Neutron Dosimetry in the Presence of Strong Photon Radiation Fields

Pavel Degtiarenko
Radiation Physics Group at RadCon
Jefferson Lab

August, 2017
Outline

- Neutron dose rates inside High Energy electron accelerators:
 - Important for radiation safety, radiation damage, activation
 - Difficult to measure due to overwhelming photon radiation
 - Monitors fail: radiation damage, high photon background
 - Passive dosimetry: lack of online monitoring capability, generally small dynamic range

- Need in the new neutron dosimetry techniques:
 - On-line monitoring
 - Insensitive to photon background
 - Large dynamic range

- The new detection system (work in progress):
 - High pressure ionization chambers filled with ^3He and ^4He
 - Neutron moderator with Beryllium-loaded reflector / multiplier
 - Simulations, prototype design, preliminary results presented
Radiation Environment at Jlab (1)

- Radiation monitoring in the Experimental Halls: γ, n
- Prompt dose rates observed at the back of the Halls: up to ~10 rad/h photons, ~1 rem/h neutrons:

- Prompt dose rates downstream from the targets:
 - many kilorad/h photons (measured with Ion Chambers)
 - hundreds(?) rem/h neutrons (not measured)
Radiation Environment at Jlab (2)

- Radiation monitoring around C100 cryomodules: γ, n
- Dose rates observed at 1 foot, ~100 rad/h γ, ~10 rem/h n:

Photons
- RM-103(g probe 1) (mrad/h) - Tunnel Cryo Test

Neutrons
- RM-103(n probe 2) (mrem/h) - Tunnel Cryo Test

- JLab standard CARM probes do not survive for long
- Typical proportional neutron counters won’t work: long cables, high rates, sensitivity to gammas
- Need radiation-hard photon- and neutron-sensitive ICs with remote front-end and DAQ electronics
Original Idea (2016)

- Propose to use two small LND ICs, filled with 3He and 4He (10 atm gas pressure) placed together in a poly moderator, with lead or tungsten shield
- 4He and 3He: ~ 0.1 pA in 1 rad/h γ
- 3He: ~ 10 pA in 1 rem/h neutrons

LND 52120
Detector next to a thick target at 2.2 GeV

FLUKA: Showing energy density in the air, and in the detector.

The ratio of currents from 3He IC to 4He IC equals to 5.

Face Dose Rates (Total and Neutron):

![Energy Deposition (keV/cm³) per beam electron at 2 GeV, Z-Y middle plane](image)

- **Energy Deposition**
 - Total: 30 x
 - Neutron: 5 x
FLUKA Model, Be Loaded Moderator

LND 52120 Ionization Chambers, 10 atm

- 3He
- 4He
- Poly
- Al shell
- 10%BeCu shell
- Polyethylene shell

Cylindrical moderator assembly

Ion Chamber Quote: $(1350+750)$
Energy Dependence of Detector Response

Response to Neutron Dose Equivalent, Function of Energy

Response = Current in 3He IC minus current in 4He IC

Detector Current per Dose-Eq Rate (pA mSv$^{-1}$ h$^{-1}$)

Neutron Energy (GeV)

- Cylindrical moderator with Beryllium multiplier layer (BeCu)
- ±10%
- ±25%
- WENDI-type moderator (without Beryllium multiplier layer)
- Tungsten layer in place of BeCu
- Symmetrical (3He-, 4He-filled) Ion Chamber Neutron Detectors
Prototype Assembly Drawings

Triax 3He
HV \sim1kV
Triax 4He
HV leads

Detector core
Neutron converter
Poly moderator
Poly moderator and insulator

Signal leads
Guard leads

IC shells at HV
Electrical ground
Prototype Detectors
Detector cores in ~100 rad/h photon field

Keithley 6512 electrometer

Ion Chamber currents in gamma radiation field (approx. 100 rad/h)

Fill: 7372 Torr 3He and 228 Torr CO$_2$

Fill: 7600 Torr 4He

Detector 1

Detector 2
Detector cores in ~1 rem/h neutron field

3He Ion Chambers: 48.0 ± 1.0 pA

4He Ion Chambers: 0.17 ± 0.03 pA

(difference of about a factor 280)

Detectors #1 and #2 agree well within the errors
Full detector in ~10 mrem/h neutron field

Response to Neutron Dose Equivalent, Function of Energy

Response = Current in 3He IC minus current in 4He IC

- Cylindrical moderator with Beryllium multiplier layer: ±25%
- WENDI-type moderator (without Beryllium multiplier layer): ±10%
- Symmetrical (3He-, 4He-filled) Ion Chamber Neutron Detectors: AmBe source test result
Electronics front-end under development

Evaluation boards:

Logarithmic amplifiers ADL5304 by Analog Devices
Dynamic range from 1 pA to 3 mA
Summary

- Two JLab Invention Disclosures:
 - Neutron detector for use in strong gamma-radiation fields
 - Improving sensitivity and energy response of neutron detectors using moderators with embedded Beryllium-loaded materials

- Combined into the “NDX” detector design, solving the problems:
 - Neutron detection in the presence of overwhelming photon radiation fields, in particular at JLab:
 - around the C100 cryomodules at full gradients
 - at the experimental halls
 - Improving quality of the neutron ambient dose equivalent measurements at high neutron energies up to 10 GeV
 - Radiation hardness, large dynamic range, stability of the neutron detection, characteristic for Ion Chamber operation

- Preliminary prototype test results are in agreement with expectations
- Plans for deployment at JLab under development
Acknowledgements

Thanks to:

- Rolf Ent, Cynthia Keppel, Paulo Medeiros, Bogdan Wojtsekhowski, Matt Poelker
- Vashek Vylet, George Kharashvili, David Hamlette, Melvin Washington, John Jefferson
- Chris Cuevas, Armen Stepanyan
- William Lehnert (LND, Inc.)
Spherical Moderator Design

LND 52103 Ionization Chambers, 20 atm

\[^{3}\text{He} \quad ^{4}\text{He} \]

Polyethylene shell

10\%BeCu shell

Al shell

Poly

\[^{4}\text{He} \quad ^{3}\text{He} \]

Spherical moderator assembly

Same sensitivity

Better directional uniformity

Optimal weight of the moderator
Slide by Joseph C. McDonald (PNNL)
Figure 2: Response of the rem-counter WENDI-II from Thermo Eberline in comparison to the conversion function for the ambient dose equivalent. The data show the results of the MCNPX Monte-Carlo simulations from Olsher et al. [1] for the exposition of the detector from the side and from the end of the cylindrically shaped moderator.
References (incomplete)
