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There was a time when nucleon sea was
nice and simple......

Flavor structure of the proton sea
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From Frank
Close’s book
(1982)
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0(x) =d(x) =5(x)

SU (3) symmetric sea



Is U =d In the proton?

u d
gm"< — ngV<
u d

Can be tested using the
Gottfried Sum Rule

Expect d =T if sea quarks
are produced ing — qQ

Gottfried Sum Rule (modified)

|2p :.[0 sz(X)/X dXZZ(Qip)Z =1 SG _ J‘(;L[(sz (X)— an (X))/X] dX

“Prof. Bjorken and | constructed
the sum rules in the hope of
destroying the quark model”

(Gottfried, 1967) —
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Is U =d In the proton?

GSR

The Gottfried Sum Rule NMC Q" =4 GeV’
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New Muon Collaboration (NMC) obtains
S =0.235+£0.026 ( Significantly lower than 1/3!)

= [ (@ (x)-0(x)) dx=0.148+0.04
Need independent methods to check the d /T
asymmetry and to measure the x-dependence 4




d /U flavor asymmetry from Drell-Yan
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Impact of the Drell-Yan data for constraining
the d and u x-distributions

x(d (x) =T (X)) uncertainty on d (X)
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Drell-Yan is very effective in determining the d (x) and T(X)
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Origins of T(x)=d(x)?

Meson Cloud Models Chiral-Quark Soliton Model Instantons

+ . = chi ' Statistical
T meson nucleon = chiral soliton
Pauli-blocking

« expand in 1/Nc

u_ ° Quark degrees of freedom Intrinsic sea

d Inapion mean-field

b.::

"valence" "sea"

Theory: Thomas, Miller, Kumano, Ma, Londergan, Henley, Speth,
Hwang, Melnitchouk, Nikolaev, Soffer, Wakamatsu, Liu, Cheng/Li, etc.

(For reviews, see Speth and Thomas (1997), Kumano (hep-ph/9702367),
Garvey and Peng (nucl-ex/0109010))

Theses models also have implications on
- asymmetry between S(X) and S(X)

« flavor structure of the polarized sea

Meson cloud has significant contributions to
sea-quark distributions .



Measuring the pion cloud with leading neutron DIS

do/dx, [nb]

(From talk by Povh)

Significant fraction of ep scattering events contains a high energy forward
neutron produced at very small angles.
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Measuring the pion cloud with leading neutron DIS

Significant fraction of ep scattering events contains a high energy forward
neutron produced at very small angles.

e e’ (k)
e / e (k)
" e+pre’+n+X <
'T (q)
G X(p
P(P) \ 7
P np,

Future possibilities:
e Tagged forward neutron/proton DIS at 12 GeV JLab and EIC

(Measure valence quark distributions of pion cloud)
e Tagged forward Lambda DIS to probed the kaon cloud
e Tagged forward neuron/proton Drell-Yan at RHIC/LHC



Implications on the “intrinsic” quark sea

In 1980, Brodsky, Hoyer, Peterson, Sakai (BHPS)
suggested the existence of “intrinsic” sea

| p) = Py, [uud) + Py, [uudQQ) +------
The "intrinsic"-charm from |uudcC) Is "valence"-like
and peak at large x unlike the "extrinsic" sea (g — cC)
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\«—— “extrinsic”. N
0.03 | | 1 | The |uudcC) intrinsic-charm
— \ ““r 3 T . .
Sooef [ Intrinsic” 4 | can lead to large contribution
oo | ‘\1 < ~ | | to charm production at large x
\
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EC(X)

Evidence for the “intrinsic” charm (IC)
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Gunion and Vogt (hep-ph/9706252)

(Evidence is subjected to the uncertainties of
charmed-quark parametrization in the PDF)
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Search for the lighter “intrinsic” quark sea

| p) = Py, |uud) + B, |uudQQ) + -+

Some tantalizing experimental
evidence for intrinsic-charm so far

Are there experimental evidences for the intrinsic
|uudul), |uuddd ), |uudss) 5-quark states ?

Py ~1/mg

The 5-quark states for lighter
guarks have larger probabilities! 2



How to separate the “intrinsic sea” from
the “extrinsic sea”?

 Select experimental observables which have no
contributions from the “extrinsic sea”

* “Intrinsic sea” and “extrinsic sea” are expected
to have different x-distributions

— Intrinsic sea 1s “valence-like” and 1s more
abundant at larger x

— Extrinsic sea 1s more abundant at smaller x
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How to separate the “intrinsic sea” from the
“extrinsic sea’?

