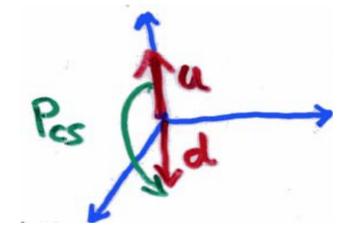
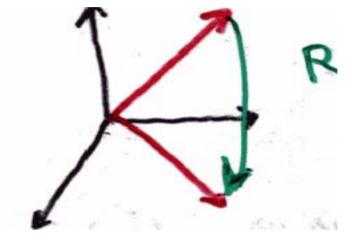
Charge Symmetry and Flavor Symmetry

G. A. Miller, UW

- Charge symmetry (u, d) Hadronic masses Relations for cross sections
- Flavor (Unitary) symmetry (u, d, s) SU(3) relations for cross sections, magnetic moments
 Effective field theory
 Relations for cross sections, ΞΞ interactions-strange nuclei

Charge Symmetry: QCD if $m_d = m_u$, L invariant under $u \leftrightarrow d$





SI invariant under

 $\left(\begin{array}{c} u'\\ d'\end{array}\right) = U\left(\begin{array}{c} u\\ d\end{array}\right)$

Isospin invariance [H,T_i]=0, charge independence of nuclear forces, CS does NOT imply CI Example- CS holds, charge dependent strong force

- $m(\pi^+)>m(\pi^0)$, electromagnetic
- causes charge dependence of ¹S₀ scattering lengths
- no isospin mixing

One π Exchange Potential is charge dependent, isospin conserving force Example: isospin and cross sections, IsoBrk is not CSB

- CI $\rightarrow \sigma$ (pd \rightarrow ³He π ⁰)/ σ (pd \rightarrow ³H π ⁺)=1/2
- NOT related by CS
- Isospin CG gives 1/2
- deviation caused by isospin mixing
- near η threshold- strong $\eta N \rightarrow \pi N$ contributes, not $\eta \rightarrow \pi$ mixing

Example – proton, neutron

- proton (u,u,d) neutron (d,d,u)
- m_p=938.3, m_n=939.6 MeV
- If $m_p = m_n$, CS, $m_p < m_n$, CSB
- CS pretty good, CSB accounts for m_n>m_p
- $(m_p m_n)_{Coul} \approx 0.8 \text{ MeV} > 0$, also gluon hyperfine
- m_d-m_u>0.8 +1.3 MeV
- nucleon mass difference is CSB NOT IB

updated version of <u>Miller Nefkens Sl</u>aus

hadron	I, J^P	quarks	mass (MeV)	d - u mass difference (MeV)
K^0	$1/2,0^{-}$	$d\bar{s}$	$497.648 {\pm} 0.022$	3.972 ± 0.027
K^+	1/2,0	$u\bar{s}$	493.677 ± 0.016	01012201021
K^{*0}	$1/2,1^{-}$	$d\bar{s}$	896.10 ± 0.027	4.44 ± 0.4
K^{*+}		$u\bar{s}$	$891.66\ \pm 0.026$	
D^-	$1/2,0^{-}$	$d\bar{c}$	1869.4 ± 0.05	4.78 ± 0.10
\bar{D}^0		$u\bar{c}$	1864.6 ± 0.5	
D^{*-}	$1/2,0^{-}$	$d\bar{c}$	$2010. \pm 0.5$	$3.3 {\pm} 0.7$
\bar{D}^{*^0}		$u\bar{c}$	2006.7 ± 0.5	
n	$1/2, 1/2^+$	ddu	$939.56536{\pm}0.00008$	1.293317 ± 0.000005
p		udu	$938.27203 {\pm} 0.00008$	
$\frac{p}{\Sigma^{-}}$	$1,1/2^+$	dds	$1197.449 {\pm} 0.030$	4.87 ± 0.035
Σ^0		uds	$1192.642 {\pm} 0.024$	
Σ^0	$1,1/2^+$	dds	$1192.642 {\pm} 0.030$	$3.27 {\pm} 0.07$
Σ^+		uus	$1189.37{\pm}0.07$	
Σ^{*-}	$1,3/2^+$	dds	1387.2 ± 0.5	3.5 ± 0.5
Σ^{*0}		uds	1383.7 ± 0.1	
Σ^{*0}	$1,3/2^+$	dds	1383.7 ± 0.5	0.9 ± 0.4
$\frac{\Sigma^{*+}}{\Xi^{-}}$		uus	1382.8 ± 0.4	
[<u>-</u>	$1/2, 1/2^+$	dss	1321.31 ± 0.13	6.48 ± 0.24
Ξ^0		uss	$1314.832{\pm}0.20$	
[=*	$1,3/2^+$	dss	1535.0 ± 0.6	3.2 ± 0.7
Ξ+		uss	1531.8 ± 0.3	

