Apologia

- I am comfortable with counting up to 2. Hence, I have spent the last 20 years with **mesons**.
- Counting 3 is too much for me. Hence, I know little about **baryons**.
- About Cascades I know even less. Only what is in the PDG:

- 12 Cascades are listed with $M = 1315 - \sim 2500$ MeV. Only 7 have 4 or 3 stars. Only 4 have J^{π} determined.

- $-4 \text{ or } 3 \text{ star ones have widths} \leq 50 \text{ MeV}.$
- Most were formed with kaon beams.
- Most were studied in $\Lambda\pi$ and ΛK decays.

End of my knowledge of Cascades.

• So let me move on to GSI, which is what Ben Nefkens asked me to talk about.

Cascading down to GSI Gesellschaft für Schwerlonenforschung

Kamal K. Seth Northwestern University, Evanston, IL 60208, USA (kseth@northwestern.edu)

The Past and Present GSI

- Founded in 1969 to do heavy-ion research.
- Consists of 3 major accelerator complexes
 - UNILAC (< 15 MeV/c)
 - SIS Schwerionen Synchrotron (1–2 GeV/u)
 - ESR Experimental Storage Ring (< 0.8 GeV/u)
- Staff of 850, including 300 scientists and engineers

Research Programs

- Nuclear and Atomic Physics
 - famous for superheavy element discoveries
- Plasma Physics
- Materials Research
- Biophysics and Cancer Therapy

The Future GSI (FAIR)

Facility for Antiproton and Ion Research

• Approved by German Govt. on Feb 6, 2003, for

Infrastructure	226 million euros
Accelerator	265 million euros
Experiments, Detectors	185 million euros
TOTAL	675 million euros $=$ \sim \$800 million

- Physics Program
 - Nuclear Structure (radioactive beams)
 - Nuclear Matter (heavy ion physics)
 - Plasma Physics (astrophysics)
 - Atomic Physics (QED of strong fields)
 - ANTIPROTON PHYSICS
 - (340 physicists from 47 institutes and 16 countries)
 - * GeV region (PANDA)
 - * Low energy region (FLAIR)

FAIR: Users, Costs and Schedules

COSTS

Building and infrastructure:	225 Mio. €
Accelerator:	265 Mio. €
Experimental stations / detectors:	185 Mio. €
Total:	675 Mio. €

SCHEDULE

J. Marton, ÖPG-FAKT, Weyer, September 27, 2004

PANDA

PANDA is an experiment that will use a very high intensity p beam with momentum from 1.5 GeV/c up to 15 GeV/c on a fixed proton target : \sqrt{s} from 2.25 up to 5.47 GeV

It will continue and extend the successful physics program initiated at facilities like LEAR at CERN and FERMILAB

Physics topics covered in PANDA

- Charmonium
- Exotics : hybrids, glueballs and other exotics
- Mesons in nuclear matter
- Charmonium absorption in nuclear matter
- Hypernuclear physics
- Open charm factory : CP violation, and D physics
- Crossed-channel Compton scattering and related exclusive processes
- Electromagnetic form factors of the proton in the time-like region

The PANDA detector

Detector requirements

- full angular acceptance and angular resolution for charged particles and γ , π^0
- particle identification (π , K , e, μ) in the range up to ~ 8 GeV/c
- high momentum resolution in a wide energy range
- high rate capabilities, especially in interaction point region and forward detector : • expected interaction rate ~ 10^7

The PANDA detector

Target region Spectrometer

also wire targets or foil targets for nuclear target physics

carbon target interleaved with silicon detector for hypernuclear physics

- beam of p of momentum from 1.5 up to 15 GeV/c
- proton pellet target (or gas jet target) •
- Micro Vertex Detector •
- Inner Time of Flight detector (still under discussion) •
- Tracking detector : Straw Tubes Tracker or TPC •
- DIRC •
- Electromagnetic Calorimeter •
- 2 Tesla solenoid •
- scintillation muon counters •
- 2 stations of Multiwire Drift Chambers

The pellet target

- To achieve design luminosity required effective target thickness of 3.8x10¹⁵ atoms/cm²
- Frozen droplets of hydrogen (pallets) successfully operating at CELSIUS/WASA facility very close now to requirements (2.8x10¹⁵ atoms/cm²), still working to reach goal
- pellet beam pipe 6 mm diameter

