

Forward Tagging in an Electron-Ion Collider

Charles Hyde

Old Dominion University, Norfolk, VA

recent EIC white papers: arXiv:1212.1701 arXiv:1209.0757

Why a Polarized Electron-Ion Collider?

- Longitudinal & Transverse Ion polarization at IP
 - No intense transverse B-field at IP to disrupt electron beam
- Forward boost (incident ion species P(A) = ZP₀)
 - Target fragmentation region is boosted/easier to detect
 - Rapidity gap events can be identified
 - Spectator fragments are boosted forward
 - Incident ion species total momentum P(A) = ZP₀
 - Spectator fragment momenta $P(A') \approx A'(Z/A)P_0$

• Spectator nucleon $p' = ZP_0/A$

- Tag the initial momentum of the struck nucleon in DIS, SIDIS, DVES reactions on light nuclei.
- Reconstruct the full nuclear final state in DIS on nuclei

JLab LDRD-2014 Project on Spectator Tagging in Polarized Light Ions

- JLab:
 - Ch. Weiss, D. Higinbotham, W. Melnitchouk, P. Nadel-Turonski,
- Old Dominion U.
 - Ch. Hyde, KJ Park, S. Kuhn
- Florida Int'l U.
 - M. Sargsian
- St. Petersburg State U.
 - V. Guzey
- Spectator Tagging on polarized D, ³He
 - D(e,e'N_s)X
 - SIDIS D(e,e'N_sh) X'
 - DVES D(e,e'N_s M N_{active})

Neutron structure through spectator tagging

- Scattering on *bound neutrons*
 - Fermi motion,
 - NN correlations
 - Depolarization
- Solution is *Spectator Tagging*
 - Fixed target:
 - Low-momentum spectators
 - Thick Targets
 - Electron-Ion Collider
 - Spectator fragments are ultra-forward.
- The MEIC is designed from the outset to tag spectators, and other nuclear fragments.

Nuclear Spectral Functions

- ²H and ³He
 - 'Neutron' targets
- Mean field ≈ 80%
- Correlations
 - EMC Effect
 - Modified quarkgluon structure

The EMC Effect and NN Correlations

EMC Effect: J. Aubert et al., Phys. Lett. B 123, 275 (1983).

Recent ¹²C JLab 'EMC' data J. Seely PRL 103 (2009) 202301

N. Fomin et al, PRL 108 (2012) 092502

FIG. 2: Per-nucleon cross section ratios vs x at $\theta_e = 18^\circ$.

MEIC-EIC(Jlab) and eRHIC Performance

- fsPHENIX definition:
 - sPHENIX with hadron endcap
 - Adds GEM-tracking, RICH, Aerogel, addn'l ecal & hcal.
 - Leaves sPHENIX barrel unchanged.

- ePHENIX definition:
 - fsPHENIX with electron endcap
 - Removes silicon tracking
 - > Adds crystal emcal, TPC, DIRC.

Discussing ePHENIX covers all of fsPHENIX

□ High gradient (200 T/m) large aperture Nb_3Sn focusing magnets

BROOKHAVEN

ATIONAL LABORATORY

E.C. Aschenauer

- Arranged free-field electron pass through the hadron quad-triplet
- Integration with the detector: efficient separation and registration of low angle collision products

D.Trbojevic, B.Parker, S. Tepikian, J. Beebe-Wang

EIC – accelerator layout at JLab

• The MEIC has the same circumference as CEBAF or about 1/3 of RHIC

The full-acceptance detector concept

Proton Spectator Tagging in the Deuteron

- MEIC:
 Polarized
 DIS, SIDIS,
 DVES... on
 bound
 Neutron
 - Each contour is ³√10

 eRHIC: Unpolarized

MEIC Resolution

Neutron Spectator Tagging in the Deuteron

MEIC Polarized DIS, SIDIS, DVES... on bound proton

 eRHIC unpolarized

MEIC Resolution

³He(e,e'N_sN_s)X

PWIA `measurement' of active nucleon momentum:

- Active Neutron 🗲
 - Tagging of the two spectator protons
- Active Proton 🗲
 - Tagging of spectator proton and neutron.
 - Tag spectator deuteron
- Polarized ³He: Neutron: +86% polarized.
 Each Proton: -2.8% polarized.

Nuclear Tagging

- A hot nucleus decays by emitting neutrons, protons of ~10 MeV, or p_{perp}≤ 140 MeV/c
- Incident nucleus P_A = Z•100 GeV/c
 - per nucleon p = $(Z/A) \cdot 100 \text{ GeV/c} \rightarrow 50 40 \text{ GeV/c}$
 - Evaporation neutrons θ^{\sim} 0.14/40 = 3.5 mr
- Forward baryon multiplicity as a tag on centrality in DIS?

