

Neutron Dosimetry in the Presence of Strong Photon Radiation Fields

Pavel Degtiarenko Radiation Physics Group at RadCon Jefferson Lab

August, 2017

Outline

❑ Neutron dose rates inside High Energy electron accelerators:

- Important for radiation safety, radiation damage, activation
- Difficult to measure due to overwhelming photon radiation
- Monitors fail: radiation damage, high photon background
- Passive dosimetry: lack of online monitoring capability, generally small dynamic range
- Need in the new neutron dosimetry techniques:
 - On-line monitoring
 - Insensitive to photon background
 - ✤ Large dynamic range
- The new detection system (work in progress):
 - ✤ High pressure ionization chambers filled with ³He and ⁴He
 - Neutron moderator with Beryllium-loaded reflector / multiplier
 - Simulations, prototype design, preliminary results presented

Radiation Environment at Jlab (1)

- Radiation monitoring in the Experimental Halls: γ, n
- Prompt dose rates observed at the back of the Halls: up to ~10 rad/h photons, ~1 rem/h neutrons:

- Prompt dose rates downstream from the targets:
 - many kilorad/h photons (measured with Ion Chambers)
 - hundreds(?) rem/h neutrons (not measured)

Radiation Environment at Jlab (2)

- Radiation monitoring around C100 cryomodules: γ, n
- Dose rates observed at 1 foot, ~100 rad/h γ , ~10 rem/h n :

- JLab standard CARM probes do not survive for long
- Typical proportional neutron counters won't work: long cables, high rates, sensitivity to gammas
- Need radiation-hard photon- and neutron-sensitive ICs with remote front-end and DAQ electronics

Original Idea (2016)

- Propose to use two small LND ICs, filled with ³He and ⁴He (10 atm gas pressure) placed together in a poly moderator, with lead or tungsten shield
- 4He and 3He: ~0.1 pA in 1 rad/h γ °
- ³He: ~10 pA in 1 rem/h neutrons

Detector next to a thick target at 2.2 GeV

FLUKA: Showing energy density in the air, and in the detector The ratio of currents from ³He IC to ⁴He IC equals to 5 Energy Deposition (keV/cm3) per beam electron at 2 GeV, Z-Y mide plane Face Dose Rates (Total and Neutron): 1 10 Dose Equivalent (Total) in pSv per beam electron at the detector face 15 10 0.1 <30 5 0.01 5 (в е 0.01 0,001 -5 ۲ (cm) 0 -10 0.001 -15 0.0001 10 15 20 -28 -18 X (cn) Dose Equivalent (Neutrons) in pSy per beam electron at the detector -5 0.0001 15 10 5 0.01 1e-05 -10 е (с -5 0.001 1e-06 -10 -5 0 5 10

-15

ASW, JLab, August 2017

0.0001

15 20

X (cm)

Z (cm)

Jefferson Lab

-10

FLUKA Model, Be Loaded Moderator

Energy Dependence of Detector Response

Response to Neutron Dose Equivalent, Function of Energy

Prototype Assembly Drawings

Prototype Detectors

ASW, JLab, August 2017

Page 10

Detector cores in ~100 rad/h photon field

ASW, JLab, August 2017

Detector cores in ~1 rem/h neutron field

³He Ion Chambers: $48.0 \pm 1.0 \text{ pA}$ ⁴He Ion Chambers: $0.17 \pm 0.03 \text{ pA}$ (difference of about a factor 280)

Detectors #1 and #2 agree well within the errors

Full detector in ~10 mrem/h neutron field

Response to Neutron Dose Equivalent, Function of Energy

ASW, JLab, August 2017

Electronics front-end under development

Logarithmic amplifiers ADL5304 by Analog Devices Dynamic range from 1 pA to 3 mA

ASW, JLab, August 2017

Page 14

Summary

- Two JLab Invention Disclosures:
 - Neutron detector for use in strong gamma-radiation fields
 - Improving sensitivity and energy response of neutron detectors using moderators with embedded Beryllium-loaded materials
- Combined into the "NDX" detector design, solving the problems:
 - Neutron detection in the presence of overwhelming photon radiation fields, in particular at JLab:
 - around the C100 cryomodules at full gradients
 - > at the experimental halls
 - Improving quality of the neutron ambient dose equivalent measurements at high neutron energies up to 10 GeV
 - Radiation hardness, large dynamic range, stability of the neutron detection, characteristic for Ion Chamber operation
- Preliminary prototype test results are in agreement with expectations
- Plans for deployment at JLab under development

Acknowledgements

Thanks to:

- Rolf Ent, Cynthia Keppel, Paulo Medeiros, Bogdan Wojtsekhowski, Matt Poelker
- Vashek Vylet, George Kharashvili, David Hamlette, Melvin Washington, John Jefferson
- Chris Cuevas, Armen Stepanyan

ASW, JLab, August 2017

□ William Lehnert (LND, Inc.)

Spherical Moderator Design

Backup Slide #1 Slide by Joseph C. McDonald (PNNL)

ASW, JLab, August 2017

Slide by F. Gutermuth et al. (CERN)

Figure 2: Response of the rem-counter WENDI-II from Thermo Eberline in comparison to the conversion function for the ambient dose equivalent. The data show the results of the MCNPX Monte-Carlo simulations from Olsher et al. [1] for the exposition of the detector from the side and from the end of the cylindrically shaped moderator.

Backup

Slide #2

[1] F. Gutermuth, T. Radon, G. Fehrenbacher, R. Siekmann. "Test of the rem-counter WENDI-II from Eberline in different energy-dispersed neutron fields", CERN EXT-2004-085 04/03/2004

[2] R. H. Olsher, H.-H. Hsu, A. Beverding, J. H. Kleck, W. H. Casson, D. G. Vasilik, and R. T. Devine. "WENDI: An improved neutron rem meter", Health Physics, 79(2):170ff, 2000.

[3] I. O. Andersson and J. A. Braun. "Neutron rem-counter with uniform sensitivity from 0.025 eV to 10 MeV", in: Proceedings of the IAEA Symposium on neutron dosimetry, Vienna, 2:87–95, 1963.

[4] C. Birattari, A. Ferrari, C. Nuccetelli, M. Pelliccioni M., and M. Silari. "An Extended Range Neutron Rem Counter", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 297:250–257, 1990.

Extra Slide

