

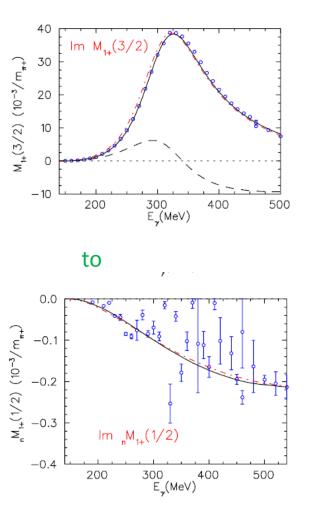
Have considered single-energy fits in the context of amplitude reconstruction.

Here we will describe the single-energy fits displayed on SAID/MAID plots of amplitudes.

These have been used in multi-channel fits [e.g. Geissen , Bonn-Gatchina] in lieu of actual `data' for πN scattering and πN photoproduction.

Important to understand how they are determined, why they were produced, and what they say about the underlying database.

compare



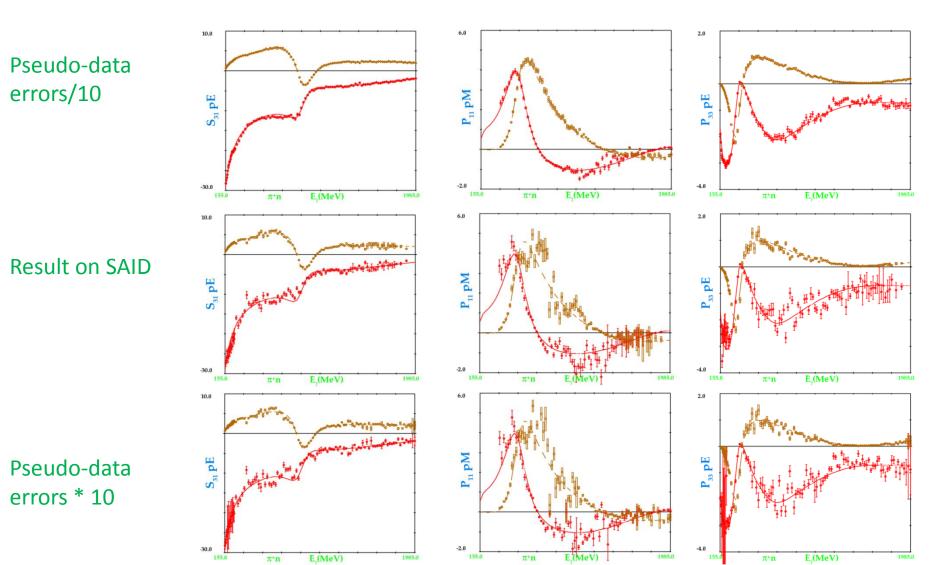
Historical motivation:

Suppose you have a global (energy-dependent) fit to 25K data, over a 2 GeV energy range, varying 0.2K parameters.

Can the fit be improved?

Bin data over narrow energy ranges. Vary the most significant partial waves – assume the phase found from the global fit is correct. Fit the data along with partial-wave pseudo-data to keep the fit `close' to global solution – look for systematic deviations.

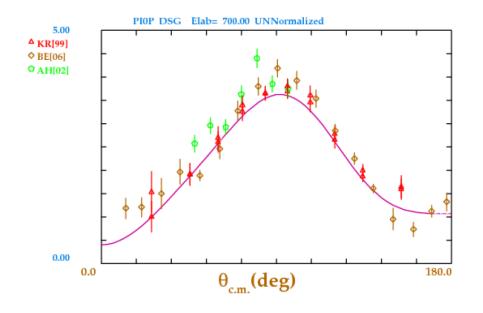
Consider what may be missing from your model to improve the global fit result.

