Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in ^{48}Ca and ^{208}Pb

Xavier Roca-Maza
Università degli Studi di Milano and INFN
Via Celoria 16, I-20133, Milano (Italy)
Calcium Radius Experiment workshop, 17-19 March 2013, Newport News, USA.
Table of contents:

- Motivation
- Parity violating elastic electron scattering:
 - Single angle measurement of A_{pv} in 48Ca and 208Pb within the Distorted Wave Born Approximation based on modern mean-field nucleon distributions
 - Uncertainty due to strange quark contributions on the weak neutral current nucleon form factors
 - Important effects on A_{pv} for the case of the lighter 48Ca: spin-orbit and three-neutron forces
- Isovector static dipole polarizability α_D:
 - Definition
 - Hartree-Fock + Random Phase Approximation results for the case of 48Ca and 208Pb
- Conclusions
Motivation:

The importance of determining isovector properties in nuclei

- **In the past** (and also in the present), *neutron properties* in stable medium and heavy nuclei have been mainly measured by using *strongly interacting probes*.

[↓]

Limited knowledge of isovector properties

- **At present,**
 - the use of *rare ion beams* has opened the possibility of measuring properties of *exotic nuclei*
 - *parity violating elastic electron scattering* (PVES), a *model independent technique*, has allowed to estimate the *neutron radius* of a stable heavy nucleus like 208Pb

[↓]

Promising perspectives for the near future
Motivation:

It is possible to connect observables with general isovector properties of the nuclear effective interaction?

Example:
Mean-Field predictions show a clear correlation between Δr_{np} of a medium and heavy nucleus and the density slope of the symmetry energy ($L = 3\rho_0 \partial_\rho S(\rho)|_{\rho_0} = 3\rho_0 p_0$).

More generally within MF, it has been found a semi-empirical law: $a_{\text{sym}}(A) \approx S(\rho_A)$ with $\rho_A = \rho_0 - \rho_0/(1 + cA^{1/3}) \Rightarrow$

direct and clear connection of any ground state isospin sensitive observable with the parameters of the EoS.

Following the same example: $\Delta r_{np}^{\text{total}}(A, I) = \Delta r_{np}^{\text{bulk}}(A, I) + \Delta r_{np}^{\text{surface}}(A, I)$

$$\Delta r_{np}^{\text{bulk}}(A, I) \approx \frac{2r_0}{3J} L \left(1 - \epsilon_A K_{\text{sym}} \frac{2L}{2L}\right) \epsilon_A A^{1/3} (I - I_C)$$

Motivation:

Observables, processes and observations known to be correlated with the isovector properties of the nuclear effective interaction

- **Binding energies**
- **Neutron distributions** (proton elastic scattering, antiprotonic atoms, parity violating asymmetry,...)
- **Heavy Ion Collisions** (EoS — transport models)
- **Neutron Star properties**: mass-radius relation, transition density crust-core, composition,... (observational data).
- Low-energy dipole response (?)
- Isovector GQR [see PRC 87, 034301 (2013)!]
- Isoscalar Giant Resonances along isotopic chains (?)
- ...
Parity violating elastic electron scattering in ^{48}Ca and ^{208}Pb
From previous talks, we have seen that,

- **Electrons** interact by exchanging a γ or a Z_0 boson.
- While **protons** couple basically to γ, **neutrons** do it to Z_0.
- **Ultra-relativistic electrons**, depending on their helicity, interact with the nucleons $V_{\pm} = V_{\text{Coulomb}} \pm V_{\text{Weak}}$.
- **Ultra-relativistic electrons** moving under the effect of V_{\pm} where **Coulomb distortions** are important \Rightarrow solution of the Dirac equation via the Distorted Wave Born Approximation (DWBA).
- **Input for the calculation:** ρ_n and ρ_p ... and nucleon form factors for the e-m and the weak neutral current...

Refs:
PREx and CREx measure: model-independently the *parity* violating asymmetry,

\[A_{pv} = \frac{d\sigma_+}{d\Omega} - \frac{d\sigma_-}{d\Omega} \]

at 1.06 GeV and for a single angle (\(\sim 5\) deg.) in \(^{208}\text{Pb}\) and at 2.20 GeV and for a single angle (\(\sim 4\) deg.) in \(^{48}\text{Ca}\)

\(\rho_n\) of \(^{208}\text{Pb}\) and \(^{48}\text{Ca}\) are the quantities to be determined, a precise determination of \(\Delta r_{np}\) would constrain the density dependence of the symmetry energy around saturation.
Qualitatively,

A_{pv} within the Plane Wave Born Approximation,

$$A_{pv} = \frac{G_F q^2}{4\pi \alpha \sqrt{2}} \left[4 \sin^2 \theta_W + \frac{F_n(q) - F_p(q)}{F_p(q)} \right]$$

... which depends on $F_n(q) - F_p(q)$. For $q \to 0$, it is approximately,

$$-\frac{q^2}{6} \left(\langle r_n^2 \rangle - \langle r_p^2 \rangle \right) = -\frac{q^2}{6} \left[\Delta r_{np} (\langle r_n^2 \rangle^{1/2} + \langle r_p^2 \rangle^{1/2}) \right]$$

$$= -\frac{q^2}{6} \left(2\langle r_p^2 \rangle^{1/2} \Delta r_{np} + \Delta r_{np}^2 \right)$$

variation of A_{pv} at a fixed q dominated by the variation of Δr_{np}. $F_p(q)$ well fixed by experiment.
Pb: direct correlations

DWBA; no radiative corrections or strange quark effects included

MF correlations allows to determine Δr_{np} and L without direct assumptions on ρ, PREx-II and PV-RAPTOR expected accuracy \rightarrow constrain on L

Different experiments on proton elastic scattering and antiprotonic atoms agrees with the correlation
48Ca: direct correlations within MF including radiative corrections and strange quark effects

A_{pv} decreases by around 0.005 ppm with an error of about 0.01 - 0.02 ppm when $G_E^s(Q^2)$ is included.

