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Outline

Constructing charges in gauge theory.

Tests: perturbation theory and the lattice.

Failure of the Bloch-Nordsieck & Lee-Nauenberg approaches to the IR
problem.

Renormalisation scheme dependence
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Charges in Gauge Theories

In QED and QCD matter fields ψ cannot be identified with observables –
not gauge invariant

ψ → U−1ψ

‘Dress’ matter field with the gauge field, Dirac 1958

Ψ := h−1[A]ψ.

Gauge invariance implies

h−1[AU] = h−1[A]U.

What are the dressings? ML, D.McMullan, Phys. Rep. C 97
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A First Guess

Stringy state: link by Polyakov line (with some path)?

Problem: in QED string state has electric potential energy:

V(x− y) ∼ e2|x− y|δ2(0)

Confining potential with a divergent coefficient!

Infinitely excited state.
Haagensen, Johnson, 97
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Refining the Guess

ψ̄(y, t) exp
(
−ie

∫
Γ

driAi(r, t)
)
ψ(x, t)

gauge invariant but Γ dependent?

Remove by decomposition: Ai → AT
i + AL

i , ∂iAT
i = 0, i.e., AL

i = ∂i∂jAj/∇2.

exp
(
−ie

∫
Γ

dxiAT
i

)
ψ̄(y) exp

(
ie
∂jAj(y)

∇2

)
exp

(
−ie

∂kAk(x)

∇2

)
ψ(x)

Factorised Γ dependence in gauge invariant way.

Martin Lavelle (Plymouth) Confinement and the Infra-Red JLab 2012 5 / 31



Charges in QED

Ψ = exp
[
− ie

∂iAi

∇2

]
ψ is the static electron.

Locally gauge invariant. Dirac 1958

Commutator [Ea
i (x),Ab

j (y)]et = iδabδ(x− y) ⇒ Coulomb field:

Ej Ψ| 0 〉 = − e
4π

rj

r2 Ψ| 0 〉
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Gauge Invariant Dressing in QCD

The minimal static dressing in QED:

h−1 = exp(−ieχ) , with χ = ∂iAi/∇2

Transform QCD into Coulomb (arbitrary order in g).

In QCD we write

exp(−ieχ)⇒ exp(gχaTa) ≡ h−1

with gχaTa = (gχa
1 + g2χa

2 + g3χa
3 + · · · )Ta

The dressing gauge argument⇒

χa
1 =

∂jAa
j

∇2 ; χa
2 = f abc ∂j

∇2

(
χb

1Ac
j +

1
2

(∂jχ
b
1)χc

1

)
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Definition of Colour Charge

Qa =

∫
d3x (Ja

0(x)− f a
bcEb

i (x)Ac
i (x)) .

On gauge invariant states, non-abelian Gauss’ law⇒

Qa =
1
g

∫
d3x ∂iEa

i (x) .

Under a gauge transformation Ea
i Ta → U−1Ea

i TaU, and hence

QaTa → 1
g

∫
d3x ∂i(U−1Ea

i TaU) .

Can write this as the surface integral

1
g

lim
R→∞

∫
S2

ds · U−1EU .
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Definition of Colour Charge

Colour charge transforms on gauge invariant states as

QaTa → 1
g

lim
R→∞

∫
S2

ds · U−1EU .

Hence the colour charge will be gauge invariant if

U → U∞ so that
QaTa → U−1

∞ QaTaU∞

where U∞ lies in the centre of SU(3).

continuity⇒ constant gauge transformations at spatial infinity
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Perturbation Theory

Leading order Coulombic:

V(r) = −g2CF

4πr

NLO:

V(r) = −g2CF

4πr

[
1 +

g2

4π
CA

2π

(
4− 1

3

)
log(µr)

]
Compare with the one-loop beta function

β(g) = − g3

(4π)2

[
4− 1

3

]
The dominant antiscreening contribution comes from longitudinal glue
(minimal dressing) and the screening part from gauge invariant glue (an
additional dressing)
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Overlaps

Trial quark anti-quark state, separation r. At large T

〈 trial |e−HT | trial 〉 = |〈trial|Ω〉|2 e−V(r)T

Measure overlap |〈trial|Ω〉|2 with ground state |Ω〉
SU(2) Yang-Mills, 204 lattices, Wilson and improved actions.