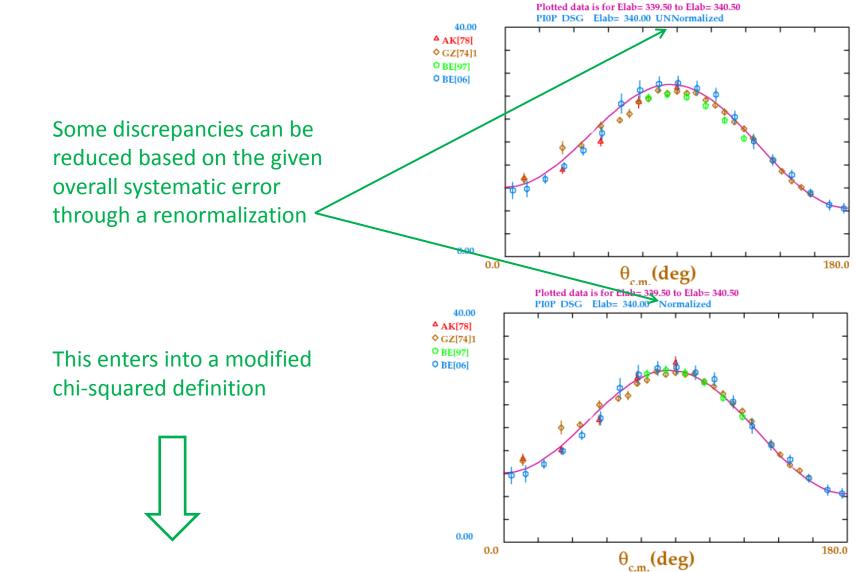


Results depend on (subjective) level of constraint from the global fit. Tighter constraints give back the global result.

Some partial-waves (with little constraint) scatter erratically.

Problem: bins contain old and new data (some contradictory) and may not contain sufficient observables to give a unique result.





For details see R.A. Arndt, M.H. MacGregor *Methods in Computational Physics*, Vol. 6, 253 (1966).

This was used recently in a kaon photoproduction fit by Sandorfi et al.,

J. Phys. G38, 053001 (2011).

$$\chi^2 = \sum_{i=1}^{N_D} \left(\frac{\alpha \theta^i(p) - \theta^i_{exp}}{\delta \theta^i_{exp}} \right)^2 + \sum_{j=1}^{N_\alpha} \left(\frac{\alpha_j - 1}{\delta \alpha_j} \right)^2$$

where α_j factors renormalize (N_{α}) angular distributions, including a total of N_D data. The α_j factors do not have to be included explicitly in the parameter (p) search.

At the minimum,

$$p \rightarrow p \pm \Delta p \ , \ \chi^2 \rightarrow \chi^2 + 1 \ , \ Prob \rightarrow \frac{1}{e^{1/2}} Prob$$

Try to generate single-energy fits based on a database generated from known amplitudes.

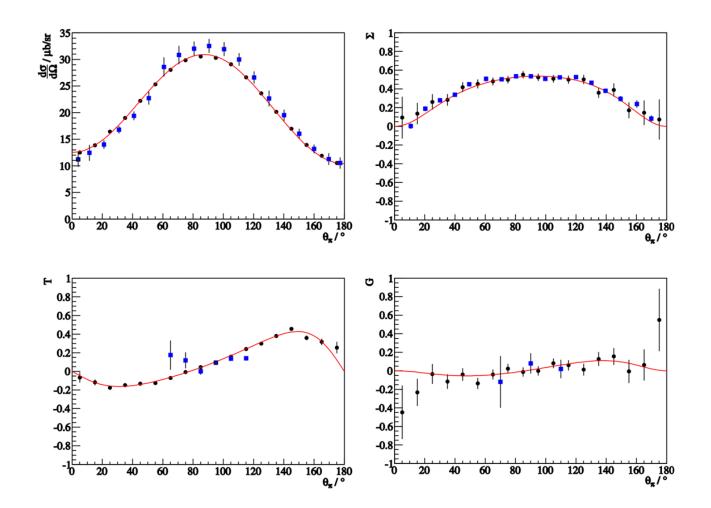
Can test effect of more (consistent) measurements on the fit.