Used $G_E^s(Q^2)$ from PRC 76, 025202 (2007) by Liu, McKeown, and Ramsey-Musolf

In the two tested models, spin-orbit effects shifts to lower values the A_{pv} consistently by about 0.07 ppm. This predicts a reduction of Δr_{np} of about 0.05 fm.

Charge density distributions including spin orbit effects provided by J. Piekarewicz (FSU).
48Ca: Estimation of three-neutron forces effects in comparison with other corrections

Shell Model calculations based on χEFT with NN to N3LO (fixed to scattering data) and 3N to N2LO (fixed to B tritium and R of alpha particle) **provided by J. Menendez (TU Darmstadt).**

Three-neutron forces used here shifts downwards the $A_{p\nu}$ by about **0.05 ppm** (very similar to spin-orbit effect)
Isovector static dipole polarizability
Definition: α_D

- The linear response or dynamic polarizability of a nuclear system excited from its g.s., $|0\rangle$, to an excited state, $|\nu\rangle$, due to the action of an external oscillating dipolar field of the form $(Fe^{iwt} + F^\dagger e^{-iwt})$:

\[
F_D = \frac{Z}{A} \sum_i^N r_n Y_{1M}(\hat{r}_n) - \frac{N}{A} \sum_i^Z r_p Y_{1M}(\hat{r}_p)
\]

- is proportional to the **static dipole polarizability**, α_D, for small oscillations

\[
\alpha_D = \frac{8\pi}{9} e^2 m_{-1} = \frac{8\pi}{9} e^2 \sum_{\nu} \frac{|\langle \nu | F_D | 0 \rangle|^2}{E}
\]

where m_{-1} is the inverse energy weighted moment of the strength function,

\[
S_D(E) = \sum_{\nu} |\langle \nu | F_D | 0 \rangle|^2 \delta(E - E_\nu)
\]
Mean-Field + RPA results for ^{208}Pb

J. Piekarewicz, B. K. Agrawal, G. Colò, W. Nazarewicz, N. Paar, P.-G. Reinhard, X. Roca-Maza and D. Vretenar,

Mean-Field + RPA results for ^{48}Ca

$$\Delta r_{np} \text{ (fm)}$$

$$\alpha_D \text{ (fm}^3\text{)}$$

Data on relativistic models provided by N. Paar and D. Vretenar
Conclusions:

- A precise and **model-independent** determination of Δr_{np} in 48Ca and 208Pb via PVES experiments would **probe** at the same time the density dependence of the nuclear **symmetry energy** and the relevance of **three neutron-forces** in 48Ca. Eventually, it can also provide indirect indications on the impact of 3N in 208Pb.

- We demonstrate a close **linear correlation** between A_{pv} and Δr_{np} within the same framework in which the Δr_{np} is correlated with L.

- Other **experiments** fairly **agree** with the **correlation** between A_{pv} and Δr_{np}.
Conclusions:

- The estimated corrections to the
 \[A_{pv} \approx A_{pv}^0 \times [1 - 0.005 \text{(strange)} - 0.03(s-o)] \]
 where \(A_{pv}^0 \) is the result from DWBA calculations with a given neutron and proton density distributions convoluted with experimental electromagnetic form factors and weak neutral current form factors including radiative corrections, **indicate a reduction of about the 3%**.

- In addition, the inclusion of **3N-forces** would change the neutron density producing a **reduction in** \(A_{pv}^0 \) of a few %.
Conclusions:

- Families of modern energy density functionals show an almost linear correlation between α_D and Δr_{np} while the correlation gets worst when models based on different grounds are also taken into account.

- A_{pv} and α_D are complementary observables that may set tight constraints on the density dependence of the symmetry energy.
Collaborators:

B. K. Agrawal1
G. Colò2,3
W. Nazarewicz4,5,6
N. Paar7
J. Piekarewicz8
P.-G. Reinhard9
D. Vretenar7

Michal Warda10
Mario Centelles11
Xavier Viñas11

1 Saha Institute of Nuclear Physics, Kolkata 700064, India
2 Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy
3 INFN, Sezione di Milano, via Celoria 16, I-20133 Milano, Italy
4 Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
5 Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
6 Institute of Theoretical Physics, University of Warsaw, ul. Hoa 69, PL-00-681 Warsaw, Poland
7 Physics Department, Faculty of Science, University of Zagreb, Zagreb, Croatia
8 Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
9 Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, Staudtstrasse 7, D-91058 Erlangen, Germany
10 Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie-Skłodowskiej, ul. Radziszewskiego 10, PL-20-031 Lublin, Poland
11 Departament d'Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos, Facultat de Física, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain