Unitary Coupled-Channel Model for Heavy Meson Decays into Three Mesons

Satoshi Nakamura

Excited Baryon Analysis Center (EBAC), JLab
Collaborators

Hiroyuki Kamano (RCNP, Osaka U.)
Harry Lee (Argonne National Lab)
Toru Sato (Osaka Univ.)
Hadron Spectroscopy

⇒ Key information for confinement physics
Hadron Spectroscopy

data analysis \Rightarrow hadron properties

$(J^P_C, \text{mass, width, branching ratios, ..})$

Reliable analysis tool is essential!
Light Flavor Meson Spectroscopy (relevant to JLab 12 GeV programs)

* data

* analysis tool
Light Flavor Meson Spectroscopy (relevant to JLab 12 GeV programs)

E.g., E852 (BNL) \[\pi^- p \rightarrow \pi^+ \pi^- \pi^- p \] Chung et al., PRD 65, 072001 (2001)
Light Flavor Meson Spectroscopy (relevant to JLab 12 GeV programs)

e.g., E852 (BNL) \(\pi^- p \rightarrow \pi^+ \pi^- \pi^- p \)
Chung et al., PRD 65, 072001 (2001)

- \(\pi \) subsystem forms a resonance
- 3rd \(\pi \) is a spectator
Isobar model

E852 (BNL), Chung et al., PRD 65, 072001 (2001)

* $L = 0, 1, 2$

* For $R = f_0(980)$, $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$

 \implies Breit-Wigner form
 \[A_R = \frac{F_{R \to \pi\pi}}{m^2_R - m^2_{\pi\pi} - i m_R \Gamma_R(m_{\pi\pi})} \]

* For $R = \sigma$

 \implies K-matrix model
 [e.g., Au, Morgan, Pennington, PRD 35, 1633 (1987)]

* $A_{M^* \to \pi\pi\pi} = \sum_R a_R e^{i\phi_R} A_R + \text{(background)}$
Questions

* coupled-channels?
* 3-body unitarity?
Coupled-channel effect

e.g., $\pi^0 N \rightarrow \pi \pi^0 N$
[\pi N, \eta N, \pi \Delta, \rho N, \sigma N$ coupled-channels]

Kamano et al., PRC79 025206 (2009)
3-body unitarity requires ... Z-diagrams
Question to be addressed

How 3-body unitarity makes a difference in extracting hadron properties from data?

Method

1. Construct a unitary and an isobar models

2. Fit them to the same Dalitz plot

3. Extract and compare M^* properties from them
 (pole position, coupling strength to decay channels)
Coupled-Channels Model

Kamano, Nakamura, Sato, Lee, PRD 84 114019 (2011)

\[M^* \rightarrow \pi R \rightarrow \pi\pi\pi \]

Channels \(R : f_0(600), f_0(980), \rho(760), f_2(1270), .. \)

\(R \) : resonance in \(\pi\pi \) scattering amplitude (not Breit-Wigner form)

(I) Develop \(\pi\pi \) model

(II) Develop \(\pi R \) interaction

(III) Solve \(\pi R \) scattering equation
Simple $\pi\pi$ model

Coupled-channel scattering equation for $\pi\pi$ partial wave (L, I)

$$t_{i,j}^{LI}(p', p; W) = V_{i,j}^{LI} + \sum_k \int_0^\infty q^2 dq \ V_{i,k}^{LI}(p', q; W) \frac{1}{W - E_k(q) + i\epsilon} t_{k,j}^{LI}(q, p; W)$$

$$E_{\pi\pi}(q) = 2\sqrt{m_\pi^2 + q^2}$$

$$V_{i,j}^{LI}(p', p; W) = \sum_R f_{R,i}^{LI}(p') \frac{1}{W - m_R} f_{R,j}^{LI}(p)$$

$$f_{R,i}^{LI}(p) = \frac{g_{R,i}}{\sqrt{m_\pi}} \frac{1}{1 + (c_{R,i}p)^2} \left(\frac{p}{m_\pi} \right)^L$$
Phase and inelasticity of $\pi\pi$ amplitude

$L = I = 0 \ (2 \ R)$

$L = I = 1 \ (2 \ R)$

$L = 2, I = 0 \ (1 \ R)$

[Data: Gayer et al. (1974); Hyams et al. (1973); Batley et al. (2008)]
Pole positions in $\pi\pi$ amplitude