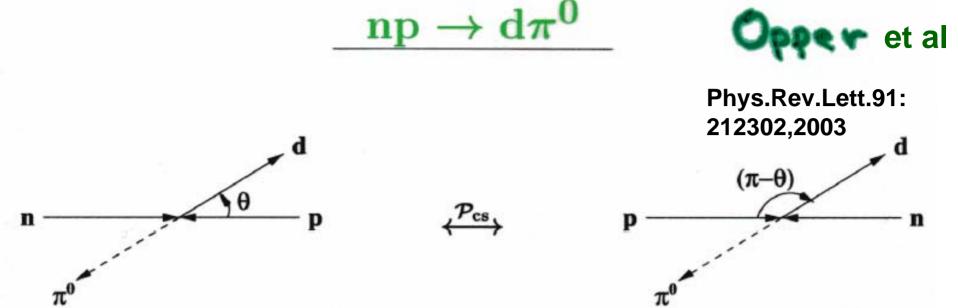
- All CSB arises from m_d>m_u & electromagnetic effects–
 Miller, Nefkens, Slaus, 1990
- All CIB, that is not CSB, is dominated by fundamental electromagnetism
- CSB studies quark effects in hadronic and nuclear physics

Importance of m_d-m_u

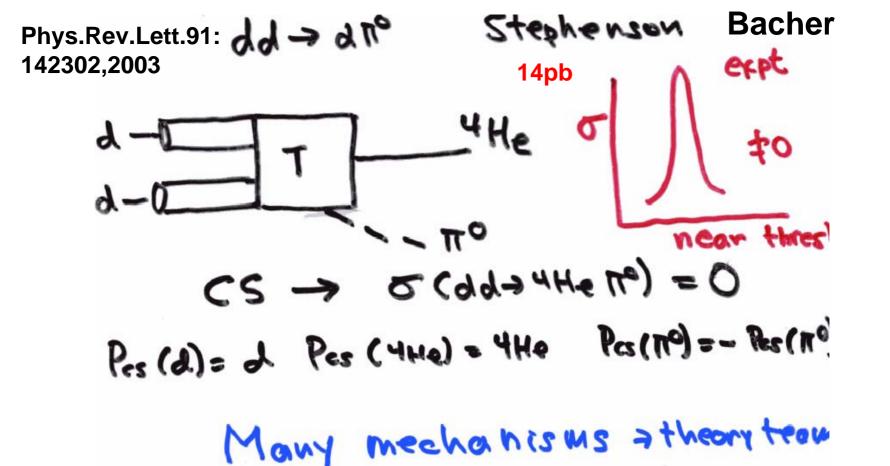
- >0, p, H stable, heavy nuclei exist
- too large, $m_n > m_p$ + Binding energy, bound n's decay, no heavy nuclei
- too large, Delta world: m(Δ++)<m(p) also m(Σ+)<m(p), strange world
- <0 p decays, H not stable
- Existence of neutrons close enough to proton mass to be stable in nuclei a requirement for life to exist, Agrawal et al(98)

Importance of m_d-m_u

- >0, influences extraction of sin²θ_W
 ν -nucleus scattering, ½ of NUTEV
 anomaly
- \approx 0, to extract strangeness form factors of nucleon from parity violating electron scattering
- hadronic vacuum polarization in g-2 of μ



$egin{aligned} A_{fb}(heta) &\equiv rac{\sigma(heta) - \sigma(\pi - heta)}{\sigma(heta) + \sigma(\pi - heta)} ext{ in cm} \ & \ A_{fb} eq 0 \leftrightarrow ext{CSB} & 17.2 \pm 8 ext{ (stat)} \pm 5.5 ext{ (sys)] } 10^{-4}, \end{aligned}$



