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Key Science Drivers of Computational Nuclear
Astrophysics

Primary Goal: Explanation of the Origin of the Elements and Isotopes
Overwhelmingly, Elements are produced in Stars - quiescently or explosively

Core-Collapse Supernovae (CCSN) - the Deaths of Massive Stars and Birth of
Neutron Stars

Thermonuclear Supernovae - the Source of much of the Iron Peak

Novae - source of some light elements

X-ray bursts - the rp-Process Nuclei

Merging Neutron stars - with CCSN, the likely source of the r-process Nuclei

Stellar Evolution involves nuclear reaction rates generated theoretically or
experimentally - convective processes and magnetic couplings - multi-dimensional

Stellar Explosions are always Multi-dimensional, requiring state-of-the-art
radiation/hydrodynamic simulations with significant Nuclear Physics input.

Nuclear astrophysics entails sophisticated multi-dimensional numerical simulations
employing the latest computational tools and the most powerful supercomputers of
the DOE complex to address key goals of the Office of Nuclear Physics.



Nuclear Processes in the Cosmos
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The Cosmic Laboratory;
Understanding nuclear processes at
the extreme temperature & density
conditions of stellar environments!

Stellar matter
Stellar explosions
White Dwarf matter—=
Neutron Star matter
Quark Star matter
Big Bang

lg T

lg p [g cm~3]

Field requires close communication between
nuclear experimentalists, theorists, stellar
modelers and stellar observers (astronomers)




Core-Collapse
Supernova

Explosions

A 7(+) dimensional problem;
Nuclear EOS;
Nucleosynthesis




Partnership between Nuclear Astrophysicists and
Applied Mathematicians to Create
State-of-the-Art Computational Capabilities

2nd-order, Eulerian, unsplit, compressible hydro
PPM and piecewise-linear methodologies
Multi-grid Poisson solver for gravity
Multi-component advection scheme with reactions

Adaptive Mesh Refinement (AMR) - flow control, memory management, grid
generation

Block-structured hierarchical grids
Subcycles in time (multiple timestepping - coarse, fine)
Sophisticated synchronization algorithm

BoxLib software infrastructure, with functionality for serial distributed and shared
memory architectures

1D (cartestian, cylindrical, spherical); 2D (Cartesian, cylindrical); 3D (Cartesian)
Multigroup Transport with v/c terms and inelastic scattering

Uses scalable linear solvers (e.g., hypre) with high-performance preconditioners that
feature parallel multi-grid and Krylov-based iterative methods - challenging!
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“Inverse” Energy
Cascade in 2D -

Buoyancy-
Driven
Convection has
(anomalously) a
lot of large-scale
power - Often
confused for the
SASI
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Character of 3D turbulence and Explosion Vefy.
Different from those in 2D
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Buoyancy-driven Bubbles!
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Multi-group “2 1/2"-D
Radiation-Magneto-
Hydrodynamic (RMHD)
simulations of Core-
Collapse Supernovae
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Sample Computational Requirements for Future Core-

Collapse Supernova Simulations

Platform | Space | Neutrino | #f, Matrix | Ops./At
Current 256x32x64 | 8x12x14 20 GB 2TB 6x1012
Near- 512x64x128 | 12x24x20 600 GB 200 TB 2x1019
Term

Exa-Scale |512x128x256 | 24x24x24 6 TB 3 PB 8x1016

“Full 512x128x256 | 24x24x24 6 TB 80 PB 4x1019
Coupling”

Kotake et al. 2012
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Cycle and Memory Requirements for Supernova Simulations

1985 (1D) - ~1023 CPU-hours per run; 10 Gbytes memory

1995 (low 2D) - ~10°% CPU-hours per run; 100 Gbytes memory
2005 (medium 2D) - ~10° CPU-hours per run; 102 cores; Tbytes memory
2010 (low 3D) - ~10%-7 CPU-hours per run; ; Tbytes
memory

2015 (medium 3D) - ~107-8 CPU-hours per run; ; 0.2-1 Pbytes
memory

2020 (heroic 3D) - ~108-° CPU-hours per run; ; >10 Pbytes
memory
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Short-Hard GRB Model: Merger of Neutron Stars -
Site of the R-Process?