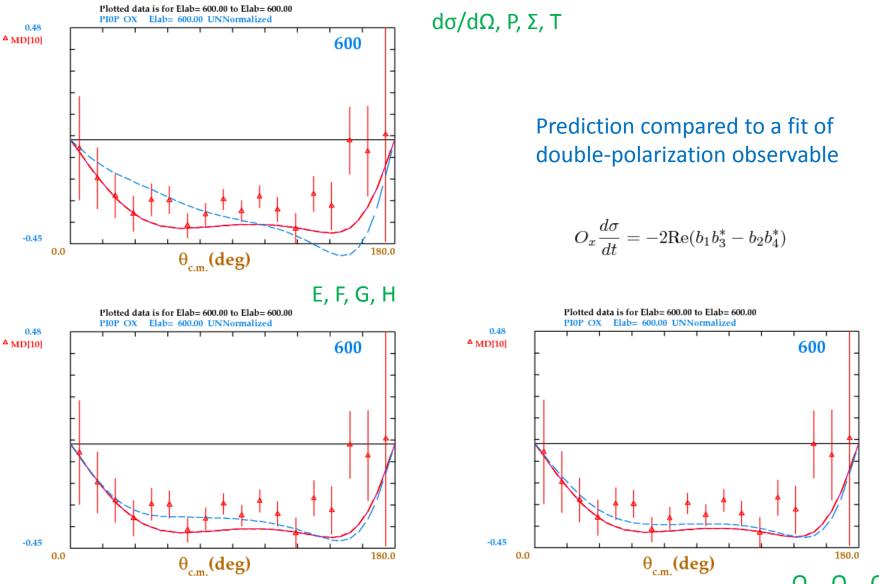
Exercise was done using MAID Monte Carlo data, then fitted using the SAID global fit.

[observables generated to be `reasonable' given existing beam/detector quality]

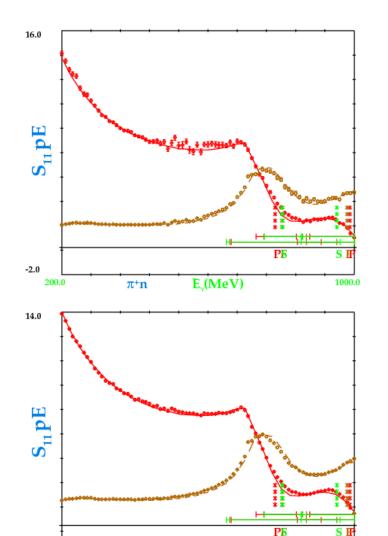
Tiator talk at NSTAR 2011.

MD07 (red curve) Pseudo-data (**black** points) Real data (**blue** points) π^{0} p at 320-340 MeV and comparison with real data





 O_x , O_z , C_x , C_z



E_(MeV)