Gardestig, Nogga, Fonseca, van Kolck, Horowitz, Hanhart, Niskanen

plane wave, simple wave function, $\sigma = 23$ pb

GOAL of CSB in np \rightarrow d π^0 , dd \rightarrow ⁴He π^0

- Use effective field theory (χ PT) to extract m_d - m_u at hadronic scale
- So far team of theorists has shown size of effects is natural

Flavor symmetry

•m_u=m_d<m_s breaking is

only in mass matrix

•Unitary symmetry SU(3)

•EFT –chiral Lagrangian

SU(3)

$$\begin{pmatrix} u' \\ d' \\ s' \end{pmatrix} = \widehat{U} \begin{pmatrix} u \\ d \\ s \end{pmatrix} \qquad \qquad \widehat{U} = I - i \sum_{i=1}^{8} \lambda_i \theta_i$$

$$\lambda_{1} = \begin{pmatrix} \mathbf{u} & \mathbf{d} & \mathbf{s} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \mathbf{lsospin}$$

$$\mathbf{u} & \mathbf{d} & \mathbf{s}$$

$$\lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

$$\mathbf{u} & \mathbf{d} & \mathbf{s}$$

$$\lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \quad \overset{\mathbf{c}}{\mathbf{o}}$$

3 independent SU(2) subgroups, $(\lambda_1, \lambda_2)(u, d)$ Isospin, (λ_4, λ_5) (u,s) Vspin,

 (λ_6,λ_7) (d,s) Uspin-conserves charge, photon is Uspin scalar

Uspin raising operator

- $d \rightarrow s$ $\Lambda, \Sigma \rightarrow \Xi$
- many states to be found
- will neutral Ξ 's always be lighter, than charged ?
- many questions is there E Roper –pionic effects suppressed ,maybe no Roper
- flavor exchange vs gluon exchange
- hybrids?
- di-quarks?

SU(3) flavor symmetry Coleman-Glashow 1961

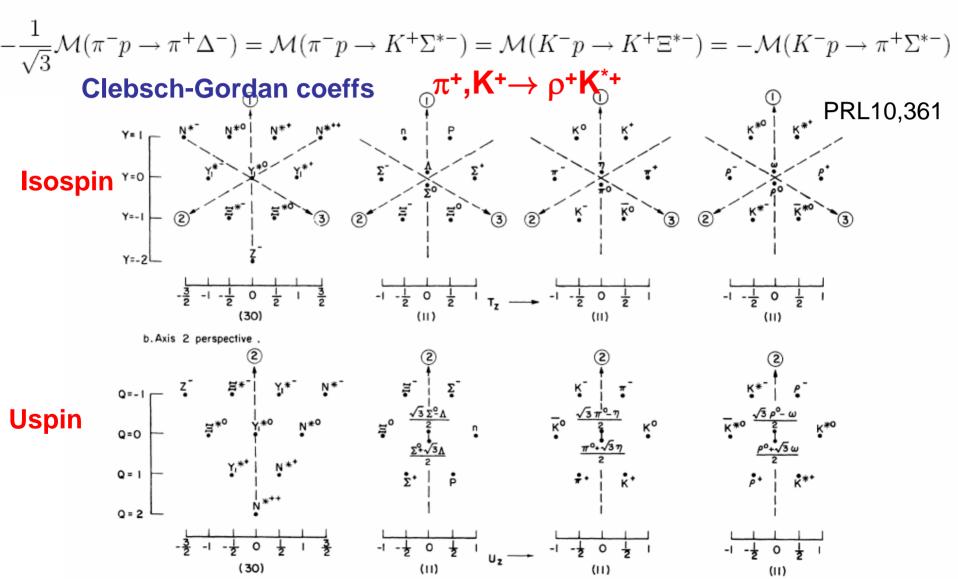
$$B_b^a = \begin{pmatrix} \Sigma^0 / \sqrt{2} + \Lambda / \sqrt{6} & \Sigma^+ & p \\ \Sigma^- & -\Sigma^0 / \sqrt{2} + \Lambda / \sqrt{6} & n \\ \Xi^- & \Xi^0 & -2\Lambda / \sqrt{6} \end{pmatrix}, \quad Q = \text{ diag } e[2/3, -1/3, -1/3]$$

$$Q_p^k B_k^r - Q_k^r B_p^k = [Q, B]_p^r = \begin{pmatrix} 0 & \Sigma^+ & p \\ -\Sigma^- & 0 & 0 \\ -\Xi^- & 0 & 0 \end{pmatrix}$$

