

Exploring Hadron Structure with Tagged Structure Functions Jefferson Lab, January 16, 2014

Quark-Hadron Duality in Electron-Pion Scattering

Wally Melnitchouk

Duality hypothesis: complementarity between quark and hadron descriptions of observables

 can use either set of *complete* basis states to describe physical phenomena

Duality in hadron-hadron scattering

Duality and QCD

- Operator product expansion
 - → expand moments of structure functions in powers of $1/Q^2$ $x \to 1 \iff W \to M$ $M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$ $= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$

matrix elements of operators with specific "twist" τ

 $\tau = \text{dimension} - \text{spin}$

Duality and QCD

- Operator product expansion
 - \rightarrow expand *moments* of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

de Rujula, Georgi, Politzer Ann. Phys. **103**, 315 (1975)

- If moment ≈ independent of Q^2 → "higher twist" terms $A_n^{(\tau>2)}$ small

 \rightarrow higher twists < 10-15% for $Q^2 > 1 \text{ GeV}^2$

- \rightarrow "theory": fit to W > 2 GeV data
- → locally, violations of duality in resonance regions < 15-20% (largest in ∆ region)
- → globally, violations < 10%

Malace, Kahn, WM, Keppel PRL **104**, 102001 (2010)

suggests resonance region data could be used to learn about *leading twist* structure!

How might duality work for pion?

Is average over pion resonances dual to DIS function, extrapolated to low W?

- Inclusive pion spectrum known for elastic and DIS, but not known in intermediate region
 - → assume low-W spectrum dominated by elastic and $\pi \rightarrow \rho$ transitions
 - \rightarrow elastic contribution to structure function

$$F_2^{\pi(\text{el})}(x=1,Q^2) = 2m_{\pi}\nu \left[F_{\pi}(Q^2)\right]^2 \,\delta(W^2 - m_{\pi}^2)$$

 \rightarrow pion form factor parametrization

$$F_{\pi}(Q^2) = \frac{1}{1 + Q^2/m_{\rho}^2} \left(\frac{1 + c_1 Z + c_2 Z^2}{1 + c_3 Z + c_4 Z^2 + c_5 Z^3} \right)$$

 $Z = \log(1 + Q^2 / \Lambda^2)$ $\Lambda \approx 0.25 \text{ GeV}$

WM, EPJA 17, 223 (2003)

- Inclusive pion spectrum known for elastic and DIS, but not known in intermediate region
 - → assume low-W spectrum dominated by elastic and $\pi \rightarrow \rho$ transitions
 - \rightarrow elastic contribution to structure function

 $F_2^{\pi(\text{el})}(x=1,Q^2) = 2m_{\pi}\nu \left[F_{\pi}(Q^2)\right]^2 \,\delta(W^2 - m_{\pi}^2)$

 \rightarrow pion form factor parametrization

- Inclusive pion spectrum known for elastic and DIS, but not known in intermediate region
 - $\rightarrow \pi \rightarrow \rho$ transition form factor $F_{\pi\rho}(Q^2)$ not known empirically \rightarrow take from models
 - relativistic Bethe-Salpeter vertex function Ito, Gross, PRL 71, 2555 (1993)
 - covariant Dyson-Schwinger equations Maris, Tandy, PRC 65, 045211 (2002)
 - light-cone QCD sum rules Khodjamirian, EPJC 6, 477 (1999)
 - \rightarrow assume 100% uncertainty
 - \rightarrow $F_{\pi\rho}(Q^2)$ an important ingredient in meson-exchange current contributions to deuteron form factors

- Inclusive pion spectrum known for elastic and DIS, but not known in intermediate region
 - $\rightarrow \pi \rightarrow \rho$ transition form factor $F_{\pi\rho}(Q^2)$ not known empirically \rightarrow take from models
 - relativistic Bethe-Salpeter vertex function Ito, Gross, PRL 71, 2555 (1993)
 - covariant Dyson-Schwinger equations Maris, Tandy, PRC 65, 045211 (2002)
 - light-cone QCD sum rules *Khodjamirian*, *EPJC* **6**, 477 (1999)
 - \rightarrow assume 100% uncertainty
 - \rightarrow at high Q^2 , $F_{\pi\rho} \sim 1/Q^4$ (cf. $F_{\pi} \sim 1/Q^2$)

 \rightarrow contribution to structure function suppressed

- Inclusive pion spectrum known for elastic and DIS, but not known in intermediate region
 - → in DIS region strongest constraints from pion Drell-Yan measurements (FNAL E615 experiment)

QCD moment analysis

- → resonance contribution defined for W < 1 GeV→ at $Q^2 = 1 \text{ GeV}^2$, ~75% of n = 2 moment from low W
 - \rightarrow higher twist contributes ~50% of total moment

QCD moment analysis

- \rightarrow resonance contribution defined for W < 1 GeV
- → at $Q^2 = 2 \text{ GeV}^2$, ~50% of n = 2 moment from low W → higher twist contributes ~30% of total moment

QCD moment analysis

- → scale of higher twists set by average quark intrinsic transverse momentum $\langle k_T^2 \rangle$
- \longrightarrow expected to scale with confinement radius $\langle k_T^2 \rangle \sim 1/R^2$

$$\langle k_T^2 \rangle_{\text{E615}} = (0.8 \pm 0.3) \,\text{GeV}^2 \quad \gg \langle k_T^2 \rangle_{\text{nucleon}}$$

Extend finite-energy sum rule relation to elastic (threshold) region

Extend finite-energy sum rule relation to elastic (threshold) region

Huber et al., PRC 78, 045203 (2008)

- But ... elastic scattering contributes only to longitudinal cross section, while DIS dominated by transverse scattering
 - \rightarrow non-trivial relation between L and T cross sections?
 - $\rightarrow \pi \rightarrow \rho$ transition purely transverse, so suggestion that *average* of elastic and $\pi \rightarrow \rho$ contributions dual to DIS structure function at $x \sim 1$

de Rujula, Georgi, Politzer Ann. Phys. **103**, 315 (1975)

 $\left[F_{\pi}(Q^2)\right]^2 \longrightarrow \left[F_{\pi}(Q^2)\right]^2 + \omega_{\rho} \left[F_{\pi\rho}(Q^2)\right]^2$ $\omega_{\rho} = 1 + (m_{\rho}^2 - m_{\pi}^2)/Q^2$

But ... elastic scattering contributes only to longitudinal cross section, while DIS dominated by transverse scattering

→ qualitative agreement between π resonance and DIS structure functions, within large uncertainties on excitation spectrum beyond $Q^2 \sim 2 \text{ GeV}^2$

Conclusion

- Intriguing connection between inclusive and exclusive pion observables through quark-hadron duality
- Assume low-*W* inclusive pion spectrum dominated by elastic and $\pi \to \rho$ transitions
 - \rightarrow indicates higher twists in π larger than in N
- Local duality relates large-x structure functions with high- Q^2 form factors
 - \rightarrow tested using pion PDFs from Drell-Yan data
- Motivates pion resonance spectrum measurements in the region $m_{\pi} < W < 2 \text{ GeV}$