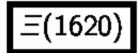
The E(1620) revisited. Hidden exotics?

Igor Strakovsky The George Washington University


Based on work in collaboration with

R. Arndt, Ya. Azimov, R. Workman

- What we know about ±(1620) [exp]
 - Previous evidence
 - CLAS evidence?
- Possible nature of ±(1620)
- Possible unitary partners
- Summary

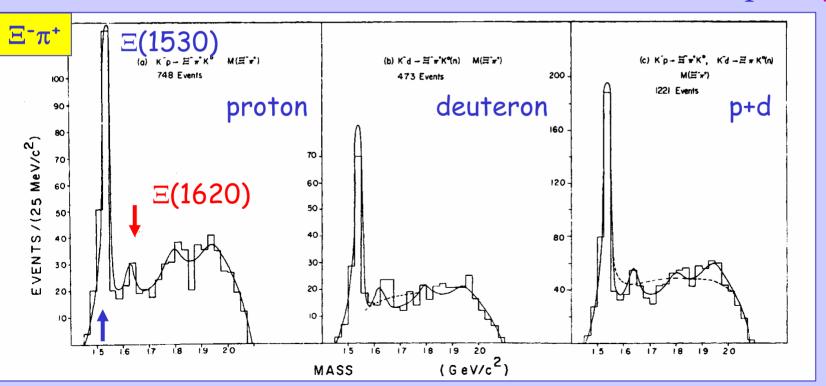
PDG2005: $\Xi(1620)$ $I(J)^{P} = 1/2(?)^{?}$

Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) and 2005 partial update for edition 2006 (URL: http://pdg.lbl.gov)

$$I(J^P) = \frac{1}{2}(?^?)$$
 Status: *

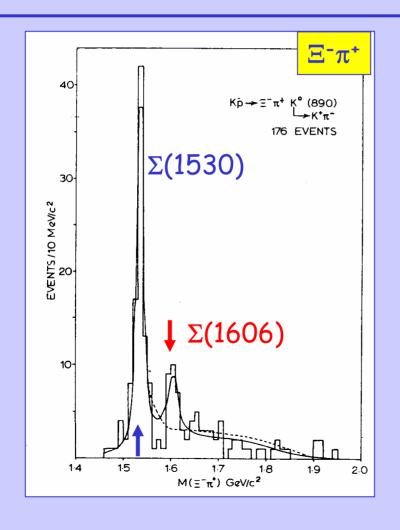
J. P need confirmation. & determination

OMITTED FROM SUMMARY TABLE

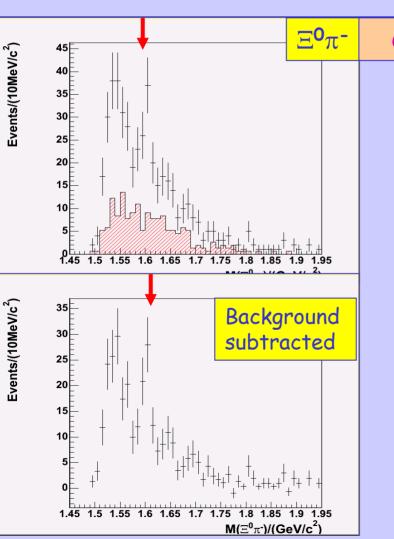

What little evidence there is consists of weak signals in the $\Xi\pi$ channel. A number of other experiments (e.g., BORENSTEIN 72 and HASSALL 81) have looked for but not seen any effect.

		=(1620) MASS	•	
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
≈ 1620 QUR ESTI	MATE			
1624 ± 3	3 1	BRIEFEL 7	7 HBC	K ρ 2.87 GeV/c
1633 ± 12	34	DEBELLEFON 7	5B HBC	$K^- \rho \rightarrow \Xi^- \overline{K} \pi$
	20	ROSS 7	2 HBC	K = p 3.1-3.7 GeV/c
1606± 6	29	1,033	2 1100	p 4.12 4.7 001/2
1606± 6	29	≘(1620) WIDTI		p 4.2 4.7 222,2
1606 ± 6	EVTS			COMMENT
		E(1620) WIDTI	Н	· ·
VALUE (MeV)	EVTS	≡(1620) WIDTI	Η <u>τεαν</u> 17 ΗΒC	COMMENT

Ξ (1630) via K⁻p $\rightarrow\Xi^-\pi^+$ K⁰ at BNL


[Briefel et al. PRD16, 2706(1977)]