 π^+n

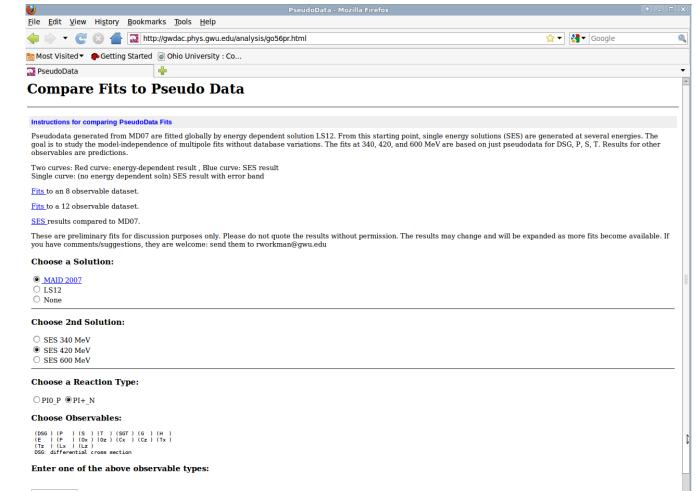
1000.0

-2.0

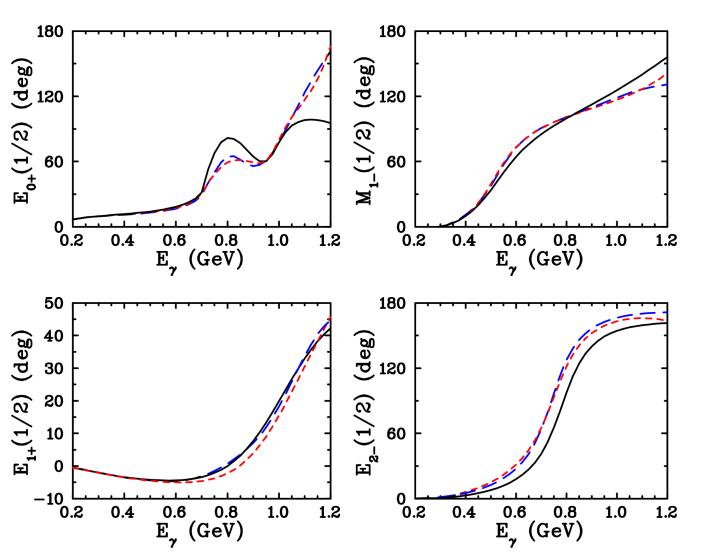
200.0

Multipole: predicted vs input





DSG



SAID vs MAID phase differences

$\begin{array}{l} \mbox{Single-energy fits} \\ \pi N \ \mbox{Photoproduction} \\ \pi N \ \mbox{scattering} \end{array}$

Effect of searching phases in single-energy fits

Multipole	SP09	LS12	SE4	SE8	MD07
$E_{0+}^{1/2}$	18.4	17.4	16.0(3.0)	16.2(0.9)	16.7
$M_{1-}^{1/2}$	64.4	73.2	68.2(2.4)	73.4(1.6)	72.7
$M_{1-}^{3/2}$	167.1	172.0	176.8(6.5)	167.5(1.8)	163.9
$E_{2-}^{1/2}$	17.9	31.4	27.5(3.1)	26.1(1.0)	27.6
$M_{2-}^{1/2}$	22.2	26.7	25.5(1.8)	26.7(1.0)	26.8

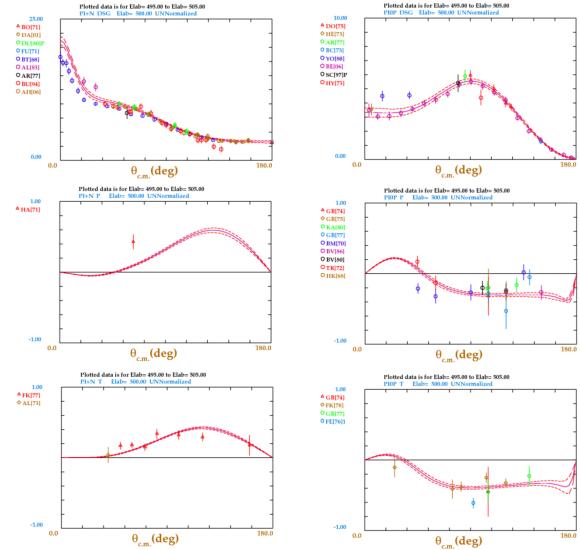
Multipole phases (degrees) from single-energy fits to 4 (SE4) and 8 (SE8) observables at 600 MeV

$\begin{array}{l} \mbox{Single-energy fits} \\ \pi N \ \mbox{Photoproduction} \\ \pi N \ \mbox{scattering} \end{array}$

Overall fit quality: single-energy vs global fit

E _γ (lab)	global χ^2	single-energy χ^2	data/bin
204 216	1009	057	COF
294-316	1068	957	605
494-516	710	582	377
734-757	1450	1276	778
1494-1515	226	141	113

global $\chi^2 \sim 2$ single-energy $\chi^2 \sim 1.5$



Some observations:

- 1. The real-world database is not self-consistent.
- The single-energy amplitudes are not a representation of the data (which is not possible – see 1).
- 3. Some data could be pruned without changing the result, but lowering the overall χ^2 .