<table>
<thead>
<tr>
<th></th>
<th>Re[(M_R)] (MeV)</th>
<th>−Im[(M_R)] (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ours</td>
<td>PDG</td>
</tr>
<tr>
<td>(f_0) (600)</td>
<td>430</td>
<td>400 − 1200</td>
</tr>
<tr>
<td>(f_0) (980)</td>
<td>1000</td>
<td>980 ± 10</td>
</tr>
<tr>
<td>(f_0) (1370)</td>
<td>1350</td>
<td>1200 − 1500</td>
</tr>
<tr>
<td>(\rho) (760)</td>
<td>770</td>
<td>775.5 ± 0.3</td>
</tr>
<tr>
<td>(\rho) (1700)</td>
<td>1610</td>
<td>1550 − 1780</td>
</tr>
<tr>
<td>(f_2) (1270)</td>
<td>1250</td>
<td>1275 ± 1.2</td>
</tr>
</tbody>
</table>
Quasi two-particle (πR) interaction

3 π Z-graph

M^* graph
Quasi two-particle (πR) scattering equation

$$\pi \quad t \quad R' \quad = \quad \quad \quad \quad + $$

M^* decay amplitude (unitary model)

M^* decay amplitude (isobar model)
Case Study : $\gamma p \rightarrow M^* n \rightarrow \pi^+ \pi^+ \pi^- n$ (CLAS 6, GlueX)

How 3-body unitary makes a difference in extracting M^* properties from data?

Nakamura, Kamano, Sato, Lee, in preparation
M^* propagator (unitary model)

\[G^{-1}(W) = W - M^0_{M^*} - \Sigma_{M^*}(W) \]
M^* propagator (unitary model)

\[
\begin{align*}
 &\pi -\longrightarrow \quad R' \\
 \text{R} &\quad -\longrightarrow \quad \pi'
\end{align*}
\]

\[
\begin{align*}
 \rho &\quad +\quad t \\
 \text{R} &\quad +\quad t
\end{align*}
\]

\[G^{-1}(W) = W - M_{M^*}^0 - \Sigma_{M^*}(W)\]

Pole position: $M_R \Rightarrow G^{-1}(M_R) = 0$

Solved with analytic continuation to the unphysical Riemann sheet

M^* propagator (unitary model)

$G^{-1}(W) = W - M^0_{M^*} - \Sigma_{M^*}(W)$

M^* propagator (isobar model)

$G^{-1}(W) = W - i \frac{\Gamma(W)}{2}$

but any phenomenological parametrization should be fine ...
\(M^* \) propagator (unitary model)

\[
\begin{align*}
\pi \rightarrow R' & \quad R' \rightarrow \pi' \\
\text{This work} : & \quad G^{-1}(W) = W - M_{M^*}^0 - \Sigma_{M^*}(W) - \Delta M_{M^*}^0
\end{align*}
\]

\(M^* \) propagator (isobar model)

\[
\pi \rightarrow R' \rightarrow \pi' \\
\text{Pole position} : M_R(\text{isobar}) \sim M_R(\text{unitary}) + \Delta M_{M^*}^0
\]
Production amplitude

\[\gamma \xrightarrow{\rho} M^* \]
\[p \xrightarrow{\pi^+} n \]

Simple assumptions:

* \(t \)-channel \(\pi \)-exchange

* Vector-dominance of \(\gamma\pi M^* \) coupling

Not realistic but good enough

interested in effect of 3-body unitarity implemented in \(M^* \) propagation and decay
Kinematics

[cf. CLAS 6, PRL 102, 102002 (2009)]

* $E_\gamma = 5$ GeV

* $t = -0.4$ GeV2

* 0.8 GeV $\leq W \leq 2$ GeV ; $W : 3 \pi$ invariant mass

* 3π orientation
 (Euler angles : α, β, γ)

\[\begin{align*}
 \alpha, \beta & \text{ fixed ; } 0 \leq \gamma \leq 2\pi \\
 \Rightarrow \text{Photon excites a polarized } M^* \text{ that decays to a certain } \gamma \text{ more often}
\end{align*} \]
Procedure

1. Determine parameters of unitary model with reasonable input

2. Generate mock data with the unitary model

3. Fit the data with isobar model

4. Compare M^* properties from the two models
Partial wave, M^*'s in unitary model

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{++}</td>
<td>$a_1(1230)$, $a_1(1700)$</td>
</tr>
<tr>
<td>2^{++}</td>
<td>$a_2(1320)$, $a_2(1700)$</td>
</tr>
<tr>
<td>2^{--}</td>
<td>$\pi_2(1670)$, $\pi_2(1800)$</td>
</tr>
<tr>
<td>1^{--}</td>
<td>$\pi_1(1600)$</td>
</tr>
</tbody>
</table>

