## Phase space - some recent experiments in beam physics

Beam Adapters or Phase Space Converters
Round to flat beam transformer FBT
\& transverse to longitudinal emittance exchange EEX

## H. Edwards

## Magic

to transform or produce by or as if by magic

- The Breakaway from conventional uncoupled systems (x, x'); (y, y'); (z, z')
- Round magnetized beam -> flat beam
- For $\sigma^{2}=\left\langle x^{2}\right\rangle=\left\langle y^{2}\right\rangle$, A transformer ratio
- $\varepsilon\left(x, x^{\prime}\right) ; \varepsilon\left(y, y^{\prime}\right)->A \varepsilon(\sigma, \sigma) ;(1 / A) \varepsilon\left(\sigma^{\prime}, \sigma^{\prime}\right) ;$
- Longitudinal <->transverse emittance exchange (EEX)
- $\varepsilon\left(x, x^{\prime}\right)->\varepsilon\left(z, z^{\prime}\right)$ and $\varepsilon\left(z, z^{\prime}\right)->\varepsilon\left(x, x^{\prime}\right)$


## Round to Flat Beam Transform (FBT)

- Conventional RF gun wisdom- The Bz field on the cathode must be $\sim$ zero or it will contribute to beam emittance

$$
\varepsilon_{n}=\frac{e B_{c} r_{c}^{2}}{8 m c^{2}}
$$

- Derbenev wisdom- Make the Bz field large on the cathode, solenoid field- Make an angular momentum dominated beam, vortex. It is a coherent motion


## Emittance angular momentum space charge

(a)

(b)

(c)

## references

- Ya. Derbenev, Univ. Mich UM-HE-98-04, Feb 98
- Ya. Derbenev, NIM A 441, 232-233, 2000
- R. Brinkmann, Ya. Derbenev, K Floettmann,
- Tesla note 99-09, April1999
- Epac 2000, Vienna; PR-ST AB, Vol 4, 053501, 2001
- A. Burov, V. Danilov, Fermilab TM-2043, 1998
- A. Burov, S. Nagaitsev, Fermilab TM-2114, June 2000
- A. Burov, Ya. Derbenev, S. Nagaitsev, Fermilab Pub-01-060-T, May 2001, Phys. Rev. E 66, 016503, 2003
- D. Edwards et al, E Thrane et al, Linac2000, PAC2001,Linac 2002
- K.J. Kim, PR-ST AB, Vol 6,104002, 2003
- K.J. Kim, PAC2007, TUYAB01
- YinE Sun, Thesis, Univ. Chicago, June 2005
- Y. Sun et al, PR-ST AB, Vol 7, 123501 2004, Linac 2004, pp150-`52, PAC 2005
- P. Piot, Y. Sun, PRL?, 2005


## Special Thanks to Yin E Sun for many view graphs \& illustrations for this talk

## A simple representation of the idea



Solenoid end field provides twist

Quad transformer with phase advance in $y \pi / 2$ different from $x$ $>$ line at 45 deg, does not rotate

Round-to-flat beam transformation: simple-minded model


## Derbenev's more complete transformation

$S=R_{45}^{-1}\left(\begin{array}{cc}M & 0 \\ 0 & N\end{array}\right) R_{45}, \quad$ where $R$ is 45 deg rotation, $\quad M, N 2 x 2$ matries
$M=-N \cdot F, \quad F=\left(\begin{array}{rr}0 & \frac{1}{k_{1}} \\ -k_{1} & 0\end{array}\right), \quad k_{1}=\sqrt{k^{2}+\frac{\sigma_{0}^{\prime 2}}{\sigma_{0}^{2}}}$

The betatron phase advance between M and N must be $\pi / 2$ The $\beta$ ' s, $\alpha$ ' s same at both ends