 $BJ^{\mu}_{\rm em}B = \mu_1 q_{\nu} Tr(B\sigma^{\mu\nu}BQ) + \mu_2 q_{\nu} Tr(B\sigma^{\mu\nu}QB) + e_1 Tr(B\gamma^{\mu}BQ) + e_2 Tr(B\gamma^{\mu}QB)$

 $\mu(\Sigma^+) = \mu(p)$ 2.46 2.79 $\mu(\Lambda) = \frac{1}{2}\mu(n) -.96$ -.61 $\mu(\Xi^0) = \mu(n)$ $\mu(\Xi^{-}) = \mu(\Sigma^{-})$ -1.16 $= -(\mu(p) + \mu(n))$ -.65 -.88 -.66 $\mu(\Sigma^0) = \frac{1}{2}\mu(n)$ -.96 $\mu(\Sigma^0 \to \lambda \gamma) = \frac{1}{2}\sqrt{3}\mu(n)$ -1.61 -1.65 **Cloudy Bag Model** Hope to predict electromagnetic interactions need chiral loops +

U-spin conservation and strong reactions-Meshkov, Levinson, Lipkin



New applications Nefkens' reactions

- $\pi p \rightarrow \eta n$
- initial U,U₃=1,1, final η (0,0) n(1,1)
- **K**·**p** $\rightarrow \eta \Lambda$
- final ∧ U,U₃=(1,0)
- both reactions have U = 1
- amplitude for K⁻p to have U=1 is C-G coefficient 2^{-1/2}

reaction matrix $|M(K^{-}p)|^{2} = \frac{1}{2} |M(\pi^{-}p)|^{2}$ Nefkens $\sigma_{max}(\pi^{-}p) = 2.6 \pm 0.3, \sigma_{max}(K^{-}p) = 1.4 \pm .2,$ agrees

New applications Nefkens' reactions

- $\Box \pi^{-}p \rightarrow N^{*}(1440) \rightarrow \pi^{0}\pi^{0}n$
- K⁻p $\rightarrow \Lambda$ (1600) $\rightarrow \pi^0 \pi^0 \Lambda$
- K⁻p $\rightarrow\Sigma$ (1660) $\rightarrow\pi^{0}\pi^{0}\Sigma^{0}$
- intermediate states members of same octet, (56,0⁺₂) amplitudes related
- $\Box \pi^{-}p \rightarrow N^{*}(1535) \rightarrow \pi^{0}\pi^{0}n$
- K⁻p $\rightarrow \Lambda$ (1670) $\rightarrow \pi^0 \pi^0 \Lambda$
- K⁻p $\rightarrow\Sigma$ (1620) $\rightarrow\pi^{0}\pi^{0}\Sigma^{0}$
- intermediate state members of another octet,
- (70,1⁻) amplitudes related

Electromagnetic interactions $SU(3) \times SU(3)$ chiral PT

- Electromagnetic versions of Meshkov, Levinson, Lipkin relations –PRL7,81(63)
- photon is U spin scalar- selection rules
- χ ΡΤ
- $\gamma p \rightarrow K^0 \Sigma^+$, $K^+ \Sigma^0$, $K^+ \Lambda$ in three flavor heavy baryon chiral perturbation theory to one loop, Steininger and Meissner, 3 amplitudes related by CG
- reaction calculations for Ξ needed

Unitary (flavor) symmetry for baryon-baryon interactions

• EFT calculation of Savage, Wise

 $B = \begin{bmatrix} \Sigma^0 / \sqrt{2} + \Lambda / \sqrt{6} & \Sigma^+ & p \\ \Sigma^- & -\Sigma^0 / \sqrt{2} + \Lambda / \sqrt{6} & n \\ \Xi^- & \Xi^0 & -\sqrt{\frac{2}{3}}\Lambda \end{bmatrix}$

 $-rac{c_5}{f^2} \operatorname{Tr}(B_i^{\dagger} B_i) \operatorname{Tr}(B_j^{\dagger} B_j)$

 $-\frac{c_6}{f^2} \operatorname{Tr}(B_i^{\dagger} B_j) \operatorname{Tr}(B_j^{\dagger} B_i)$.