Question:

If we drop `really bad' data, can we get a fit χ^2 / data near unity?

 $\begin{array}{l} \mbox{Single-energy fits} \\ \pi N \ \mbox{Photoproduction} \\ \pi N \ \mbox{scattering} \end{array}$

Simple exercise:

- 1. prune data if $\chi^2 > 5$ for point or distribution
- 2. Re-fit remaining data
- 3. Repeat step 1
- 4. Stop if nothing left to prune

Single-energy fits πN Photoproduction πN scattering				
Starting global fit	:			
π ⁰ p	π ⁺ n	π ⁻ p	π ⁰ n	
32751/13646	16833/8521	4749/2333	1108/364	
Pruned global fit	:			
π ⁰ p	π^+ n	π⁻ р	π^0 n	
11716/11338	7584/7496	1978/2022	241/251	

Summary :

Pruned for $\chi^2 > 5$

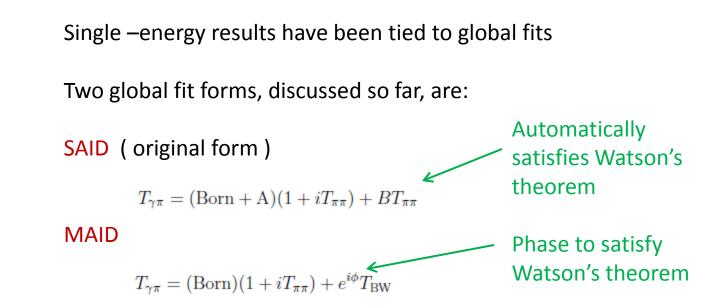
3757 pruned data contributing 33234 to χ^2

Some of the pruned data are not old

Multipoles change very little

Need a consensus evaluation of database (this was done for πN scattering)

Dangerous to toss data just because it is hard to fit.



where $T_{\pi\pi}$ is the associated πN partial-wave amplitude, and T_{BW} is a Breit-Wigner resonance term.

$\begin{array}{l} \text{Single-energy fits} \\ \pi N \text{ Photoproduction} \\ \pi N \text{ scattering} \end{array}$

Motivation (simple K-matrix):

Watson's theorem

$$T_{\gamma\pi} = (1 + iT_{\pi\pi})K_{\gamma\pi}$$
Need pole, or is zero
at resonance

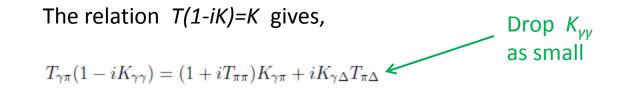
$$K_{\gamma\pi} = \frac{A}{W - W_R} + B \; ; \; K_{\pi\pi} = \frac{C}{W - W_R} + D$$

$$T_{\gamma\pi} = \left(\frac{A}{W - W_R} + B\right) \frac{(W - W_R)}{W - W_R - i[C + (W - W_R)D]}$$

One term \rightarrow zero at W_R Other term has BW behavior

Expanding to include another hadronic channel,

$$K = \begin{pmatrix} K_{\gamma\gamma} & K_{\gamma\pi} & K_{\gamma\Delta} \\ K_{\gamma\pi} & K_{\pi\pi} & K_{\pi\Delta} \\ K_{\gamma\Delta} & K_{\pi\Delta} & K_{\Delta\Delta} \end{pmatrix}$$



which can be massaged into the form,

$$T_{\gamma\pi} = (1 + iT_{\pi\pi}) \left(K_{\gamma\pi} - \frac{K_{\gamma\Delta}K_{\pi\pi}}{K_{\pi\Delta}} \right) + \frac{K_{\gamma\Delta}}{K_{\pi\Delta}} T_{\pi\pi}$$

