $2.14(0.31)$ | 2.36 |
| $\operatorname{Re} M_{1-}$ | $-2.97(1.99)$ | -2.89 | $-2.84(1.84)$ | $-2.73(1.85)$ | 18.67 |
| $\operatorname{Im} M_{1-}$ | $0.57(0.17)$ | 0.51 | $-0.33(0.45)$ | $0.90(0.40)$ | -4.41 |
| $\operatorname{Re} E_{1+}$ | $0.70(0.62)$ | 1.34 | $0.63(0.58)$ | $0.38(0.57)$ | -7.74 |
| $\operatorname{Im} E_{1+}$ | $-0.78(0.08)$ | -0.30 | $-0.47(0.14)$ | $-0.70(0.15)$ | 1.44 |
| $\operatorname{Re} M_{1+}$ | -1.3 | -5.70 | $-6.41(0.40)$ | -4.13 | 15.50 |
| $\operatorname{Im} M_{1+}$ | $23.89(0.10)$ | 22.81 | 23.0 | 23.56 | -6.36 |

Ambiguities
Simple Methods

At the $\Delta(1232)$ resonance energy, a single multipole dominates and some simple methods can be used to extract resonance properties





# Simple methods in the Delta Resonance Region 

$$
\Sigma=\frac{d \sigma_{\perp}-d \sigma_{\|}}{d \sigma_{\|}+d \sigma_{\perp}}
$$

Beck et al
PRL 78, 606 (1997)

$$
\begin{gathered}
\frac{d \sigma_{j}(\theta)}{d \Omega}=\frac{q}{k}\left[A_{j}+B_{j} \cos (\theta)+C_{j} \cos ^{2}(\theta)\right] \\
A_{\|}=\left|E_{0^{+}}\right|^{2}+\left|3 E_{1^{+}}+M_{1^{+}}-M_{1^{-}}\right|^{2}, \\
B_{\|}=2 \operatorname{Re}\left[E_{0^{+}}\left(3 E_{1^{+}}+M_{1^{+}}-M_{1^{-}}\right)^{*}\right], \\
C_{\|}=12 \operatorname{Re}\left[E_{1^{+}}\left(M_{1^{+}}-M_{1^{-}}\right)^{*}\right] . \\
R=\frac{\operatorname{Re}\left(E_{1^{+}} M_{1^{+}}^{*}\right)}{\left|M_{1^{+}}\right|^{2}} \simeq \frac{1}{12} \frac{C_{\|}}{A_{\|}}=\frac{\operatorname{Re}\left[E_{1^{+}}\left(M_{1^{+}}-M_{1^{-}}\right)^{*}\right]}{\left|M_{1^{+}}-M_{1^{-}}\right|^{2}}
\end{gathered}
$$

Amplitudes
Ambiguities
Simple Methods

## Speed-plot method for the Delta

$$
\begin{gathered}
S P(W)=\left|\frac{d T(W)}{d W}\right| \\
T_{R}(W)=\frac{r \Gamma_{R} e^{i \phi}}{M_{R}-W-i \Gamma_{R} / 2} \\
S P(W)=r \Gamma_{R} \frac{\left\{\left[\left(M_{R}-W\right)^{2}-\Gamma_{R}^{2} / 4\right]^{2}+\Gamma_{R}^{2}\left(M_{R}-W\right)^{2}\right\}^{\frac{1}{2}}}{\left\{\left(M_{R}-W\right)^{2}+\Gamma_{R}^{2} / 4\right\}^{2}} \\
S P\left(M_{R}\right)=4 r / \Gamma_{R}=H \quad S P\left(M_{R} \pm \Gamma_{R} / 2\right)=H / 2
\end{gathered}
$$

Data
Amplitudes
Ambiguities
Simple Methods





|  | $r\left[10^{-3} \mathrm{MeV} / \mathrm{m}_{\pi}\right]$ | $\phi\left[{ }^{\circ}\right]$ | $M_{R}[\mathrm{MeV}]$ | $\Gamma_{R}[\mathrm{MeV}]$ |
| :--- | ---: | ---: | ---: | ---: |
| E | 1.23 | -154.7 | $1211 \pm 1$ | $102 \pm 2$ |
| M | 21.16 | -27.5 | $1212 \pm 1$ | $99 \pm 2$ |

$$
R_{\Delta}=\frac{r_{E} e^{i \phi^{E}}}{r_{M} e^{i \phi_{M}}}=-0.035-0.046 i
$$