$$\Pi = \begin{bmatrix} \pi^{0}/\sqrt{2} + \eta/\sqrt{6} & \pi^{+} & K^{+} \\ \pi^{-} & -\pi^{0}/\sqrt{2} + \eta/\sqrt{6} & K^{0} \\ K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}}\eta \end{bmatrix}$$
$$\xi = \exp\left(\frac{i\Pi}{f}\right) \qquad V_{\mu} = \frac{1}{2}(\xi^{\dagger}\partial_{\mu}\xi + \xi\partial_{\mu}\xi^{\dagger})$$

$$A_{\mu}=rac{i}{2}(\xi^{\dagger}\partial_{\mu}\xi-\xi\partial_{\mu}\xi^{\dagger})$$

 $\mathcal{L} = \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \cdots$

 $\mathcal{L}^{(1)} = \operatorname{Tr} B_{j}^{\dagger} i \partial_{0} B_{j} + i \operatorname{Tr} B_{j}^{\dagger} [V_{0}, B_{j}]$ $-D \operatorname{Tr} B_{j}^{\dagger} \vec{\sigma}_{jk} \{\vec{A}, B_{k}\} - F \operatorname{Tr} B_{j}^{\dagger} \vec{\sigma}_{jk} [\vec{A}, B_{k}]$ $\mathcal{L}^{(2)} = -\frac{c_{1}}{f^{2}} \operatorname{Tr} (B_{i}^{\dagger} B_{i} B_{j}^{\dagger} B_{j}) - \frac{c_{2}}{f^{2}} \operatorname{Tr} (B_{i}^{\dagger} B_{j} B_{j}^{\dagger} B_{i})$ $-\frac{c_{3}}{f^{2}} \operatorname{Tr} (B_{i}^{\dagger} B_{j}^{\dagger} B_{i} B_{j}) - \frac{c_{4}}{f^{2}} \operatorname{Tr} (B_{i}^{\dagger} B_{j}^{\dagger} B_{j} B_{i})$ Lowest order potential

Ξ N, Ξ Ξ interactions • Evaluate Lagrangian

$$\mathcal{L}^{(2)} \rightarrow \left(c_1 + c_5 + (c_2 + c_6)\frac{1}{2}\right) \left((\Xi^{\dagger}\Xi)^2 + (N^{\dagger}N)^2\right) + (c_2 + c_6)\frac{1}{2} \left(\Xi^{\dagger}\sigma\Xi \cdot \Xi^{\dagger}\sigma\Xi + N^{\dagger}\sigmaN \cdot N^{\dagger}\sigmaN\right) \\ + 2(c_3 + c_4\frac{1}{2})\Xi^{\dagger}N^{\dagger}N\Xi + 2c_4\frac{1}{2} \left(\Xi^{\dagger}\sigmaN \cdot N^{\dagger}\sigma\Xi\right)$$

$\Xi\Xi$ short range potential same as NN

${}^{1}S_{0}$ channel – OPEP is small for NN

NN scattering length a =-17.3 fm

If $\Xi\Xi \ ^1S_0$ POTENTIAL same as for NN:

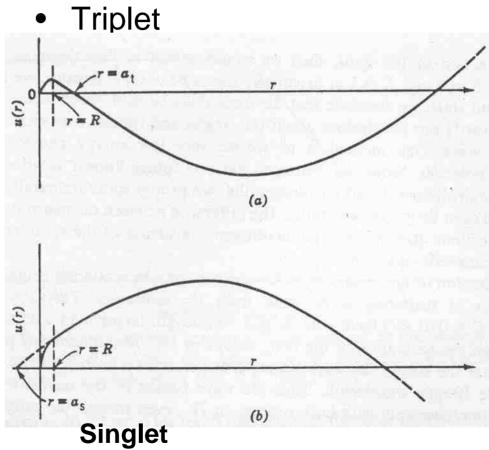
there will be a BOUND STATE dibaryon S=-4, decays

weakly $\Xi \Lambda \pi$

Wf for NNTriplet and Singlet Scattering

- (a) Wf for triplet np scattering, neutron energy 200 keV, well radius 2.1 fm. Positive scattering length
- (b) Wf for negative scattering length

Increase reduced mass bends wave into well causes singlet binding $\approx~10~\text{MeV}$



ΞΞ binding many astrophysical consequences-quark stars, strangelets etc

• Witten, Bodmer

neutron star

- many searches at BNL, no findings
- but d,s,u ratios different with this mechanism