Crashing neutron stars can make gamma-ray burst jets

Simulation begins

7.4 milliseconds

13.8 milliseconds

15.3 milliseconds

21.2 milliseconds

26.5 milliseconds

Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla




The R-Process:




Proton number
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ucleosynthesis In the r-process

Joint Institute for Nuclear Astrophysics 2002
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Neutrino Oscillations
in Core-Collapse Supernovae:

A Cyraputirignzl Cosllenge
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Neutrino Oscillations and Self- oupling
Coherent Neutrino Flavor Evolution

¢ Wigner density matrix, ensemble-averaging
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Neutrino Oscillations and Collective Self-
Interactions
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T'ype la
(Thermonuclear)

Supernova
Explosions




Turbulent Thermonuclear Flame Front




White Dwarf Deflagration

Resolution: 6 km
Initial Bubble Radius: 25 km

[gnition Offset: 100 km

Variable 1: Density [1.5e+07 - 2.0e+07]
Variable 2: Reaction Progress [0.0 - 1.0]




X-Ray Bursts - The

rp-Process




Understanding the X-ray sky: rp-process in X-ray bursts
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X-ray flux
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X-ray flux

/N

50 11

48 []

46 []

44 |

42 [11

40 [

38 11
36 [ 1]
34 17

+H

{ 30

30

24 26 28
22

Time: 2.269e-02 s
Temperature: 0.640 GK




X-ray flux
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X-ray flux
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Nuclear Reaction Rate
Calculations

"  General mathematical formalism for characterizing low-energy
reaction cross sections

=  Extrapolate cross sections to nearby energies but REQUIRES
experimental data for constraint

=  Most straightforward for Compound Nucleus type reactions
= May be applied to other reaction types using approximations:

a) Radiative Capture
b) Beta-delayed particle emission
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Nuclear Rate Calculations

Thermonuclear reaction rates are an essential
ingredient for any stellar model.

A major obstacle in providing defensible
uncertainties is that the rates are highly complex
quantities derived from a multitude of nuclear

properties extracted from laboratory

measurements.

A solution to this challenge, devised recently by
lliadis and collaborators, is STARLIB which contains
Monte Carlo sampled probability densities of each
rate at each temperature.
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The MESA Stellar Evolution Code currently has over 400
registered users across the globe, with many users at
D.O.E nuclear physics sponsored programs.

MESA employs modern numerical approaches and is
written with present and future shared-memory, multi-
core, multi-thread and possibly hybrid architectures.
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and Theoretical Goals of the Office of Nuclear Physics

O  Computational nuclear astrophysics also supports important components of the
DOE Office of Nuclear Physics Experimental program:

. The astrophysics of neutron-rich nuclei is one of four scientific "legs" of the Facility for
Rare Isotope Beams (FRIB).

. Supernova modeling efforts are important to the DOE's experimental Neutrino Physics
program. The flagship experimental program in DOE's Intensity Frontier program includes
a megadetector that could follow neutrino light curve of a CCSN

. The Nuclear equation of state is a third intersection with the DOE experimental program:
JLab measurements constrain the nuclear symmetry energy, and, thus, the EOS for
neutron-rich matter

(o Nuclear astrophysics entails sophisticated multi-dimensional numerical simulations
employing the latest computational tools and the most powerful supercomputers of
the DOE complex to address key goals of the Office of Nuclear Physics.
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Sample Computational Requirements for Future Core-

Collapse Supernova Simulations

Platform | Space | Neutrino | #f, Matrix | Ops./At
Current 256x32x64 | 8x12x14 20 GB 2TB 6x1012
Near- 512x64x128 | 12x24x20 600 GB 200 TB 2x1019
Term

Exa-Scale |512x128x256 | 24x24x24 6 TB 3 PB 8x1016

“Full 512x128x256 | 24x24x24 6 TB 80 PB 4x1019
Coupling”

Kotake et al. 2012
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Cycle and Memory Requirements for Supernova Simulations

1985 (1D) - ~1023 CPU-hours per run; 10 Gbytes memory

1995 (low 2D) - ~10°% CPU-hours per run; 100 Gbytes memory
2005 (medium 2D) - ~10° CPU-hours per run; 102 cores; Tbytes memory
2010 (low 3D) - ~10%-7 CPU-hours per run; ; Tbytes
memory

2015 (medium 3D) - ~107-8 CPU-hours per run; ; 0.2-1 Pbytes
memory

2020 (heroic 3D) - ~108-° CPU-hours per run; ; >10 Pbytes
memory
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Compare calculated results with abundance observations ?
- Masses, half-lives, n-capture rates of very unstable, exotic nuclei need to be known
- Need experiments and nuclear theory
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~ Lagrangian Particle Advection Through the Shock™

Heating Distribution in 3D - Early advection =



FRAME 3:

Lagrangian Particle Advection Through the Shock
Heating Distribution in 3D
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Type la Supernova Facts

of the entire accreting C/O
White Dwarf; Explosion lasts ~1 second

Used as a primary yardstick for the Cosmology. Can be
seen across the Universe: Indicates the Universe is
Accelerating -

Significant element production and ejection: Iron
(radioactive Nickel), Ca, Si, S, Ar, ...

Light lasts months; Peak Luminosity ~

(very bright)
Energy > 10°° Mtonnes of TNT




The Progenitors of Type la supernovae, whose use as an empirical tool
won this year’s Nobel Prize, are unknown. ldentifying the nucleosynthetic
signatures in their spectra of different progenitors channels is needed to
reduce the uncertainty in the distance measurements, and quantify the
nature of the dark energy with increased precision.
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