Amplitudes
Ambiguities
Simple Methods

## Alternate approach at the pole

K-matrix approach for E2 and M1
$\longrightarrow M=\alpha\left(1+i T_{\pi N}\right)+\beta T_{\pi N}$

Amplitudes
Ambiguities
Simple Methods

|  | E2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\alpha$-term | $\beta$-term | Total |  |
| Fit A | $\left(1.12,-143^{\circ}\right)$ | $\left(0.42,157^{\circ}\right)$ | $\left(1.38,-158^{\circ}\right)$ |  |
| Fit B | $\left(0.98,-126^{\circ}\right)$ | $\left(0.08,157^{\circ}\right)$ | $\left(1.01,-131^{\circ}\right)$ |  |
|  |  | M1 |  |  |
|  | $\alpha$-term | $\beta$-term | Total |  |
| Fit A | $\left(3.2,-136^{\circ}\right)$ | $\left(21.9,-23^{\circ}\right)$ | $\left(20.9,-31^{\circ}\right)$ |  |
|  |  |  |  |  |
| Fit B | $\left(3.2,-136^{\circ}\right)$ | $\left(21.7,-23^{\circ}\right)$ | $\left(20.7,-31^{\circ}\right)$ |  |
|  |  |  |  |  |


| E2/M1 ratio $\quad$ K-matrix pole |
| :--- |
| Fit A |
| Fit B |$\quad-1.9 \%$

Höhler parameterized the KH and CMB
$\pi N$ elastic scattering solutions using a form

## See

G. Höhler, $\pi N$ Newsletter
Vol. 9, 1 (1993).

$$
T(W)=T_{\mathrm{B}}+\frac{r \Gamma_{R} e^{i \phi}}{M_{R}-W-i \Gamma_{R} / 2}
$$

with $T_{\mathrm{B}}=\left(\eta_{B} e^{2 i \delta_{\mathrm{B}}}-1\right) / 2 i$
for elastic scattering $\eta_{\mathrm{B}}=1$ and $\phi=2 \delta_{\mathrm{B}}$ [i.e. $S=S_{\mathrm{B}} S_{\mathrm{R}}$ ]

Plotted dT/dW in an Argand diagram to obtain phases of residues (listed in PDG)

## Data

## Amplitudes

Ambiguities
Simple Methods
Results: lots of bumps not $\rightarrow$ resonances
$N(1535)$ particularly bad:

- pole position close to $\eta \mathrm{N}$ threshold
- no width, residue reported


Data
Amplitudes
Ambiguities
Simple Methods

Pole vs BW parameters

$$
T \approx \frac{f(W)}{M-W-i \Gamma(W) / 2}
$$

D.B. Lichtenberg, PRD10,3865(1974)
D.M. Manley, PRD51,4837(1995)

Lichtenberg/Manley took simple BW forms for the Delta, solved for the pole. If energy dependence ~ simple phase space or Blatt-Weiskopf factor, $\alpha$ is positive ( $\sim 0.4$ )

So, pole 'mass' < BW mass
and
pole 'width' < BW width

$$
D(W)=M-W-i \Gamma(W) / 2
$$

$$
W_{p} \approx W_{0}-\frac{D\left(W_{0}\right)}{D^{\prime}\left(W_{0}\right)}
$$

$\Gamma^{\prime}$ denotes $d \Gamma(W) / d W @ W=M$

$$
\alpha=\Gamma^{\prime} / 2
$$

$$
\Longrightarrow \begin{gathered}
M_{0} \approx M-\frac{\Gamma}{2}\left(\frac{\alpha}{1+\alpha^{2}}\right) \\
\Gamma_{0} \approx \frac{\Gamma}{1+\alpha^{2}} .
\end{gathered}
$$

Also see applications of 'time delay' concept

$$
\Delta t=2 \hbar \frac{d \delta}{d E}
$$

Introduced by Wigner (elastic scattering) extended to multi-channel case.

For the $\Delta(1232)$, the result is not really different from the speed plot.


Amplitudes
Ambiguities
Simple Methods

## But applied to other partial-waves ...

Kelkar et al., NPA730,121 (2004)


Data Analysis Center
Amplitudes
Ambiguities
Simple Methods