- P_{π} =2.87 *GeV/c*
- M = 1624 ± 3 MeV Γ = 22.5 MeV

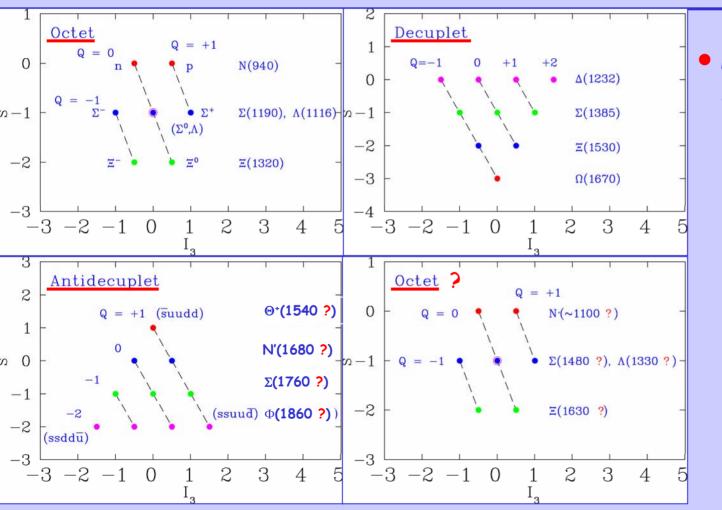

$\Xi(1606)$ via K⁻p $\rightarrow\Xi^-\pi^+$ K⁰ at CERN

[Ross et al. PL38B, 177(1972)]

- P_{π} =3.13, 3.30, 3.58 GeV/c
- M = 1606±6 MeV Γ = 21±7 MeV

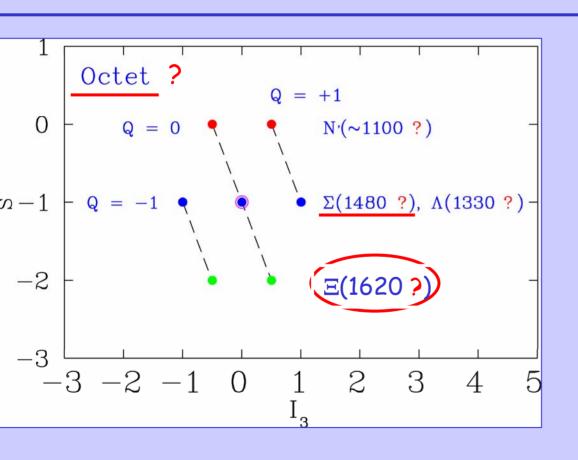
Ξ (1620) via $\gamma p \rightarrow K^+K^+\pi^-(\Xi^0)$ at JLab Hall B [g11] [Lei Guo, Weygand, Nstar2005]

CLAS Preliminary


• M = 1620 MeV Γ ~ 30 MeV

• $\gamma p \rightarrow K^+ K^+ \pi^- (\Xi^0)$ [g6c] analysis has been presented by Weygand

Possible Nature of $\Xi(1620)$


- 10 is predicted to be 1/2+ (P-wave)
 Where is the ground (5-wave) state (1/2-)?
- If this state is analogue to 10
 then its intrinsic structure must be different,
 and its flavor structure must be different as well,
 could be 8
- There is no prediction of 1/2 in ChSA (no predictions for the negative parity at all)

Unitary SU(3)_F Multiplets

 Mixing is able to shift some masses

Completeness of Unitary Multiplets

- If $\Xi(1620)$ exists, then there is no slot for it among 3q states
- It could be a good candidate for S-wave partner of 10
- $\Sigma(1480)$, if exists, looks to be a good partner of $\Xi(1620)$

Possible Unitary Octet with $\Xi(1620)$

[Azimov, PL32B, 499(1970); Azimov, Arndt, IIS, Workman, PRC68, 045204(2003)]

State	Mass	Width	Decay Modes	Hadron		
	(MeV)	(MeV)		I	Production	
				Xsections		
N'	~1100 ?	< 0.05	Νγ?	< 10	⁻⁴ of "normal"	
Λ	1330 ?		$\Lambda\gamma$		$\sim 10 \mu b$	
Σ	1480	30-80 ?	$\Lambda\pi,\Sigma\pi,{ m N}ar{K}$	1	$\sim 10 \mu b$ $\sim 1 \mu b$	
Ξ	1630	20-50 ?	$\Xi\pi$		$\sim 1 \mu b$	