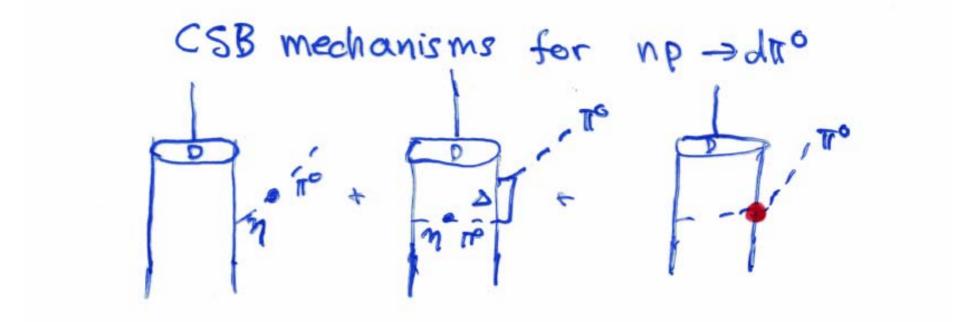
Finding $\Xi\Xi$ bound states

- γ⁻D→(ΞΞ) 4K threshold
 photon energy 5 GeV (thanks to R Jones)
- KD →(ΞΞ) 3K ?
- RHIC (Huang) can detect decay products $\Xi\Lambda$

Summary of flavor symmetry

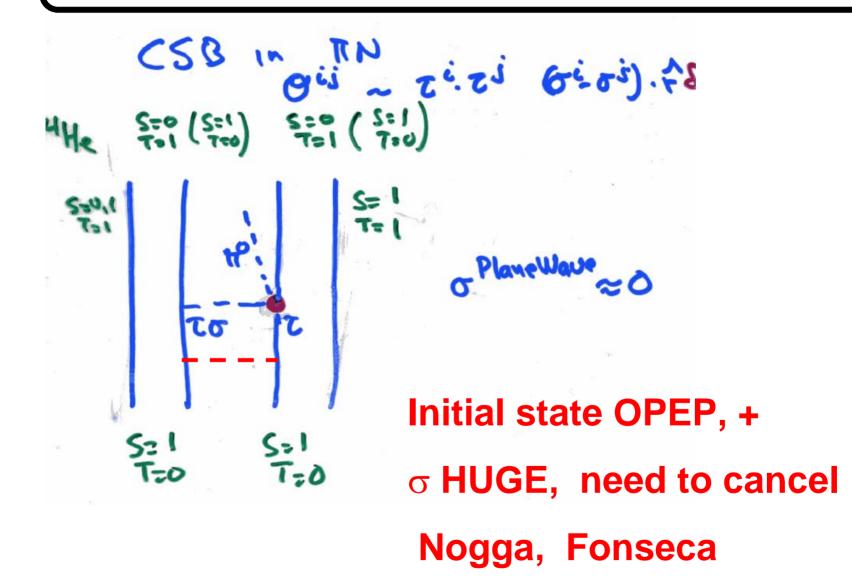
- many states should exist that have not been seen
- many doublet mass differences to study
- U spin conservation predicts ratios of cross sections
- chiral SU(3) EFT predicts ΞΞ bound state

EXTRAS FOLLOW



Von Kolck Niskomen Miller (2000) - 0.28, - 0.87 from Old strong int. calc.

Initial state interactions



Survey of charge symmetry breaking operators for $dd \rightarrow \alpha \pi^0$

A. Gårdestig* and C. J. Horowitz et al

The relative proportions of the pion-exchange (δM) $-\frac{1}{2}\delta M$, photon-exchange, ρ - ω -mixing, and π - η -mixing (sum of one-body and HMEC) contributions to the matrix element are roughly π : γ : ρ - ω : π - η =1:11:12:21. Thus the forplane wave, Gaussian w.f. photon in NNLO, LO not included 23 pb vs 14 pb

Initial state LO dipole γ exchange

d*(T=1,L=1,S=1), d*d OAM=0, π emission makes dd component of He, estimate using Gaussian wf

³P₀

Theory requirements: $dd \rightarrow {}^{4}He\pi^{0}$

- start with good strong, csb $np \rightarrow d\pi^0$
- good wave functions, initial state interactions-strong and electromagnetic
- great starts have been made