 Select experimental observables which have no
contributions from the “extrinsic sea”

d — U has no contribution from extrinsic sea (g — Q)
and Is sensitive to" Intrinsic sea” only

U d
u d
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Comparison between the d (x) —T(x) data
with the intrinsic 5-q model

I i s The data are in good
z K’ — BHPS (=05 6oV agreement with the_ 5-q
' model after evolution
05| from the initial scale u to
Q?%=54 GeV?
The difference in the
or two 5-quark
0 04 02 03 04 components can also
X be determined
(W. Chang and JCP , PRL 106, 252002 (2011))

P5uudd5 B P5uuduU ~0.118
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How to separate the “intrinsic sea” from
the “extrinsic sea”?

* “Intrinsic sea” and “extrinsic sea” are expected
to have different x-distributions

— Intrinsic sea 1s “valence-like” and 1s more
abundant at larger x

— Extrinsic sea IS more abundant at smaller x

Anexample Is the s(x) + S(X) distribution
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Comparison between the s(x) +S(x) data

with the intrinsic 5-q model

X(s+s)
o
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— e
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+ #+ oe HERMES

0.2 by

s(x) +5(x) from HERMES kaon
SIDIS data at (Q*) = 2.5 GeV*

The data appear to consist
of two different components
(intrinsic and extrinsic?)

HERMES collaboration, Phys. Lett.

B666, 446 (2008)
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Comparison between the s(x) +S(x) data
with the intrinsic 5-q model

| ﬁ 0.3 % % b :EE:E:M GeV) s(x)+5(x) from HERMES kaon
X + #ﬁ """ BHPS (1203 GeV) SIDIS data at (Q*) = 2.5 GeV?
0.2 % Assume x > 0.1 data are dominated
. by intrinsic sea (and x < 0.1 are
0.1~ from extrinsic sea)
Q

-
—
- -
-
- -

R i This allows the extraction of the
y —b T intrinsic sea for strange quarks

X
(W. Chang and JCP, PL B704, 197(2011))

P* = 0.024

18



How to separate the “intrinsic sea” from the
“extrinsic sea’?

 Select experimental observables which have no
contributions from the “extrinsic sea”

d + U —s -5 has no contribution from extrinsic sea (g — Gq)
and Is sensitive to" intrinsic sea" only
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Comparison between the T(x) +d (x) - s(X) —5(X)
data with the intrinsic 5-g model

® HERMES+CTEQ

)

9 ~ BHPS (405 GeV) d (x)+T(x) from CTEQ6.6
F 03 BHPS (u=0.3 GeV)
g s(x)+S(x) from HERMES

0+d-s-5
_ PsuuduU n P5uudda _2P5uuds§

(not sensitive to SU(3)-symmetric

extrinsic sea)

(W. Chang and JCP, PL B704, 197(2011))

P5uudLU n PSUUdCH _2P5uud§ ~ 0314
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Extraction of the various five-quark
components for light quarks
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Future Possibilities

 Search for intrinsic charm and beauty at
RHIC and LHC.

o Intrinsic gluons in the nucleons?

» Spin-dependent observables of Intrinsic
sea?

 Global fits including Intrinsic u, d, s sea?
* Intrinsic sea for hyperons and mesons?

e Connection between Intrinsic sea and
lattice QCD formalism?
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week ending

PRL 109, 252002 (2012) PHYSICAL REVIEW LETTERS 21 DECEMBER 2012

Connected-Sea Partons

Keh-Fei Liu," Wen-Chen Chang.” Hai- Yang Cheng.” and Jen-Chieh Peng’

Connected sea Disconnected sea Two sources of sea:
Connected sea (CS) and
Disconnected sea (DS)

CS and DS have
(valence-like) (sea-like) different Bjorken-x and
flavor dependences

e X —dependence: at small x, CS ~ x*; DS ~ x™
e Flavor dependence: o and d have both CS and DS; S is entirely DS
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<>, / <> i disconnected)

Can one separate the “connected sea” from
the “disconnected sea” for u + d ?
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Disconnected sea
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PR— }
<x>_/ <x> [chiral limit}= 0.857(40)
Chiral Extrapolation for <x>_/ <x>,
..............................
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R = X5 _( 857(40)
(X)

u+u

for disconnected sea

[mm]a]l

., (Doi et al., Pos lattice
2008, 163.)

Lattice QCD shows that disconnected sea is roughly
SU(3)-flavor independent
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Can one separate the “connected sea” from
the “disconnected sea” for u + d ?

A) |Lattice QCD shows that disconnected sea Is roughly
SU(3)-flavor independent

o us
)

=0.857(40) for disconnected sea

u+u

B) [U(X) T J(X)]disconnected sea %[S(X) T §(X)]

C) [U(X) T O_(X)]connected Sea —

[U(X) T O_(X)]PDF o [U(X) T J(X)]disconnected sea o5




PRL 109, 252002 (2012) PHYSICAL REVIEW LETTERS 21 DECEMBER 2012

Connected-Sea Partons

Keh-Fei Liu.! Wen-Chen Ehang.: Hai- Yang Cheng,” and Jen-Chieh Peng”
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Connected sea Disconnected sea x(a +d)°
gy 7 ¢ g J, ol (+ x(0 +§)DS |
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H +u+ tyd H*H
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X

e Using input from lattice QCD, one can separate the
connected sea from the disconnected sea for T(X) +d (x)

e For U+d at Q*=2.5 GeV?, momenta carried by CS and DS
are roughly equal %




Does d /T drop below 1 at large x ?
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No existing models can explain sign-change
for d (x) —T(x) at any value of x 7



Sign change of d (x) — T (x) at x ~ 0.257?
(or d (x)/T(x)<1latx~0.257?)
Why is it interesting? (no models can explain it yet!)