## The resulting emittance

for $\varepsilon_{0}=\sigma_{0} \sigma_{0}^{\prime}, \quad \sigma_{0}{ }^{2}=\left\langle x_{0}{ }^{2}\right\rangle=\left\langle y_{0}{ }^{2}\right\rangle$, etc for $\sigma_{0}^{\prime}$
$\varepsilon_{x}=\sqrt{\varepsilon_{0}{ }^{2}+\left(k \sigma_{0}{ }^{2}\right)^{2}}+k{\sigma_{0}}^{2}=\sigma_{0}{ }^{2}\left[\sqrt{\frac{\sigma_{0}^{\prime 2}}{\sigma_{0}{ }^{2}}+k^{2}}+k\right] \approx 2 k \sigma_{0}{ }^{2}$
$\varepsilon_{y}=\sqrt{\varepsilon_{0}{ }^{2}+\left(k \sigma_{0}{ }^{2}\right)^{2}}-k \sigma_{0}{ }^{2}=\sigma_{0}{ }^{2}\left[\sqrt{\frac{\sigma_{0}^{\prime 2}}{\sigma_{0}{ }^{2}}+k^{2}}-k\right] \approx \frac{\varepsilon_{0}{ }^{2}}{2 k \sigma_{0}{ }^{2}}=\frac{\sigma_{0}^{\prime}{ }^{2}}{2 k}$
$k$ the matching condition $k=\frac{e B_{z, c}}{2 p_{z}}=\frac{1}{\beta}$,
$" \approx "$ for $k \sigma_{0}{ }^{2}>\varepsilon_{0}, \quad k \gg \frac{\sigma_{0}^{\prime}}{\sigma_{0}}$
$\frac{\varepsilon_{x}}{\varepsilon_{y}} \approx \frac{\left(2 k \sigma_{0}{ }^{2}\right)^{2}}{\varepsilon_{0}{ }^{2}}=\frac{4 k^{2} \sigma_{0}{ }^{2}}{\sigma_{0}^{\prime}{ }^{2}}$, and $\varepsilon_{x} \varepsilon_{y}=\varepsilon_{0}{ }^{2}$
canonical angular momentum $L=\gamma m r^{2} \dot{\phi}+\frac{1}{2} e B_{z} r^{2}, \quad\langle L\rangle=e B_{c} \sigma_{0}^{2} \rightarrow 2 k \sigma_{0}^{2} p_{z}$
$\left(k=\frac{e B_{z, c}}{2 p_{z 2}} \frac{\sigma_{w}^{2}}{\sigma_{c}^{2}} \quad\right.$ if beam momentum at transformer is different from that at solenoid end $)$

Measurement of mechanical angular momentum in a drift space

$$
\langle L\rangle=2 p_{z} \frac{\sigma_{1} \sigma_{2} \sin \theta}{D}
$$





## Demonstration of conservation of canonical angular momentum

## as a function of magnetic field on cathode



Position and velocity snap shots at the entrance/exit of the transformer


Removal of angular momentum and generating a flat beam




## Compare measurement with simulation

| rms cathode(mm) | Experiment |  | $\begin{aligned} & \text { Simulation } \\ & \text { (ASTRA) } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | 90\% | 95\% |  |
|  | 0.97 |  | 0.97 |
| B_cathode(Gauss) | 898 |  | 898 |
| I_Quad1 (A) | -1.97 |  | -1.98 |
| I_Quad2 (A) | 2.56 |  | 2.58 |
| I_Quad3 (A) | -4.55 |  | -5.08 |
| rms_X7y (mm) | $0.58 \pm 0.01$ | $0.63 \pm 0.01$ | 0.77 |
| rms_X7x (mm) | $0.084 \pm 0.001$ | $0.095 \pm 0.001$ | 0.058 |
| rms_X8_hslit (mm) | $1.57 \pm 0.01$ | $1.68 \pm 0.01$ | 1.50 |
| rms X8 vslit (mm) | $0.12 \pm 0.01$ | $0.13 \pm 0.01$ | 0.11 |
| Lcath (mm mrad) |  | $24.5 \pm 0.7$ |  |
| Lmech (mm mrad) |  | $26.6 \pm 0.5$ |  |
| Emit-uncorrelated (mm mrad) |  | $5.1 \pm 0.7$ |  |
| $\varepsilon_{+}(\mathrm{mm} \mathrm{mrad})$ | $53.8 \pm 0.9$ |  |  |
| $\varepsilon_{-}(\mathrm{mm} \mathrm{mrad})$ | $0.49 \pm 0.13$ |  |  |
| $\varepsilon x$ (mm mrad) | $\underline{0.39 \pm 0.02(0.32)}$ | $\underline{0.49 \pm 0.02(0.41)}$ | 0.27 |
| $\varepsilon y$ (mm mrad) | $35.2 \pm 0.5$ | $41.0 \pm 0.5$ | 53 |
| $\varepsilon y / \varepsilon x$ | $90 \pm 5$ (110+-7) | $83 \pm 4(100+-5)$ | 196 |
| $(\varepsilon x \cdot \varepsilon y)^{0.5}$ | 3.7 (3.35) | 4.5 (4.1) | 3.8 mm mrad |
|  | (...) camera resolu | ion corrected |  |