Charged particle identification for angles < 22°: the forward Dirc and the Rich

Forward DIRC present design ideas : fused silica (n= 1.47) read out by 2304 pixels 10mm x 5° + 864 pixels 10mm x 10° lower momentum π/K separation ~ 1 GeV/c upper momentum π/K separation : 10 GeV/c at $\theta = 0$, 5 GeV/c at $\theta = 25^{\circ}$

RICH present design ideas :

3rd generation aerogel, hydrophobic, > 80% transmittance and no Hermes 'meniscus' difect read out : new type of multipixel hybrid photocatode GaAsP photocatode (60% q.e. in 300-700 nm range) multipixel avalanche diode, 64 pixels 2mm x 2mm, with < 100 ps time resolution in 1.5 T field</p>

Charged particle identification : dE/dx, ToF

dE/dx measurements to separate $\pi/K/p$ typically below 800 MeV/c If TPC will be implemented, it will be ideal device but also Straw Tubes since working in proportional mode and the MicroVertex Detecor pixels can measure dE/dx

Time of Flight in the Target Region

A cylindrical Time of Flight scintillation counter is placed around the DIRC 96 strips of fast scintillator like BC404 : decay constant 1.8 ns thickness 0.5 cm mechanically mounted together with DIRC phototubes : channel plate photomultipliers, can work up to 2.2 Tesla field π/K separation at 3 σ level up to 430 MeV/c at $\theta = 90^{\circ}$ and up to 760 MeV/c at $\theta = 22^{\circ}$

Gianluigi Boca, Rio de Janeiro, Brazil, 21-26 Aug 2005

The PANDA detector : the EM calorimeters

Required fast, high resolution, radiation hard scintillator for γ between 20 MeV - 4 GeV Presently favored solution : PbWO₄ (PWO) crystals 2×2 cm² × 22 X₀ read out by APD's used for the presence of strong magnetic field. Expected resolutions of < 2%/ \sqrt{E} + 1% Central Barrel

Barrel : 2.5 m long, 0.54 m radius, 11360 crystals upstream end cap : 0.34 m radius, 816 crystals, segmentation in 16 slices

downstream end cap : 1 m radius, 6864 crystals

Charm Quark Spectroscopy

- Charmonium
 - Precision spectroscopy of charmonium ($c\bar{c}$) spin-singlets, $\eta_c(1^1S_0)$, $\eta'_c(2^1S_0)$, $h_c(1^1P_1)$, which were only recently discovered at CLEO
 - High resolution spectroscopy above $D\overline{D}$ threshold, at 3.73 GeV. Identify narrow radial excitations and higher charmonia.
 - Spectroscopy of open charm ($c\bar{u}$, $\bar{c}d$, $\bar{c}s + c\bar{s}$)
- Glueballs and Hybrids

Advantages:

- Expect 1.5 fb⁻¹ luminosity/yr (FNAL $\times 10$)
- $\Delta p/p \approx 10^{-5}$ (FNAL/10)
- Charged particle identification (FNAL none)
- Hermeticity > 90% (FNAL < 50%)

Cascades

- The only mention of cascades in the present program is in relation to hypernuclear physics
- The main goal is to study $\Lambda\Lambda$ hypernuclei (only 6 known)

$$p\bar{p} \rightarrow \Xi^{-}\overline{\Xi}^{+}$$

$$\Xi^{-} + {}^{A}Z \rightarrow {}^{A+1}_{\Lambda\Lambda}(Z-1)^{*} \rightarrow {}^{A+1}_{\Lambda\Lambda}(Z-1) + \gamma \rightarrow {}^{A+1}(Z+1) + \pi^{+}\pi^{-}$$

Anticascade is used as tag. γ 's detected with high resolution Ge detector, and $\pi^+\pi^-$ in main detector.

$$\sigma(p\bar{p} \to \Xi^{-}\overline{\Xi}^{+}) = 2 \ \mu b \text{ at } \sim 3 \ \text{GeV}/c$$

$$\sigma(\bar{p}A \to \Xi^{-}\overline{\Xi}^{+}) = A^{2/3}\sigma(p\bar{p} \to \Xi^{-}\overline{\Xi}^{+})$$

using ${}^{12}C$ wire target expect $\sim 700 \ \Xi^{-}\overline{\Xi}^{+}/\text{sec.}$

- Can certainly do cascade spectroscopy, all the way to $\Xi(2500)$. $\Lambda \overline{K}$, $\Lambda \pi$, $\Sigma \overline{K}$, $\Sigma \pi$ decays can be measured with precision.
- Need enthusiasts to put it on the map for 2014.