Aside:

CGLN Schwela & Weizel, Z. Phys 221, 71 (1969)

The form of the $M_{1+}^{3/2}$ multipole amplitude from CGLN in the static limit (neglect O(1/M) terms) is also

`A(1+i $T_{\pi\pi}$) + $BT_{\pi\pi}$ '

with the factors A and B fixed.

See, for example, S.N. Yang, J. Phys. G 11, L205 (1985). L. Resnick, Phys. Rev. D2, 1975 (1972). More elaborate methods, dynamical models, use of the Muskhelishvili-Omnes result will give first term, but the second is generally replaced by a PV integral.

Bonn-Gatchina approach (multi-channel)

This `P-matrix' approach is similar – but the database includes other reactions.

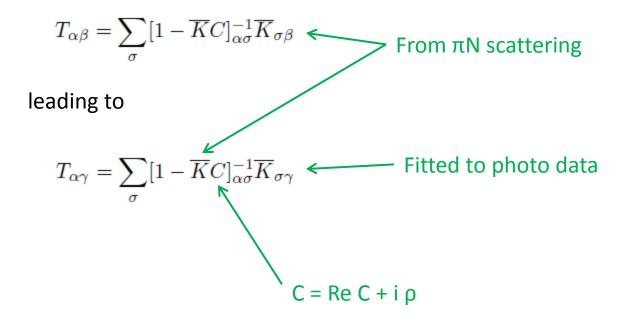
$$A_a = \hat{P}_b (\hat{I} - i\hat{\rho}\hat{K})_{ba}^{-1}$$

Photoproduction amplitude

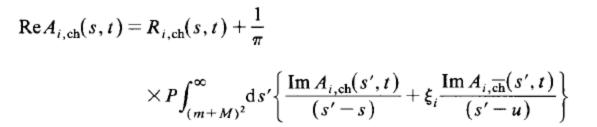
$$P_b = \sum_{\alpha} \frac{g_{\gamma N}^{(\alpha)} g_b^{(\alpha)}}{M_{\alpha}^2 - s} + \tilde{f}_b \qquad P-\text{vector}$$

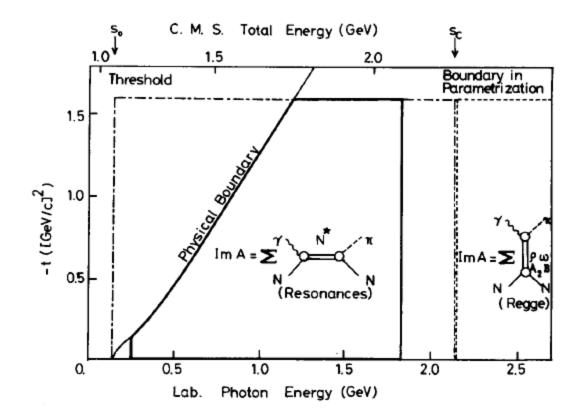
$$K_{ab} = \sum_{\alpha} \frac{g_a^{(\alpha)} g_b^{(\alpha)}}{M_{\alpha}^2 - s} + f_{ab}$$