## EEX

## not a Derbenev idea but akin in spirit References

- M. Cornacchia, P. Emma, PR-ST AB, Vol 5 084001, 2002
- K. J. Kim, A. Sessler, AIP Conf. Proc. No. 82, 2006
- K. J. Kim, PAC2007, Alburquerque, 2007
- P. Emma, Z. Huang, K. J. Kim, PR-ST AB, Vol 9 100702, 2006
- D. Edwards, Notes on transit in deflecting mode cavity, unpublished Aug 2007
- R. Fliller, et al. PAC2007, Alburquerque, 2007
- T. Koeth, PAC2007, Alburquerque, 2007,
- T. Koeth et al. EPAC2008, Genoa, 2008, Linac2008, Victoria, 2008
- T. Koeth, thesis, Rutgers Univ. May 2009
- Y. Sun, P. Piot, Linac2008, Victoria, 2008
- P. Piot, et al. Fermilab PUB-09-265-APC

Thanks to T. Koeth, A. Johnson, Y. Sun for many view graphs

## Emittance Exchange EEX



## EEX Thin Lens Approx (1)

Emittance exchange thin lens approximation.

Following the notation of D. Edwards (Ref ), let $\alpha$ be the bend of each magnet in a dogleg and $\mathrm{L}_{1}$ the distance between bends, then the dog leg matrix is given by

$$
M_{\operatorname{dog}}=\left(\begin{array}{cccc}
1 & L_{1} & 0 & \alpha L_{1} \\
0 & 1 & 0 & 0 \\
0 & \alpha L_{1} & 1 & \alpha^{2} L_{1} \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & D / \alpha & 0 & D \\
0 & 1 & 0 & 0 \\
0 & D & 1 & \alpha D \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where D is the dispersion. Let this be followed by a drift, $\mathrm{L}_{2}$ to a thin lens deflection mode cavity. The cavity matrix is given by

$$
M_{c a v}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & T & 0 \\
0 & 0 & 1 & 0 \\
T & 0 & 0 & 1
\end{array}\right)
$$

## EEX Thin Lens Approx (2)

Where for exchange $\mathrm{T}=-1 / \mathrm{D}=\frac{-1}{\alpha L_{1}}=\frac{\omega}{c} \frac{e V_{c a v}}{E_{\text {beam }}}$ and $\mathrm{V}_{\text {cav }}$ is the deflection strength of the cavity and $E_{\text {beam }}$ is the beam energy.
The total exchange

$$
M_{d o g} L_{2} M_{c a v} L_{2} M_{d o g}=\left(\begin{array}{cccc}
0 & 0 & -\frac{1}{\alpha}-\frac{L_{2}}{D} & -L_{2} \alpha \\
0 & 0 & \frac{-1}{D} & -\alpha \\
-\alpha & -\alpha L_{2} & 0 & 0 \\
\frac{-1}{D} & \frac{-1}{\alpha}-\frac{L_{2}}{D} & 0 & 0
\end{array}\right)
$$

In our geometry $\mathrm{D}=0.33 \mathrm{~m}$ and $\alpha=22.5$ deg.
For a finite length cavity, the $(4,3)$ element of the $\mathrm{M}_{\text {cav }}$ enters and the on diagonal (coupling) blocks start to show non zero values and will dilute the 2D emittances, especially the smaller one. The finite length cavity also causes the equilibrium orbit to follow a stair case trajectory through the cavity. These effects can be compensated to some extent by suitable choices of beam and cavity parameters.

## For a finite length cavity 43 element does not vanish

## Measured EEX Transport Matrix

TRANSPORT MATRIX AS A FUNCTION OF TM ${ }_{110}$ CAVITY STRENGTH
OUT $0-100 \%$, red model, green data fit.


