Cascades in the Constituent Quark Model

Simon Capstick, Florida State University

Cascades@JLab, Dec. 1 2005-1

How can you find Tallahassee?

- Head SSW
- Stop when summer humidity(%) = T(°F) = wind speed (mph) = 95-100
- Try not to make jokes about elections, or Bushes

Cascade Baryons in the Constituent Quark Model

- SU(3)_f symmetry
 - Corrections substantial
- What is special about Cascades?
 - Lightest excited \(\mathbf{E}^*\) states may have narrow widths, why?
 - Configuration mixing weaker than in N/Δ
- QM predictions for spectrum and decays
 - Chao, Isgur & Karl: NR model, EME decay model
 - Relativized model, ³P₀ pair creation decay model
 - First $\Xi^*(\frac{1}{2}^+)$ [P₁₁] may be isolated and narrow
- Conclusions

Cascade baryons

- Three light (u,d,s) quarks have 27 possible flavor combinations
 - $3 \times 3 \times 3 = 3 \times (\overline{3} + 6) = 1 + 8 + 8' + 10$
 - (8,8') is flavor octet containing neutron and proton (mixed exchange symmetry) with spin $\frac{1}{2}$ ground states

Cascade baryons...

10 is flavor exchange symmetric

- Requires quark spin 3/2 for total anti-symmetry (ground states)
- All but Ω are higher-spin versions of octet states

Cascades@JLab, Dec. 1 2005-5

$SU(3)_{f}$ symmetry

- SU(3)_f symmetry is broken by the strangelight quark mass difference
 - Possible to describe strange baryons using an SU(3)_f symmetric basis
 - Not ideal, everything is strongly mixed
 - Better choice is "uds" basis where you (anti)symmetrize only in u,d quark degrees of freedom
 - Isospin much better symmetry than $SU(3)_f$
 - E.g.: ϕ_{Λ} = (ud-du)s/J2
 - ϕ_{Σ} = uus, (ud+du)s/ $\sqrt{2}$, dds
 - + In Ξ symmetrize only in ss pair, φ_{Ξ} = ssu, ssd

What is special about Cascades?

- Decays $\Xi^* \to \Xi \pi$ are suppressed relative to N, $\Delta \to N \pi$
 - Other channels involve K, which cuts down the available phase space
 - Leads to the possibility of narrow excited states

Why are some Cascades narrow?

- Example: $\Delta(1232)^{\scriptscriptstyle +} \to p\pi^0$ has width 120±5 MeV
 - But $\Xi^{*0}(1530) \rightarrow \Xi^0 \pi^0$ has width 9-10 MeV
- Some of this is phase space:
 - Decay momentum for $\Delta \rightarrow N\pi$ (P-wave) decay is 227 MeV
 - For $\Xi^*(1533) \rightarrow \Xi\pi$ (also P-wave) is 152 MeV

What is special about Cascades?

• |Flavor overlap factor|² smaller by 2

Cascades@JLab, Dec. 1 2005-9

Fewer degeneracies

- Three-body system has two 3-D relative coordinates
 - $\rho = (\mathbf{r}_1 \mathbf{r}_2)/\sqrt{2}$ $\lambda = (\mathbf{r}_1 + \mathbf{r}_2 - 2\mathbf{r}_3)/\sqrt{6}$ If all quark masses equal (N, Δ , Ω), excitation costs same energy for both

- Exchange symmetry requires two strange quarks at ends of ρ coordinate in Ξ states
 - Excitation of ρ costs less energy than λ if confinement potential flavor independent
 - E.g. in 3-D H.O. $\omega^2 = 3K/\mu$, so $\omega_{\rho} < \omega_{\lambda}$

Decay selection rules

- Ground state Ξ has $n_{\rho} = I_{\rho} = 0$ (= $n_{\lambda} = I_{\lambda}$)
 - If two strange quarks are spectators in a strong decay slike $\Xi^* \to \Xi \pi$ $\Xi^0 s$

• Those Ξ^* states with ρ excited should decouple from $\Xi\pi,$ which has the largest phase space

u

- Spoiled by mixing, but hyperfine small

S

u

ū

11

 Ξ^0

 π^0

Weaker hyperfine interactions

- Assume flavor-dependent short-range (contact) interactions
 - E.g. one-gluon exchange (DeRujula, Georgi, Glashow)

$$M = \sum_{i=1}^{3} m_i + \frac{2\alpha_s}{3} \frac{8\pi}{3} \langle \delta^3(\mathbf{r}) \rangle \sum_{i < j=1}^{3} \frac{\mathbf{S}_i \cdot \mathbf{S}_j}{m_i m_j}$$

 Hyperfine interactions progressively weaker because of explicit flavor dependence (seen in spectrum):

> 1/($m_{u,d} m_{u,d}$) (all three quark pairs) in N, Δ 1/($m_{u,d} m_s$) (2 pairs), 1/($m_{u,d} m_{u,d}$) (1 pair) in Λ , Σ 1/($m_{u,d} m_s$) (2 pairs), 1/($m_s m_s$) (1 pair) in Ξ

Patterns in Ξ^* spectrum and decays

- E.g. lightest $J^{P} = 7/2^{+} \Xi^{*}$ states (F₁₇)
 - Should have L=2 from I_{\rho}=2 (D_{\rho\rho}) or from I_{\lambda}=2 (D_{\lambda\lambda})
 - Lightest state should be $I_{\rho}=2$ ($\omega_{\rho} < \omega_{\lambda}$)
 - Splitting should be substantial
- Lightest state should decouple from $\Xi\pi,$ and so have small widths

Is this decoupling mechanism realistic?

