The $\Xi(1620)$ revisited. Hidden exotics?

Igor Strakovsky The George Washington University

Based on work in collaboration with
R. Arndt, Ya. Azimov, R. Workman

- What we know about $\Xi(1620)$ [exp]
- Previous evidence
- CLAS evidence?
- Possible nature of $\Xi(1620)$
- Possible unitary partners
- Summary

PDG2005: $\Xi(1620) I(J)^{P}=1 / 2(?)^{?}$

三(1620)

$\prime\left(\mu^{P}\right)=\frac{1}{2}\left(?^{?}\right)$ Status: *
J, P need confirmation. \& determination
OMITTED FROM SUMMARY TABLE
What little evidence there is consists of weak signak in the $\equiv \pi$ channel. A number of other experiments (e.g., BORENSTEIN 72 and HASSALL 81) have looked for but not seen any effect.

VALUE (MeV)	EVTS	E(1620) MAS DOCUMENT ID		COMMENT
A 1620 OUR ESTIMATE				
1624 ± 3	31	BRIEFEL	77 HBC	$K^{-}{ }^{-} 2.87 \mathrm{GeV} / \mathrm{c}$
1633 ± 12	34	DEBELLEFON	75 HBC	$\kappa^{-} \rho \rightarrow \bar{\beta}^{-\bar{K} \pi}$
1606 ± 6	29	ROSS	72 HBC	$\kappa^{-}{ }^{-1} 3.1-3.7 \mathrm{GeV} / \boldsymbol{c}$
E(1620) WDTH				
GALUE (HeV)	EVTS	DOCUMENT ID	TEON	COMAENT
22.5	31	${ }^{1}$ BRIEFEL	77 HBC	$\kappa^{-}{ }^{-2.87 \mathrm{GeV} / \mathrm{c}}$
40 ± 15	34	DEBELLEFON	75 HBC	$\kappa^{-} \rho \rightarrow \bar{E}^{-} \bar{K} \pi$
21 ± 7	29	ROSS	72 HBC	$\stackrel{\kappa^{-}}{\equiv=-{ }_{\boldsymbol{\pi}}+\kappa^{*} 0_{(892)}}$

$\Xi(1630)$ via $K^{-} p \rightarrow \Xi^{-} \pi^{+} K^{0}$ at BNL

[Briefel et al. PRD16, 2706(1977)]

Cascade05, Dec 1-3, 2005 Igor Strakovsky, GWU

$\Xi(1606)$ via $K^{-} p \rightarrow \Xi^{-} \pi^{+} K^{0}$ at CERN

 [Ross et al. PL38B, 177(1972)]

- $P_{\pi}=3.13,3.30,3.58 \mathrm{GeV} / \mathrm{c}$
- $M=1606 \pm 6 \mathrm{MeV}$ $\Gamma=21 \pm 7 \mathrm{MeV}$

$\Xi(1620)$ via $\gamma p \rightarrow K^{+} K^{+} \pi^{-}\left(\Xi^{0}\right)$ at JLab Hall B [g11]
 [Lei Guo, Weygand, Nstar2005]

Possible Nature of $\Xi(1620)$

- $\overline{10}$ is predicted to be $1 / 2^{+}$(P-wave)

Where is the ground (S-wave) state ($1 / 2^{-}$) ?

- If this state is analogue to $\overline{10}$
then its intrinsic structure must be different, and its flavor structure must be different as well, could be 8
- There is no prediction of $1 / 2^{-}$in ChSA (no predictions for the negative parity at all)

Unitary SU(3) $)_{F}$ Multiplets

Cascade05, Dec 1-3, 2005 Igor Strakovsky, GWU

Completeness of Unitary Multiplets

- If $\Xi(1620)$ exists, then there is no slot for it among $3 q$ states
- It could be a good candidate for S-wave partner of $\overline{10}$
- $\Sigma(1480)$, if exists, looks to be a good partner of $\Xi(1620)$

Possible Unitary Octet with $\Xi(1620)$

[Azimov, PL32B, 499(1970); Azimov, Arndt, IIS, Workman, PRC68, 045204(2003)]

State	Mass (MeV)	Width (MeV)	Decay Modes	Hadron Production Xsections
N^{\prime}	$\sim 1100 ?$	<0.05	$\mathrm{~N} \gamma ?$	$<10^{-4}$ of" normal"
Λ	$1330 ?$		$\Lambda \gamma$	
Σ	1480	$30-80 ?$	$\Lambda \pi, \Sigma \pi, \mathrm{~N} \bar{K}$	$\sim 10 \mu b$
Ξ	1630	$20-50 ?$	$\Xi \pi$	$\sim 1 \mu b$

- PR Xsection has additional $\sim \alpha / \pi$ factor
- EPR has $\sim(\alpha / \pi)^{2}$
- On the base of positive observations

PDG2005: $\Sigma(1480) I(J)^{P}=1(?)^{?}$

$\Sigma(1480)$ Bumps $\quad \prime^{\prime}\left(J^{P}\right)=1\left(?^{?}\right) \quad$ Status: *

OMITTED FROM SUMMARY TABLE J, P need determination

$\Sigma(1480)$ via $p p \rightarrow p K+Y^{* 0}$ at COSY-ANKE [Zychor et al. PRL (2005) in press; nucl-ex/0506014]

 points with stalistical crrors arc compared to the shated hislogranns of the filled overall Monec Carlo einnulalions; b) The

 belwocn the nacasured spectra and the swn of conlribulions (i)+(ii) fillod withourt Y^{04} produclion Nole that the contribulions of the individual partial chauncls are diftercul for b) and c).