- PR Xsection has additional $\sim \alpha/\pi$ factor
- EPR has $\sim (\alpha/\pi)^2$

On the base of positive observations

PDG2005: $\Sigma(1480)$ I(J)^P =1(?)? *

Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) and 2005 partial update for edition 2006 (URL: http://pdg.lbl.gov)

 Σ (1480) Bumps

$$I(J^P) = 1(??)$$
 Status: *

OMITTED FROM SUMMARY TABLE

J, P need determination

Σ(1480) MA\$\$	
(PRODUCTION EXPERIMENT	ITS)

					V		
//	LUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
¥	1480 OUR ESTIMATI	E					
	1480	120	ENGELEN	80	HBC	+	$K^- \rho \rightarrow$
							$(ho \overline{K}{}^0)\pi^-$
	1485 ± 10		CLINE	73	MPWA	_	$K^-d \rightarrow$
				-			$(\Lambda\pi^{-})\rho$
	1479 ± 10		PAN	70	HBC	+	$(\Lambda \pi^{-})\rho$ $\pi^{+}\rho \rightarrow$
							$(\Lambda \pi^{+})K^{+}$ $\pi^{+} \rho \rightarrow (\Sigma \pi)K^{+}$
	1465 ± 15		PAN	70	HBC	+	$\pi^+ \rho \rightarrow$
							$(\Sigma\pi)K^+$
							. ,

Σ(1480) WIDTH (PRODUCTION EXPERIMENTS)

		•			+	'	
VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
80±3	20	1 20	ENGELEN	80	нвс	+	$\frac{K^-\rho \rightarrow}{(\rho \overline{K}^0)\pi^-}$
40±2	20		CLINE	73	MPWA	_	$K^-d \rightarrow (\Lambda\pi^-)\rho$
31±1	5		PAN	70	нвс	+	$\pi^+ \rho \rightarrow (\Lambda \pi^+) K^+$
30±20			PAN	70	нвс	+	$(\Lambda \pi^{+}) K^{+}$ $\pi^{+} \rho \rightarrow (\Sigma \pi) K^{+}$

Σ (1480) via pp \rightarrow pK $^+$ Y *0 at COSY-ANKE

[Zychor et al. PRL (2005) in press; nucl-ex/0506014]

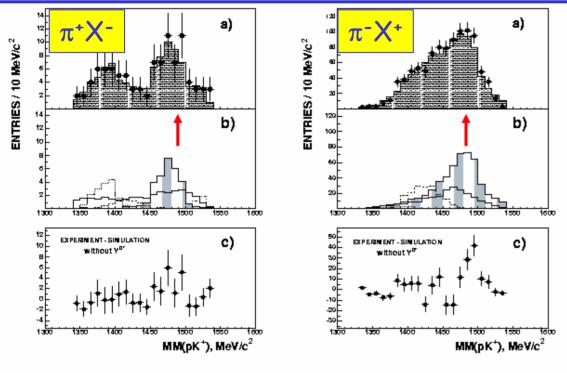
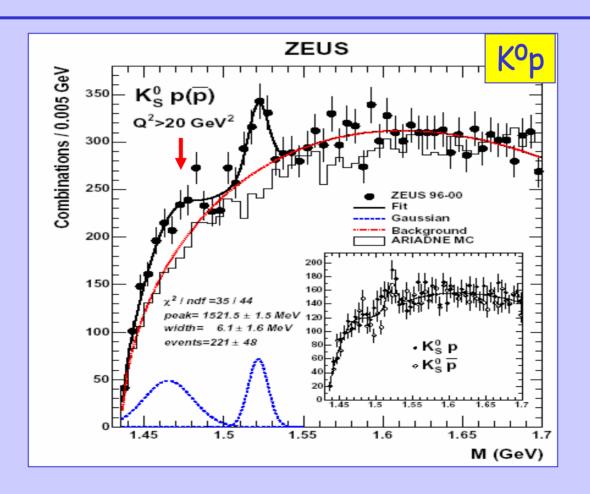
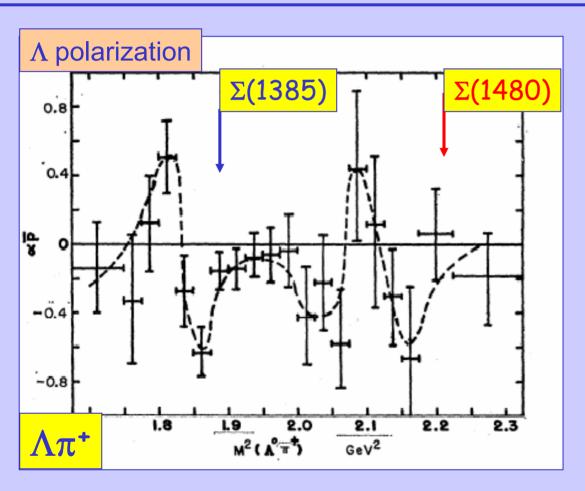