- Examine stretched Λ and Σ excited states
 - Λ 5/2 = [(ud-du)s/√2] $\chi^{s}_{3/2} \Psi^{\rho}_{11}$
 - $\Sigma 5/2^{-} = [(ud+du)s/\sqrt{2}] \chi^{s}_{3/2} \Psi^{\lambda}_{11}$ (Suppressed totally AS color wvfn.) $\Psi^{\rho}_{11} = \alpha_{\rho}\rho_{+} \Psi_{00}, \quad \Psi^{\lambda}_{11} = \alpha_{\lambda}\lambda_{+} \Psi_{00}$
 - $\Psi_{00} = [\alpha_{\rho}^{3/2} \alpha_{\lambda}^{3/2} / \pi^{3/2}]$ exp{-(\alpha_{\rho}^{2} \rho^{2} + \alpha_{\lambda}^{2} \lambda^{2})/2}
 - s quark heavier, so $\omega_{\rho} > \omega_{\lambda}$ and $m_{\Lambda 5/2^{-}} > m_{\Sigma 5/2^{-}}$
 - Expt: $\Lambda(1830)D_{05} > \Sigma(1775)D_{15}$

Decoupling mechanism...

- $\rho\text{-type}$ spatial excitations in Λ should largely decouple from the NK state:
 - Λ(1830)D₀₅ has
 3-10% BR to NK
- λ-type should couple:
 - Σ(1775)D₁₅ has
 37-43% branch to NK

Chao, Isgur and Karl

- Use H.O. basis to N=2
 - 1st order perturbation theory in anharmonic terms (linear, Coulomb) in spin-independent potential
 - NR kinetic energy
 - 1st order perturbation theory in:
 - Hyperfine (spin-dipole/spin-dipole) interaction
 - Contact term (Δ -N, Σ - Λ ,...)
 - Tensor term (important mixings)
 - Spin-orbit term should be present, too large
 - » Some cancellations

CIK strong decays

- Use elementary-meson emission model
 - Pseudoscalar mesons emitted directly from quark lines
 - Parameters fixed by fit to N, Δ, Λ, Σ strong decays

Chao Isgur and Karl Ξ states (expt)

mass	state	JP	wvfn	$ A_{\Xi \pi} $ MeV ¹ / ₂	A _{AK}	A _{ΣK}	$\Sigma A_i ^2$ (MeV)
1785	[S ₁₁] ₁	1/2-	² P _ρ	3.6	4.2	3.7	44
1890	[S ₁₁] ₂	1/2-	${}^{4}P_{\lambda}$	5.5	0.8	2.2	36
1925	[S ₁₁] ₃	1/2-	²P _λ	1.5	1.4	5.4	33
1800 1820	[D ₁₃] ₁	3/2-	² P _ρ	1.6 1.5	3.6 2.7	3.9 2.7	31 <mark>24</mark>
1910	[D ₁₃] ₂	3/2-	$^{2}P_{\lambda}$	4.3	0.9	4.6	40
1970	[D ₁₃] ₃	3/2-	${}^{4}P_{\lambda}$	3.7	1.8	3.2	27
1920	[D ₁₅] ₁	5/2-	${}^{4}P_{\lambda}$	9.8	4.7	3.4	130

Chao Isgur and Karl Ξ states (expt)

mass	state	JP	wvfn	$ A_{\Xi \pi} $ MeV ¹ / ₂	A _{A K}	$ \mathbf{A}_{\Sigma \mathbf{K}} $	$\Sigma A_i ^2$ (MeV)
1695	[P ₁₁] ₂	1/2+	mixed	1.0	0.7	0.2	1.5
1950	[P ₁₁] ₃	1/2+	mixed	1.8	2.6	3.4	22
1530	[I]*	3/2+		4.5 3.2			20 10
1930	[P ₁₃] ₂	3/2+	² D _{pp}	0.1	2.1	4.3	23
1965	[P ₁₃] ₃	3/2+	~ ² S _{ρρ}	1.6	3.0	4.1	57
1935	[F ₁₅] ₁	5/2⁺	² D _{pp}	0.5	1.9	4.9	28
2110	[F ₁₅] ₂	5/2+	⁴ D _{ρρ}	0.8	3.0	2.5	16
2085	[F ₁₇] ₁	7/2+	⁴ D _{ρρ}	1.0	5.4	4.2	48
2195	[F ₁₇] ₂	7/2+	$^{4}D_{\lambda\lambda}$	8.6	1.1	1.0	76

Chao Isgur and Karl Ξ states...