Heinzl, Ilderton, Langfeld, ML, Lutz, McMullan, PRD 08
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Axial Trial State, |χ〉

Overlap drops
exponentially as n
increases

Continuum limit
more sensitive to
string UV artefacts
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Smeared Results

For fixed smearing overlap decreases for finer lattices

To maintain overlap must increase smearing.
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Coulomb State Overlap

Better overlap for finer lattice spacing
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Origin of the IR Problem

At asymptotic timesHint → 0 slowly
Dollard 64, Kulish-Faddeev 70

Ignoring this leads to IR divergences

Moral: do not set e→ 0 in asymptotic states

Fermion not gauge invariant at large time: ψ → eieΛψ

UV need renormalised fields
IR need physical fields

Dressings help Bagan, ML, McMullan 2000

but will now look at common IR approaches
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Coulomb Scattering

Regularised by:
D = 4 + 2εIR and m 6= 0.

F2 IR finite and safe, but. . .

soft and collinear divergences in F1:

1
ε
,

1
ε

ln(m) , ln2(m) , ln(m) .

How can it be made IR finite?

Standard: Bloch-Nordsieck (BN) for soft divergences;
Lee-Nauenberg (LN) for collinear.
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The Bloch-Nordsieck Response

Include real, soft emission (up to a resolution ∆) but not absorbtion:

+
eikonal approximation

square and add to virtual cross-section

Compare IR divergences in cross-sections:

Virtual

−A
ε
, −B

ε
ln(m) , C ln2(m) , F ln(m) .

Emission

+
A
ε
, +

B
ε

ln(m) , −C ln2(m) , G ln(m) .

F 6= −G, what kills these logs?
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Bloch-Nordsieck Extended to Collinear?

Include (semi-hard) emission collinear with outgoing electron (up to an
angular resolution δ):

Virtual + soft emission leave:

− ln(m)×
[

3
4
− ln

(
E
∆

)]
Semi-hard emission fails:

+
1
2

ln(m)×
[

3
4
− ln

(
E
∆

)]
So would it work if add semi-hard absorbtion? Lee-Nauenberg 64
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Be Careful: include soft resolution ∆

Semi-hard emission really generates

1
2

ln(m)×
[

3
4
− ln

(
E
∆

)
− ∆

E
+

1
4

∆2

E2

]

However, in eikonal dropped k/ in p/+ k/+ m in numerator.

Reinstate sub-eikonal: soft finite but kills these collinear logs off.

They are artefact of energy integral divide:∫ E

∆︸︷︷︸
semihard

+

∫ ∆

0︸︷︷︸
soft

But what about eikonal soft absorbtion?
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What Should be Added to the Virtual Cross-Section?

Cannot separate BN (soft) and LN (collinear) as would include:
soft emission;
semi-hard emission;
semi-hard absorbtion;
soft absorbtion – but only sub-eikonal terms in integrals which do not
generate a soft divergence! Inconsistent!

Or, more in spirit of LN, include
all degenerate indistinguishable processes!
Including initial and final soft and collinear.
Soft absorbtion generates soft infra-red divergences (eikonal):
what cancels them?

Look at Lee-Nauenberg paper again. . . ML, McMullan, JHEP ’06
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Soft Divergences in the LN Spirit (m 6= 0)

LN: all degeneracies . . . virtual, emission and absorbtion.

No cancellation: −1
ε

+
1
ε

+
1
ε

.
Add all diagrams with emission and absorbtion

+

To get cross-section at order e4 need interference with a disconnected photon!