- $M=1480 \pm 15 \mathrm{MeV}$ $\Gamma=60 \pm 15 \mathrm{MeV}$
- $\sigma\left(\pi^{+} X^{-}\right)=0.45 \pm .15 \pm .15 \mu b$ $\sigma\left(\pi^{-} X^{+}\right)=1.20 \pm .25 \pm .50 \mu b$

$\Sigma(1480)$ via $e^{+} p \rightarrow e^{\prime} K^{0} p X$ at ZEUS

 [Chekanov et al. PLB591, 7(2004)]

- $M=1470 \mathrm{MeV}$「~ 30 MeV

$\Sigma(1480)$ via $\pi^{+} p \rightarrow K^{+} \Lambda \pi^{+}, K^{+} \Sigma^{0} \pi^{+}, K^{+} \Sigma^{+} \pi^{0}$ at PPA [Pan et al. PRD2, 449(1970)]

- Similar behavior for true resonance $\Sigma(1385)$ and suspected $\Sigma(1480)$
- $\Lambda \pi^{+}: M=1479 \pm 10 \mathrm{MeV}$ $\Gamma=30 \pm 15 \mathrm{MeV}$
- $\Sigma \pi: M=1465 \pm 10 \mathrm{MeV}$ $\Gamma=30 \pm 20 \mathrm{MeV}$

$\Sigma(1480)$ via $\gamma p \rightarrow K^{+} \pi^{+} \pi^{-}(n)\left[K^{+} \pi^{+} \Sigma^{-}, K^{+} \pi^{-} \Sigma^{+}\right]$at JLab Hall B [g11] [Lei Guo, Weygand, Nstar2005]

Cascade05, Dec 1-3, 2005 Igor Strakovsky, GWU

Summary

- Light unusual resonances have no place in $3 q$ sector
- 5q sector could accept them
- Detailed study is required
because the question of exotics is still active
- `...either these states will be found by experimentalists or our confined, quark-gluon theory of hadrons is as yet lacking in some fundamental, dynamical ingredient which will forbid the existence of these states or elevate them to much higher masses'
[Jaffe and Johnson, Phys Lett60B, 201(1976)]

Backup

$\Lambda(1330)$ via $\pi^{-} p \rightarrow \Lambda \gamma \chi^{0}$ at JINR

[Bogachev et al. JETP Lett10, 105(1969); Bozoki et al. PL29B, 360(1968)]

Cascade05, Dec 1-3, 2005 Igor Strakovsky, GWU

Boundaries for N^{\prime} (below/above $\pi \mathrm{N}$ thr)

[Azimov, Arndt, IIS, Workman, PRC68, 045204(2003)]

$$
\begin{aligned}
& \text { Purely Hadronic } \\
& \frac{g_{\pi N N^{\prime}}^{2}}{g_{\pi N N}^{2}}<10^{-2} \quad \Gamma_{N^{\prime}}<50 \mathrm{keV} \\
& \frac{\sigma\left(p p \rightarrow n X^{++}\right)}{\sigma(p n \rightarrow n p)}<10^{-7} \quad\left[\frac{\Gamma_{N^{\prime}}}{\Gamma_{\Delta}}<410^{-4}\right] \\
& \frac{\sigma\left(p p \rightarrow \pi^{+} p X^{0}\right)}{\sigma\left(p p \rightarrow \pi^{+} p n\right)} \sim 10^{-3}-10^{-4} \quad ? \\
& \text { Hadronic and EM } \\
& \frac{W\left(\pi^{-} p \rightarrow n^{\prime} \gamma\right)}{W\left(\pi^{-} p \rightarrow n \gamma\right)}<310^{-6}<80^{-5}\left[\sim 10^{-5}\right] 10^{-6} \\
& \Gamma_{N^{\prime} \rightarrow N_{\gamma}}<5 \mathrm{eV} \quad B r_{\gamma}^{2} \Gamma_{p^{\prime}}<10 \mathrm{eV} \\
& \frac{Y\left(\varepsilon p \rightarrow e^{t} \pi^{+} X^{0}\right)}{Y\left(e p \rightarrow e^{\prime} \pi^{+} n\right)}<10^{-4} \quad\left[\frac{B r_{\gamma} \Gamma_{p^{\prime}}}{B r_{\gamma} \Gamma_{\Delta}}<310^{-3}\right] \\
& \frac{Y\left(e d \rightarrow \varepsilon^{\prime} p X^{0}\right)}{Y\left(e d \rightarrow \varepsilon^{\prime} p n\right)}<10^{-4}
\end{aligned}
$$

$\mathrm{K}^{-} \mathrm{p} \rightarrow 2 \pi^{0} \Lambda$ vs $\Sigma(1480)$

$\pi^{0} \Lambda$

CB: Prakhov et al. PRC69, 042202(2004)

'In our data, we do not see a trace of either this controversial state $\Sigma(1480)$ or other light Σ^{*} states'

PPA: Pan \& Forman, PRL23, 806(1969)

'Some general conclusions can be drawn from our literature search as to why this resonance has not been observed before. The major source of data on the $\pi \Lambda$ channel comes from the reaction $K^{-} p \rightarrow \Lambda \pi^{+} \pi^{-}$for K-momenta in the $1 \mathrm{GeV} / \mathrm{c}$ region. In this momentum region, the reaction above suffers large interferences due to the formation of both $Y_{1}^{*+}(1385)$ and $Y_{1}^{*-}(1385)$. The associated production experiments using $\pi^{ \pm}, p$, and \bar{p} are all hindered in observing this resonance by low statistics due to the small production cross section involved and competition from the formation of other resonances, e.g $K^{*}(890)^{\prime}$

- The case $K^{-} p \rightarrow 2 \pi^{0} \Lambda$ is even worse because of two identical pions at low K-momenta 19