- Recall:
 - Roper at 1440, width ~350 MeV
 - N(1710), width ~100 MeV
- Exciting prospect:
 - Roper-like state $\Xi[P_{11}]_2$ at ~ 1700 MeV
 - Isolated from negative-parity states at ~1800-1900 MeV, which have Γ = 25-50 MeV
 - Widely separated from its \(\mathbf{E}[P_{11}]_3\) partner at ~1950 MeV (width ~ 25 MeV)
 - Width of a few MeV:
 - Phase space; also $\Xi \pi \pi$ contribution small

Relativized model

- Variational calculation in large H.O. basis (with N. Isgur)
 - Flux-tube confinement, plus associated spin-orbit
 - Include OGE Coulomb, contact, tensor, spin-orbit
 - Relativistic KE, relativistic corrections in potentials, e.g.

$$\left(\frac{m_i m_j}{E_i E_j}\right)^{\frac{1}{2} + \epsilon_{\rm cont}} \frac{8\pi}{3} \alpha_s(r_{ij}) \frac{2}{3} \frac{\mathbf{S}_i \cdot \mathbf{S}_j}{m_i m_j} \left[\frac{\sigma_{ij}^3}{\pi^{\frac{3}{2}}} e^{-\sigma_{ij}^2 r_{ij}^2}\right] \left(\frac{m_i m_j}{E_i E_j}\right)^{\frac{1}{2} + \epsilon_{\rm cont}}$$

- Strong decays calculated in pair creation $({}^{3}P_{0})$ model
 - ³P₀ is popular phenomenological decay model
 - Has advantage that emitted mesons have structure
 - Can correlate many decays with very few parameters
- No new parameters for E decays (recent calculation with W. Roberts)

Simon Capstick, Florida State University

Cascades@JLab, Dec. 1 2005-23

Relativized-model Ξ states

- N/ Δ , Λ/Σ results show:
 - Average mass of light -ve parity excitations too light by ~50 MeV
 - Average mass of light +ve parity excitations too heavy by ~50 MeV
 - Splittings in -ve parity states too small when introduce strange quark
 - Effects of strange-quark mass on kinetic energy diluted by $(p^2+m^2)^{\frac{1}{2}}$

CI/CR Ξ states/decays (expt)

mass	state	JP	$ A_{\Xi \pi} $ MeV ¹ / ₂	A _{A K}	$ A_{\Sigma K} $	$\Sigma A_i ^2$ (MeV)
1755	[S ₁₁] ₁	1/2-	9.3	13.6	15.3	506
1810	[S ₁₁] ₂	1/2-	15.1	4.0	10.0	344
1835	[S ₁₁] ₃	1/2-	2.7	4.7	12.5	186
1785	[D ₁₃] ₁	3/2-	1.5 <mark>1.5</mark>	3.1 2.7	3.3 <mark>2.7</mark>	23 24
1880	[D ₁₃] ₂	3/2-	2.3	1.7	2.3	13
1895	[D ₁₃] ₃	3/2-	2.7	2.0	3.0	20
1900	[D ₁₅] ₁	5/2-	6.5	3.3	2.7	60

CI/CR Ξ states/decays (expt)

mass	state	JP	$ A_{\Xi \pi} $ MeV ¹ / ₂	A _{A K}	$ A_{\Sigma K} $	$\Sigma A_i ^2$ (MeV)
1840	[P ₁₁] ₂	1/2+	1.9	2.8	2.1	16
2040	[P ₁₁] ₃	1/2+	5.2	5.3	5.1	81
1530	[I]*	3/2+	3.2 <mark>3.2</mark>			10 10
2045	[P ₁₃] ₂	3/2+	4.9	7.6	6.7	127
2065	[P ₁₃] ₃	3/2+	1.7	5.1	10.5	110
2045	[F ₁₅] ₁	5/2⁺	0.3	0.9	2.6	8
2165	[F ₁₅] ₂	5/2⁺	1.4	2.1	0.2	6
2180	[F ₁₇] ₁	7/2+	1.5	3.1	2.3	17
2240	[F ₁₇] ₂	7/2+	5.0	0.2	0.0	25

Relativized-model Ξ states...

- Roper-like state $\Xi[P_{11}]_2$ may be at $\sim 1790~\text{MeV}$
 - May be close to lightest negative-parity states at ~1800-1900 MeV, lightest of which are still likely to have Γ = 25-50 MeV
 - Widely separated (200 MeV) from its $\Xi[P_{11}]_3$ partner at ~1990 MeV (width ~ 80 MeV)
 - Width 10-15 MeV

Conclusions and outlook

- It is likely that there are excited Ξ baryons that are relatively narrow
 - We need to calculate $\Xi^*(1530)\pi$ decays i.e. $\Xi\pi\pi$ final state
 - CIK did this already in elementary meson emission model
- It would be very interesting to see the lightest excited states in certain partial waves decoupling from the $\Xi\pi$ channel
 - Confirm flavor independence of confinement
- Semi-leptonic decays in progress
 - Muslema Pervin, W. Roberts & SC

Simon Capstick, Florida State University

Cascades@JLab, Dec. 1 2005-29