Red on-diagonal $2 \times 2$ 's $->0$, except R43 finite length cavity The vertical plane is unaffected by the cavity status

## EEX Layout \& Recent Results



We determine the transverse emittances using the slit emittance technique [3]. Input $x$ and y measurements are made using the X3-X6 diagnostic cross pair. Output $x$ and $y$ values are determined from the X23-X24 cross pair. Longitudinal emittance measurements are made from the minimum energy spread as measured in the spectrometer magnets and the bunch length as determined at X9 and X24. The measured emittance growth is partially explained by the present longitudinal diagnostic's inability to account for longitudinal position-energy correlation. Other possible contributions to a greater than $1: 1$ emittance exchange include the non-ideal emittance exchange matrix, i.e. effects of the thick lens cavity, space charge forces and potential coherent effects, such as coherent synchrotron radiation.

## Piot \& Sun, Bunch trains w EEX

## simulation

Z vs x after mask Before EEX After EEX



Transversely shaped bunch

Longitudinal phase space
After mask After EEX After dog compress







## Longitudinal pulse shaping using EEX:

transverse density to energy modulation $\uparrow$
From simulations we know
the longitudinal phase space is chirped so the modulation is probably also present on the temporal profile.

RF $\quad 12 \mathrm{MV} / \mathrm{m}$
Gun Tesla Cavity


Beamat X3 (OTR)


## Longitudinal pulse shaping using EEX: direct measurement of temporal modulation



## Some Possible Applications

- ILC damping ring- flat to round in long straights (tune shift reduction) FBT
- ILC injector with Flat $\varepsilon x / \varepsilon y$ ratio ( do away with electron damping ring) FBT
- FEL emittance repartition for lower energy linac, shorter gain length FBT \& EEF
- Bunch compression w/o energy chirp EEX
- Micro bunching EEX

Combinations of FBT and EEX to change emittance partition in $x, y, z$

Examples: Kim, Carlsten, Zholents

## K. J. Kim Producing Matched e-Beams for X-Ray HG FEL

- Electron beam emittance should be matched to the radiation emittance: $\varepsilon_{x n} \sim \gamma \lambda / 4 \pi$
- For $1-\AA \AA$ with $\mathrm{E}=5 \mathrm{GeV}$, the matched emittance is $\varepsilon_{\mathrm{x}}{ }^{\mathrm{n}} \sim 0.1 \mu \mathrm{~m}$, which is smaller by an order of magnitude than the current state-of-the-art
- In current HGFEL projects, the mismatch is dealt with by a high $\mathrm{E}(>15 \mathrm{GeV})$, high K (3.7), and high current (a few kA)
- Noting that $\Delta \mathrm{E} / \mathrm{E}_{\text {slice }}<10^{-6}$, two orders of magnitudes smaller than required, the FBT and EEX can be employed to produce a matched beam



## Improved FEL Performance with matched beams

-Higher gain
-The same gain with smaller K
-Less magnets
-Lower energy


Power gain length $L G$ of an x-ray FEL at $0.4 \AA$ versus the undulator parameter $K$ for (a) a beam with a normalized transverse emittance $1 \times 10^{-6} \mathrm{~m}-\mathrm{r}$ and a peak current 3.5 kA and (b) a beam with a normalized transverse emittance $1 \times 10^{-7} \mathrm{~m}-\mathrm{r}$ and a peak current 1 kA . The relative rms energy spread in both cases is $1 \times 10^{-4}$ (courtesy of $Z$. Huang).

## B. Carlsten: What We Are Thinking For New Baseline Design for MaRIE 50 keV XFEL



## Zholents \& Zolotorev A schematic of the bunch compressor

(manipulate longitudinal phase space with ease of a transverse phase space)

Focusing properties of individual sections

$\mathrm{TM}_{010} \mathrm{TM}_{110} \mathrm{TM}_{010}$
Deflecting cavity

## No chirp case,

$M=$ magnification, $\xi=R_{56}$

$$
\sigma_{z_{f}}=\sqrt{\frac{\sigma_{z_{i}}^{2}}{m^{2}}+\xi^{2}\left(\frac{1}{m}+m\right)^{2} \sigma_{\delta_{i}}^{2}}
$$

$$
\sigma_{\delta_{f}}=m \sigma_{\delta_{i}}
$$

## Conclusions

- The dam has broken
- The fish are free
- Magic is in
- New ideas abound
- Thanks Slava
- Thanks to: D. Edwards, R. Fliller, A. Johnson, T. Koeth, A. Lumpkin, W. Muranyi, P. Piot, J. Ruan, J. Santucci, Y.-E Sun, R. Thurman-Keup