Connected interference terms.
Lee-Nauenberg; Muta-Nelson; de Calan-Valent; Bergere-Szymanowski; Smilga; Ito;

Akhoury-Sotiropoulos-Zakharov; . . .

Martin Lavelle (Plymouth) Confinement and the Infra-Red JLab 2012 21 / 31



Still Need a Bit More. . .

Absorbtion plus a disconnected photon: diagrams like

These yield

+

Only use connected contribution.
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−1 + 1 + 1− 2 + 1 = 0

Soft divergences then sum to zero:

virtual emit absorb emit & abs. abs. plus disconn.

−1
ε

+
1
ε

+
1
ε

−2
1
ε

+
1
ε

• Arbitrary choices? Why not emission plus a disconnected photon line?
•Why stop here? Can have more than one disconnected photon line?
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Beyond Truncation

Idea: I. Ito 83, Akhoury-Sotiropoulos-Zakharov 97

Write cross sections as product:

disconnected loops × sum of connected (interference) probabilities

Ito, ASZ argue sum of connected probabilities could be IR finite∑
mn

(e + m soft photons→ e + n soft photons)

At order e4 need: virtual loop; 1 emission; 1 absorbtion; 1 emission with 1
absorbtion.
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Non-Convergent Series

Connected interference from diagram with disconnected line yields same
integral as diagram without:

=

Combinatorical factors all reduce to 1 for connected parts.

Series do not converge! E.g., for soft absorbtion with n disconnected
photons get:

n disconnected photons: 0 1 2 3 . . .

IR divergence: +
1
ε

+
1
ε

+
1
ε

+
1
ε

. . .
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LN and Renormalisation Schemes

Consider massless φ3 in D = 6: asymptotically free, collinear divergences but
no soft divergences. ML, D. McMullan, T.G. Steele, AHEP 2012.

in MS scheme argued to cancel Srednicki

but . . . there are more diagrams
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Additional Collinear Divergent Diagrams

Experiment has energy resolution, ∆

Soft collinear absorbtion on outgoing lines

Soft collinear emission from incoming lines

Generate ∆ ln(m) divergences

Not normally considered; cannot cancel with virtual loops.
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Disconnected?

Divergences of form

|T0|2
[
α

(
∆

k

)2

ln(m2)

]
.

A further sum of diagrams.
All too simplistic? E.g., need different initial and final resolutions.
Need to make sense of divergent series.
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Changing Scheme

Say use MS

Virtual loops IR finite

Real processes still IR divergent

What can cancel them in cross-sections?

LSZ tells us we require leg correction factors made from powers of

ZMS
2
Z2

where Z2 is on-shell wave function renormalisation constant.
And Z2 contains IR divergences. Let’s look at QED example
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S-Matrix in Off-Shell QED

Emission (Bloch-Nordsieck) contributes IR divergences via:

Femiss
1 (v) = − α

4π
1
ε̃IR

(
2− 1 + v2

v
ln
(1 + v

1− v

))
+ IR finite .

Wave function renormalisation:

δZ2 = − α

4π

(
ξ

1
ε̃UV

+ (ξ − 3)
1
ε̃IR

+ 4− 3 ln(m2/µ2)

)
.

As Z2 is gauge dependent cannot cancel (IR finite in Yennie, ξ = 3).

Some IR divergences in F1 depend upon the relative velocity v
(Isgur-Wise; cusp renormalisation)

This cannot be generated by LSZ leg factors alone (soft vs. collinear).

Even if were to introduce cusp renormalisation would need to correct
gauge dependence.
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Summary

We can talk about quarks . . . at least perturbatively

To what extent can we talk non-perturbatively?

Potential: perturbative and lattice investigations support relevance of
these physical states.

On-shell IR structures support the construction.
Q. What about emission (IR safety)?

Identified problems with Lee-Nauenberg (divergent series)

and with use of LSZ in the off-shell scheme to find S-matrix &
cross-section in gauge theories (QED).
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