Intrinsic Charm

- $\gamma^* + p \rightarrow X + \Lambda_c$ 'Spectator Λ_c '
 - $\Lambda_c \rightarrow pK^0 2.3\%$
- For 100 GeV/c incident protons
 - Spectator Λ_c momentum ~60 GeV/c
 - 50% of Λ_C decay protons are ≤ 1.5°
 - 75% of Λ_c decay protons are ≤ 2.4°
 - Tagging in Forward region after small (6 mr bend) dipole

<mark>A</mark> high-luminosity Electron-Ion Collider

- Unprecedented capabilities to study the QCD structure of matter
- Polarized Light Ions:
 - Precision study of neutron structure
 - Spectator proton tagging
 - Quark-gluon structure of nuclear binding
 - Bound proton structure via neutron tagging
 - DIS, SIDIS, DVES processes identified in mean-field and NN-correlations regions
- Target fragmentation region
 - Heavy Quarks
- Heavy Nuclei
 - Tag the full nuclear final state → DIS vertex tagging?

Back-up Slides

How to Tell the Spectator Nucleons from the Active Nucleon?

- DIS, SIDIS
 - Target fragmentation produces a forward nucleon
 - Fragmentation increases p₁, decreases p₁₁
- DVES:
 - $p_z' \approx p_z(1-x_B) \rightarrow p'^+/P^+ \approx \alpha x_B$
 - $-t = -\Delta^2 \approx (x_B^2 M^2 + \Delta_{\perp}^2)/(1-x_B)$
 - D, ³He, Momentum densities fall by ~1/1000 for $x_B > 0.1$, or $\Delta_{\perp} = p_{\perp}' > 300 \text{ MeV/c} \rightarrow -t > 0.1 \text{ GeV}^2$ Antisymmetrization < 3%
 - At smaller x_B and smaller p_{\perp}' , sum over all nucleons as active or spectator, w/ anti-symmetrization

Ultra-forward charged-hadron acceptance

Forward acceptance vs.magnetic rigidity

eRHIC: design luminosity

23

eRHI	IC: design luminosity					
	e	р	² He ³	⁷⁹ Au ¹⁹⁷	92U23	
Energy, GeV	20	250	167	100	100	
CM energy, GeV		100	82	63	63	
Number of bunches/distance between bunches	107 nsec	111	111	111	111	
Bunch intensity (nucleons) ,10 ¹¹	0.36	4	6	6	6	
Bunch charge, nC	5.8	64	60	39	40	
Beam current, mA	50	556	556	335	338	
Normalized emittance of hadrons , 95% , mm mrad		1.2	1.2	1.2	1.2	
Normalized emittance of electrons, rms, mm mrad		16	24	40	40	
Polarization, %	80	70	70	none	none	
rms bunch length, cm	0.2	5	5	5	5	
β*, cm	5	5	5	5	5	
Luminosity per nucleon, x 10 ³⁴ cm ⁻² s ⁻¹		2.7	2.7	1.6	1.7	

Hourglass the pinch effects are included. Space charge effects are compensated. Energy of electrons can be selected at any desirable value at or below 30 GeV The luminosity does not depend on the electron beam energy below or at 20 GeV The luminosity falls as E_e^{-4} at energies above 20 GeV The luminosity is proportional to the hadron beam energy: $L \sim E_h/E_{top}$ BROOKHAVEN NATIONAL LABORATORY E.C. Aschenauer DIS-2013, Marseille

Parameters for *Full Acceptance* Interaction Point

		Proton	Electron	
Beam energy	GeV	60	5	
Collision frequency	MHz	750	750	
Particles per bunch	10 ¹⁰	0.416	2.5	
Beam Current	А	0.5	3	
Polarization	%	> 70	~ 80	
Energy spread	10-4	~ 3	7.1	
RMS bunch length	mm	10	7.5	
Horizontal emittance, normalized	µm rad	0.35	54	
Vertical emittance, normalized	µm rad	0.0 7	11	
Horizontal β*	cm	10 🔪	10	
Vertical β*	cm	2	2	
Vertical beam-beam tune shift		0.014	0.03	
Laslett tune shift		0.06	Very small	
Distance from IP to 1 st FF quad	m	7	3	
Luminosity per IP, 10 ³³	cm ⁻² s ⁻¹	5.0	6	

Spectator tagging in a collider

P_D = 100 GeV/c deuteron

• $p_p \approx (P_D/2)(1+\alpha) + p_\perp f$ • $\alpha < 50 \text{ MeV/1GeV}, \quad \theta_s = p_\perp/(P_D/2) \le 1 \text{ mrad}$

•
$$p_n \approx (P_D/2)(1-\alpha) - p_\perp$$

- Measure $\theta_n \approx p_{\perp}/(P_D/2)$ accurately in Forward Hadronic Calorimeter (integrate over α). $\delta \theta_n \approx (1 \text{ cm})/(40 \text{ m}) = 0.25 \text{ mrad}$
- P(⁴He) = 200 GeV/c = ZP₀
 - *Magnetic rigidity K*(⁴*He*) = *P*/(*ZB*) = (100 GeV/c)/*B* = *K*₀
 - P(Spectator ³He) $\approx (3/4)P(^{3}He) \rightarrow K(^{3}He) = (3/4)K_{0}$
 - P(Spectator ³H) $\approx (3/4)P(^{3}H) \rightarrow K(^{3}H) = (3/2) K_{0} > K_{0}$

Nuclear Spectral Functions

 C. Ciofi degli Atti,
 S. Simula
 PRC 53
 (1996)