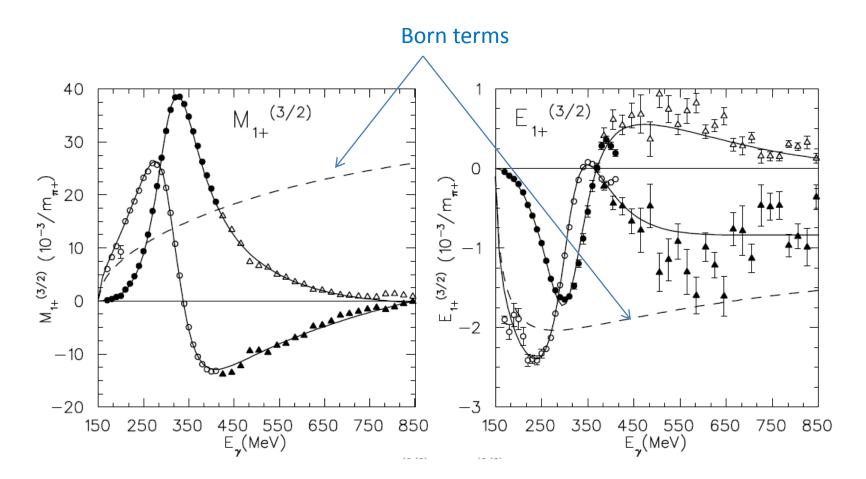
A modified SAID approach, which incorporates more info from the π N elastic scattering analysis, is based on a Chew-Mandelstam K-matrix approach



Parameterize *Im A* [A/F: 3-ch K-matrix] calc. *Re A*



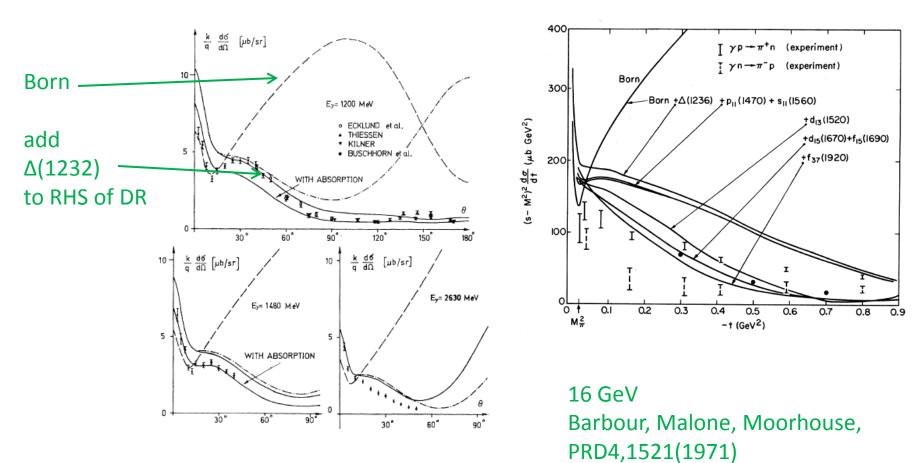




Above 500 MeV Born > largest multipole Born*($1 + iT_{\pi\pi}$) gives almost everything here

Center for Nuclear Studies Data Analysis Center

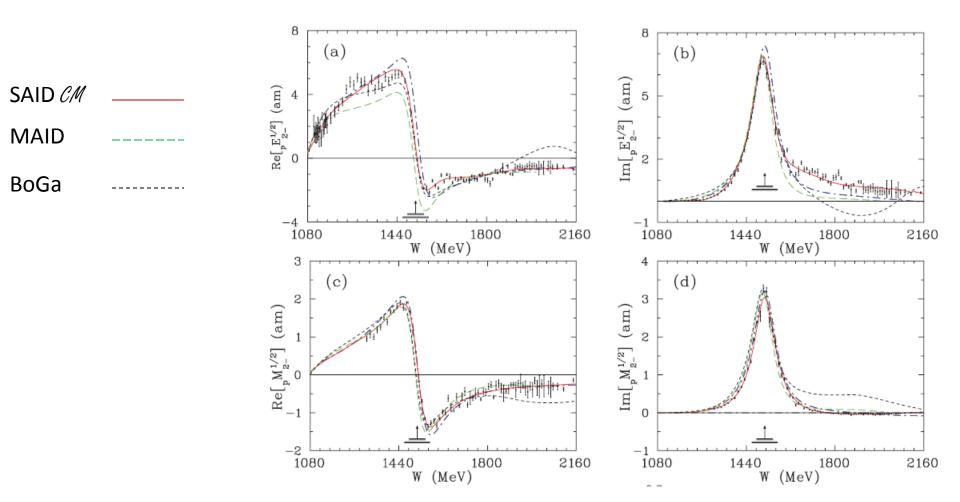
Single-energy fits πN Photoproduction πN scattering