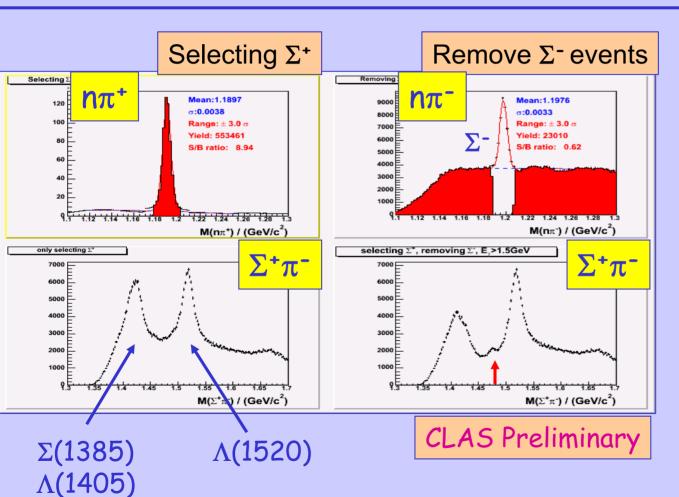
FIG. 3: Missing mass $MM(pK^+)$ spectra for the reaction $pp \to pK^+\pi^+X^-(\text{left})$ and $pp \to pK^+\pi^-X^+(\text{right})$. a) Experimental points with statistical errors are compared to the shaded histograms of the fitted overall Monte Carlo simulations; b) The simulation includes contributions from (i) resonances ($\Sigma(1385)(\text{dotted})$, $\Lambda(1405)(\text{dashed})$, $\Lambda(1520)(\text{dotted-dashed})$), (ii) non-resonant phase-space production (solid), and (iii) the Y^{0+} resonance (shaded histogram), as described in the text; c) Difference between the measured spectra and the sum of contributions (i)+(ii) fitted without Y^{0+} production. Note that the contributions of the individual partial channels are different for b) and c).

- M=1480±15 MeV Γ= 60±15 MeV
- σ(π⁺X⁻)=0.45±.15±.15 μb σ(π⁻X⁺)=1.20±.25±.50 μb


$\Sigma(1480)$ via e⁺p \rightarrow e'K⁰pX at ZEUS

[Chekanov et al. PLB591, 7(2004)]

M=1470 MeV
 Γ~ 30 MeV

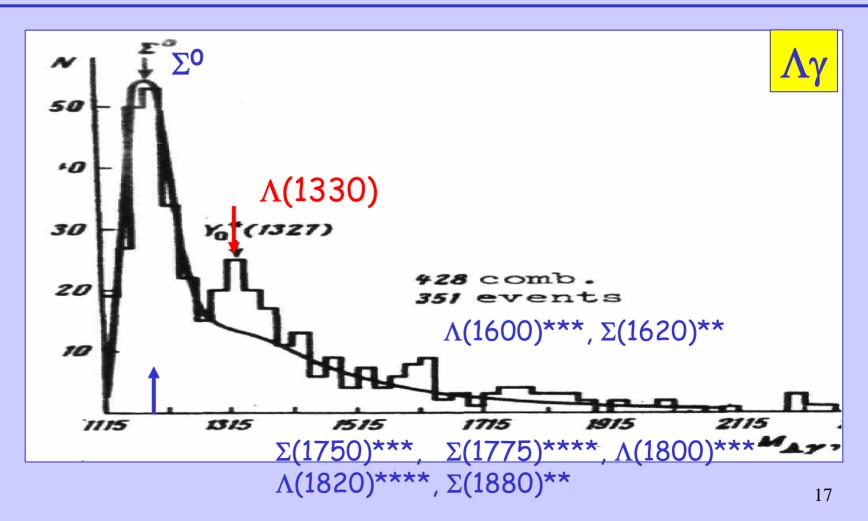

Σ (1480) via $\pi^+ p \rightarrow K^+ \Lambda \pi^+$, $K^+ \Sigma^0 \pi^+$, $K^+ \Sigma^+ \pi^0$ at PPA [Pan *et al.* PRD2, 449(1970)]