Chiral-quark _
. Statistical model
Meson cloud model soliton model |
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Revisit the NMC measurement of the
Gottfried Sum rule

The Gottfried Sum Rule e o
0.3k NMC Q" = 4 GeV Jo0.15
SG
1 p n \g ? o
Se = |, [(FPOO=F ())/ x]dx SR S
u s
_1 2 ¢, ) x O.o¢ ¢
=5 +5 [, @00-d,00) x| L
1 o B | *
=3 (fu,=d,) b

New Muon Collaboration (NMC) obtains
S =0.235 £ 0.026

( Significantly lower than 1/3!)|= d==0?
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Extracting d (x) —T(x) from the NMC data

d () —U(x) =[u, (x) = dy, (]erso/ 23/ 2% [F () / X = F} (X) Xy

The NM Cdata, together
with the recent PDF,
already suggest that

d(x)—-u(x)<O0at large x!
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(JCP, Chen, Liu, Qiu, et al.
arXiv: 1401.1705)
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What mechanism could lead to @ >d at x > 0.25?

Connected sea Disconnected sea
ds =ds
Jy (T:S J,u. Jy q q JJ,L

(valence-like) (sea-like)
u(x) = d (x) can only come from connected sea (CS)

(U—>T+u+u, d—>d+d~+d) (g has the same flavor as q for CS)

— Connected sea could lead to T >d at certain x region??
(since there are two u valence quarks and one d valence qualks)



Some diagrams could lead to T(X) > d (X)

\¥ka UL
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time ——
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Both diagrams favor ubar over dbar
(JCP, Chen, Liu, Qiu, et al, arXiv: 1401.1705)
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Drell-Yan Experiment at Fermilab

SeaQuest Experiment ( Unpolarized Drell-Yan using 120 GeV proton beam)
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Main goals: 1) Measure d /U flavor asymmetry up to x ~ O.4SI
2) Measure EMC effect of antiquarks up to x ~ 0.45

« Commission run took place in February — April 2012
 2-year production run expected in 2014-2015 33



s s(X)+S5(X)=T(x)+d(x)?

Expectation:

s and S are suppressed relative to T and d due to laroer s-quark mass

(s+3)/(T+d) distribution at Q? = 5 GeV?
T T T roT T T L L

(s+8)/(u+d)

-
N

—

o
()

|

0.4
s
B % MRST 2001 NLO
0.2 — N
TN
0 | | | I T |
107

The ratio of (s(x) +5(x))/ (T(X) +d (x)) is strongly x-depengent!



Strange sea from inclusive W/Z production
Inclusive W / Z production at Tevatron/LHC
W*: (uorc)+(d ors) >W~
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Strange sea from inclusive W/Z
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Strange sea content Is strongly x dependent

 Perturbative sea at small x is roughly SU(3) symmetric
« Non-perturbative sea at larger x is SU(3) asymmetric

Can be well understood from Lattice QCD
(PRL 109 (2012)252002)

Connected sea

Generate "valence-like"
u(x) and d (x) (no 5(x))
at larger x

Disconnected sea

ds ~ds
J v q a J.u

—

—_—n

Generate roughly symmetric

s(x),5(x),u(x) and d (X)
at small x
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Strange sea content is strongly Q¢ dependent

1.23_ CTEQ 6.6
Q=80 GeV
Ee=m—— Q=15 GeV
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Kusina et al., PRD 85 (2012) i
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Figure 5: x(x, Q) vs. x showing the evolution from low to
1igh scales. The solid (red) lines are for CTEQ6.6, and
‘he dashed (purple) lines are for CTEQ6.1. The lower

W/Z productions are sensitive to s(x),5(x) at very large Q° scale (Q° =M, ,),
dominated by perturbative roughly SU(3) symmetric sea!

Measurements at low Q2 are very important




Conclusions

e Evidences for the existence of "intrinsic" light-quark

seas (U,d,S) in the nucleons.

e Further search for intrinsic charm is of much interest.

e The flavor structures of the nucleon sea and their Bjorken-x
dependence provide strong constraints on theoretical models.

e The concept of connected and disconnected seas in Lattice QCD
offers useful insights on the flavor- and x-dependences of the sea.

e Ongoing and future Drell-Yan and SIDIS experiments will
provide new information on nucleon sea and meson structure.
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