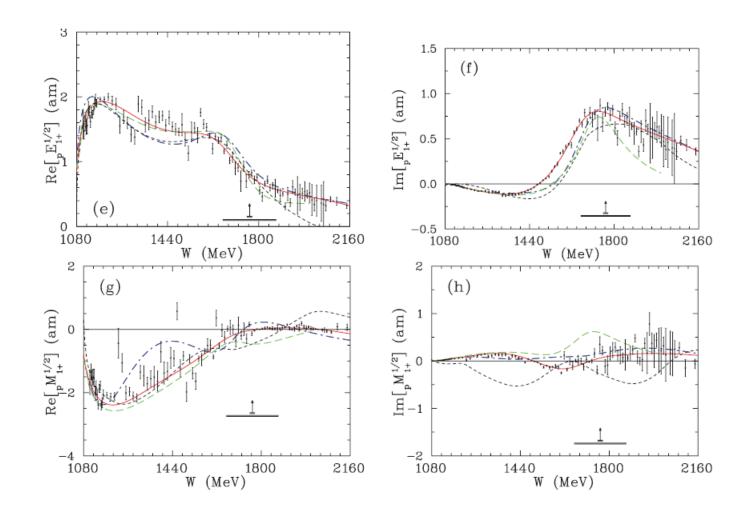
Engels, Schwiderski, Schmidt, PR166,1343(1968).

How well do the SAID/MAID/BoGa analyses agree on the multipoles?

 $D_{13}(1520)$ [N(1520)3/2⁻]



 $P_{13}(1720)$ [N(1720)3/2⁺]



The Baryon Summary Table gives $N\gamma$ branching fractions for those resonances whose couplings are considered to be reasonably well established. The $N\gamma$ partial width Γ_{γ} is given in terms of the helicity amplitudes $A_{1/2}$ and $A_{3/2}$ by

$$\Gamma_{\gamma} = \frac{k^2}{\pi} \frac{2M_N}{(2J+1)M_R} \left[|A_{1/2}|^2 + |A_{3/2}|^2 \right] .$$

Here M_N and M_R are the nucleon and resonance masses, J is the resonance spin, and k is the photon c.m. decay momentum.

> Must construct $A_{1/2}$, $A_{3/2}$ at the `resonance' position i.e. BW parameterization

$$A_{l+}^{1/2} = -\frac{1}{2}[(l+2)\overline{E}_{l+} + l\overline{M}_{l+}], \qquad \text{Resonance}$$

$$A_{l+}^{3/2} = \frac{1}{2}\sqrt{l(l+2)}[\overline{E}_{l+} - \overline{M}_{l+}], \qquad \text{contribution}$$

$$A_{l+}^{1/2} = -\frac{1}{2}[l\overline{E}_{(l+1)-} - (l+2)\overline{M}_{(l+1)-}], \qquad \text{to multipole}$$

$$A_{(l+1)-}^{3/2} = -\frac{1}{2}\sqrt{l(l+2)}[\overline{E}_{(l+1)-} + \overline{M}_{(l+1)-}], \qquad \text{to multipole}$$

Resonance part straightforward in MAID (BW form) BoGa (K-matrix poles) but not in SAID (resonances hidden in $T_{\pi\pi}$)

In practice, SAID results extracted assuming a MAID-like background-resonance separation