• Similar behavior for true resonance $\Sigma(1385)$ and suspected $\Sigma(1480)$

- Λπ⁺: M=1479±10 MeV Γ= 30±15 MeV
- Σπ: M=1465±10 MeV Γ= 30±20 MeV

Σ (1480) via $\gamma p \rightarrow K^{\dagger} \pi^{\dagger} \pi^{-}$ (n) [$K^{\dagger} \pi^{\dagger} \Sigma^{-}$, $K^{\dagger} \pi^{-} \Sigma^{+}$] at JLab Hall B [g11] [Lei Guo, Weygand, Nstar2005]

- Xsection estimation will allow to get a picture
- Status sensitivity is unclear


Summary

- Light unusual resonances have no place in 3q sector
- 5q sector could accept them
- Detailed study is required
 because the question of exotics is still active
- `...either these states will be found by experimentalists or our confined, quark-gluon theory of hadrons is as yet lacking in some fundamental, dynamical ingredient which will forbid the existence of these states or elevate them to much higher masses'
 [Jaffe and Johnson, Phys Lett60B, 201(1976)]

Backup

$\Lambda(1330)$ via $\pi^-p \rightarrow \Lambda \gamma X^0$ at JINR

[Bogachev et al. JETP Lett10, 105(1969); Bozoki et al. PL29B, 360(1968)]

Boundaries for N' (below/above πN thr)

[Azimov, Arndt, IIS, Workman, PRC68, 045204(2003)]

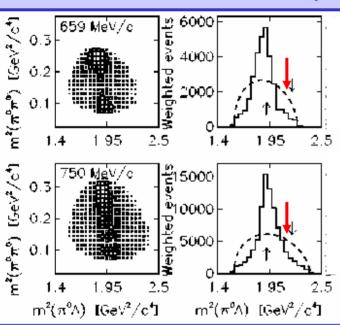
Purely Hadronic

$$\frac{g_{\pi NN'}^2}{g_{\pi NN}^2} < 10^{-2} \qquad \Gamma_{N'} < 50 \ keV$$

$$\frac{\sigma(pp \to nX^{++})}{\sigma(pn \to np)} < 10^{-7} \qquad [\frac{\Gamma_{N'}}{\Gamma_{\Delta}} < 4 \ 10^{-4}]$$

$$\frac{\sigma(pp \to \pi^+ pX^0)}{\sigma(pp \to \pi^+ pn)} \sim 10^{-3} - 10^{-4} ?$$

Hadronic and EM


$$\frac{W(\pi^{-}p \to n'\gamma)}{W(\pi^{-}p \to n\gamma)} < \frac{3 \ 10^{-6}}{8 \ 10^{-6}}$$

$$\frac{V(\pi^{-}p \to n'\gamma)}{W(\pi^{-}p \to n\gamma)} < \frac{5 \ eV}{EV} \qquad \frac{Br_{\gamma}^{2} \ \Gamma_{p'}}{F_{p'}} < \frac{10 \ eV}{EV}$$

$$\frac{Y(ep \to e'\pi^{+}X^{0})}{Y(ep \to e'\pi^{+}n)} < \frac{10^{-4}}{V(ed \to e'pX^{0})}$$

$$\frac{Y(ed \to e'pX^{0})}{Y(ed \to e'pn)} < \frac{10^{-4}}{EV}$$

K^-p →2 π^0 Λ vs Σ (1480)

 $\pi^0\Lambda$

CB: Prakhov et al. PRC69, 042202(2004)

'In our data, we do not see a trace of either this controversial state Σ (1480) or other light Σ^* states'

PPA: Pan & Forman, PRL23, 806(1969)

'Some general conclusions can be drawn from our literature search as to why this resonance has not been observed before. The major source of data on the $\pi\Lambda$ channel comes from the reaction $K^-p\to\Lambda\pi^+\pi^-$ for K-momenta in the 1 GeV/c region. In this momentum region, the reaction above suffers large interferences due to the formation of both $Y_1^{*+}(1385)$ and $Y_1^{*-}(1385)$. The associated production experiments using π^\pm , p, and p are all hindered in observing this resonance by low statistics due to the small production cross section involved and competition from the formation of other resonances, e.g $K^*(890)'$

• The case K⁻p \rightarrow 2 $\pi^0\Lambda$ is even worse because of two identical pions at low K-momenta 19