[cf. CLAS 6, PRL 102, 102002 (2009)]
Determination of M^* parameters for unitary model

* M^* bare mass

* $M^* \to \pi R$ bare coupling and cutoff

M^* propagator

$$G^{-1}(W) = W - M_{M^*}^0 - \Sigma_{M^*}(W)$$

$M^* \to \pi R$ vertex function

$$F(p) \propto \frac{C}{\sqrt{E_R E_\pi}} \left(\frac{\Lambda^2}{p^2 + \Lambda^2} \right)^{2+(L/2)} p^L$$
Determination of M^* parameters for unitary model

- M^* bare mass
- $M^* \rightarrow \pi R$ bare coupling and cutoff

3P_0 model

Flux-tube model for $\pi_1(1600)$

- Partial width \Rightarrow coupling
- Cutoff is set to 1 GeV

Barnes et al., PRD 55, 4157 (1997)

Isgur et al., PRL 54, 869 (1985)
<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>decay modes</th>
<th>$\Gamma_{q\bar{q}}$</th>
<th>Γ_{hybrid}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{++}</td>
<td>$a_1(1230) \rightarrow \pi\rho(770)$</td>
<td>540.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$a_1(1700) \rightarrow \pi f_0(1300)$</td>
<td>2.</td>
<td>6.</td>
</tr>
<tr>
<td></td>
<td>$\pi\rho(770)$</td>
<td>57.</td>
<td>30.</td>
</tr>
<tr>
<td></td>
<td>$\pi\rho(1465)$</td>
<td>41.</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>$\pi f_2(1275)$</td>
<td>39.</td>
<td>70.</td>
</tr>
<tr>
<td>2^{++}</td>
<td>$a_2(1318) \rightarrow \pi\rho(770)$</td>
<td>55.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$a_2(1700) \rightarrow \pi\rho(770)$</td>
<td>104.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$\pi f_2(1275)$</td>
<td>20.</td>
<td>-</td>
</tr>
<tr>
<td>2^{-+}</td>
<td>$\pi_2(1670) \rightarrow \pi\rho(770)$</td>
<td>118.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$\pi f_2(1275)$</td>
<td>75.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$\pi_2(1800) \rightarrow \pi f_0(1300)$</td>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>$\pi\rho(770)$</td>
<td>162.</td>
<td>8.</td>
</tr>
<tr>
<td></td>
<td>$\pi f_2(1275)$</td>
<td>86.</td>
<td>50.</td>
</tr>
<tr>
<td>1^{-+}</td>
<td>$\pi_1(1600) \rightarrow \pi\rho(770)$</td>
<td>-</td>
<td>8.</td>
</tr>
<tr>
<td>J^{PC}</td>
<td>decay modes</td>
<td>$\Gamma_{q\bar{q}}$</td>
<td>Γ_{hybrid}</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1^{++}</td>
<td>$a_1(1700) \rightarrow \pi f_0(1300)$</td>
<td>2.</td>
<td>6.</td>
</tr>
<tr>
<td></td>
<td>$\pi \rho(770)$</td>
<td>57.</td>
<td>30.</td>
</tr>
<tr>
<td></td>
<td>$\pi \rho(1465)$</td>
<td>41.</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>$\pi f_2(1275)$</td>
<td>39.</td>
<td>70.</td>
</tr>
<tr>
<td>2^{-+}</td>
<td>$\pi_2(1800) \rightarrow \pi f_0(1300)$</td>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>$\pi \rho(770)$</td>
<td>162.</td>
<td>8.</td>
</tr>
<tr>
<td></td>
<td>$\pi f_2(1275)$</td>
<td>86.</td>
<td>50.</td>
</tr>
</tbody>
</table>

Difference between $\Gamma_{q\bar{q}}$ and Γ_{hybrid}

\Rightarrow Coupling strength to decay channel is a key information to understand the nature of hadron structure

We use $\Gamma_{q\bar{q}}$ except for $\pi_1(1600)$
W-dependence of integrated Dalitz plots from unitary model
Dalitz plot from unitary model

\[W = 1 \text{ GeV} \text{ near } a_1(1230) \text{ peak} \]
Dalitz plot from unitary model

\[W = 1.24 \text{ GeV} \] near \(a_2(1320) \) peak
Dalitz plot from unitary model

\[W = 1.76 \text{ GeV} \text{ near } \pi_2(1800) \text{ peak} \]
Fit with isobar model

Error:

- Data for the same W have the same error
- At each W, the error is assigned by 5% of the highest peak

Fit:

1. Fit with real couplings of $M^* \rightarrow \pi R$
2. Allow couplings complex
3. Include W-dependent flat non-interfering background
 (2, 3 are common in isobar-model analysis)

$\frac{\chi^2}{(#\ of\ data)} < 0.5$ is achieved
Fit with isobar model

W=1 GeV

W=1.24 GeV

unitary model without Z

W=1.76 GeV
Fit with isobar model

\[M^2_{\pi^+\pi^0} + M^2_{\pi^+\pi^0} = \text{unitary model without Z isobar-fit} \]

\[W=1\text{GeV} \]

\[W=1.24\text{GeV} \]

\[W=1.76\text{GeV} \]
Question I didn’t explicitly ask

Can isobar model extract partial wave amplitudes of the unitary model?
\[\frac{d^4 \sigma}{dt \, dW \, d\alpha \, d\beta} \left(\frac{\mu b}{\text{GeV}^3 \text{sr}} \right) \]

\begin{align*}
1^{++} a_1 & \quad \text{(unitary isobar)} \\
2^{+} \pi_2 & \quad \text{(unitary isobar)} \\
2^{++} a_2 & \\
1^{-} \pi_1 &
\end{align*}
Q: Can isobar model extract partial wave amplitudes of the unitary model?

A: To a good extent, yes.

Comments

- Not so in kinematics where a partial wave amplitude plays a minor role
- Analyzing polarized observables may have helped
M^* pole positions

$\Delta M^0_{M^*}$ (MeV) : pole position shift in the isobar model

$$G^{-1}(W) = W - M^0_{M^*} - \Sigma_{M^*}(W) - \Delta M^0_{M^*}$$

<table>
<thead>
<tr>
<th></th>
<th>$a_1(1260)$</th>
<th>$a_1(1700)$</th>
<th>$a_2(1320)$</th>
<th>$a_2(1700)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$-22.37 - 23.21i$</td>
<td>$8.48 - 4.46i$</td>
<td>$0.15 - 0.04i$</td>
<td>$-1.03 - 0.30i$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\pi_2(1670)$</th>
<th>$\pi_2(1800)$</th>
<th>$\pi_1(1600)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$-0.51 + 0.38i$</td>
<td>$-3.07 - 3.42i$</td>
<td>$0.57 + 0.33i$</td>
</tr>
</tbody>
</table>

Here, 3-body unitarity effect is moderate
Couplings of $a_1(1260)$ to decay channels

<table>
<thead>
<tr>
<th></th>
<th>Unitary</th>
<th>Isobar</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_1(1260)$</td>
<td>→ $\pi f_0(1300)$</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>→ $\pi f_0(2400)$</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>→ $\pi \rho(770)$</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>→ $\pi \rho(1700)$</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>→ $\pi f_2(1270)$</td>
<td>-</td>
</tr>
</tbody>
</table>

Rather large change in M^* couplings to decay channels

\Leftarrow Large Z-graph effect in $a_1(1260)$ region
Couplings of $a_2(1320)$ to decay channels

<table>
<thead>
<tr>
<th>Couplings</th>
<th>Unitary</th>
<th>Isobar</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_2(1320) \rightarrow \pi \rho(770)$</td>
<td>1.0</td>
<td>0.9 $- 0.1,i$</td>
</tr>
<tr>
<td>$\quad \rightarrow \pi f_2(1270)$</td>
<td>-</td>
<td>1.4 $- 0.1,i$</td>
</tr>
</tbody>
</table>

Still rather large change in M^* couplings to decay channels

even though Z-graph effect on Dalitz plot in $a_2(1320)$ region seems moderate
Conclusion

Q: How 3-body unitary makes a difference in extracting M^* properties from data?

Method

1. Construct a unitary and an isobar models
2. Fit them to the same Dalitz plot
3. Extract and compare M^* properties from them
Conclusion

Q: How 3-body unitary makes a difference in extracting M^* properties from data?

A: It (and thus Z-diagrams) makes a significant difference in extracting dynamical aspect of M^* properties, i.e., coupling strength to decay channel

Key information to understand the hadron structure
Conclusion

Q : How 3-body unitary makes a difference in extracting M^* properties from data ?

A : It (and thus Z-diagrams) makes a significant difference in extracting dynamical aspect of M^* properties, i.e., coupling strength to decay channel

Q : What about pole position ?

A : Moderate. Sometimes non-negligible.