JLab Measurements of the Few-Body Elastic Form factors

Makis Petratos*
Kent State University

* For the Jefferson Lab Hall A Collaboration

XIII Electron-Nucleus International Workshop
Marciana Marina, Isola d’Elba, Italy, EU
June 2014
Few-Body Form Factors (FFs)

- Extracted from cross section measurements of elastic electron scattering from light nuclei (A=2,3,4).
- They determine the nuclear charge and magnetization distributions and their associated radius.
- Are sensitive probes of:
 - Nucleon-nucleon potential
 - Meson-exchange currents
 - Multi-quark component in nuclear wave function
 - Three-body force effects (A=3,4)
- Expected to uncover, at large Q^2, a possible transition in the description of elastic scattering, from meson-nucleon to quark-gluon degrees of freedom.
Elastic Electron-Deuteron Scattering

• Charge, Quadrupole and Magnetic Form Factors:

\[
\frac{d\sigma}{d\Omega} = \frac{\alpha^2 E'}{4E^3 \sin^4(\frac{\theta}{2})} \left[A(Q^2) \cos^2(\frac{\theta}{2}) + B(Q^2) \sin^2(\frac{\theta}{2}) \right]
\]

\[
A(Q^2) = F_C^2(Q^2) + \frac{8}{9} \tau^2 F_Q^2(Q^2) + \frac{2}{3} \tau F_M^2(Q^2)
\]

\[
B(Q^2) = \frac{4}{3} \tau (1 + \tau) F_M^2(Q^2)
\]

\[
\tau = Q^2 / 4M^2 \quad Q^2 = 4EE' \sin^2(\theta / 2)
\]

• Tensor Polarization from polarized e-d scattering:

\[
\tilde{t}_{20} = \sqrt{2} \frac{y(2 + y)}{1 + 2y^2} \quad y = \frac{2}{3} \tau \frac{F_Q}{F_C}
\]

• Half a century of experimental and theoretical work!
Elastic Electron-Helium/Tritium Scattering

- 3He and 3H Charge and Magnetic Form Factors:

$$\frac{d\sigma}{d\Omega} = \frac{Z^2\alpha^2 E'}{4E^3 \sin^4\left(\frac{\theta}{2}\right)} \left[A(Q^2)\cos^2\left(\frac{\theta}{2}\right) + B(Q^2)\sin^2\left(\frac{\theta}{2}\right) \right]$$

$$A(Q^2) = \frac{F_C^2(Q^2) + \tau\mu^2 F_M^2(Q^2)}{1 + \tau}$$

$$B(Q^2) = 2\tau\mu^2 F_M^2(Q^2)$$

$$Q^2 = 4EE'\sin^2(\theta/2)$$

$$\tau = Q^2 / 4M^2$$

- 4He Charge Form Factor:

$$\frac{d\sigma}{d\Omega} = \frac{Z^2\alpha^2 E' \cos^2\left(\frac{\theta}{2}\right)}{4E^3 \sin^4\left(\frac{\theta}{2}\right)} F_C^2(Q^2)$$

- Half a century of experimental and theoretical work!
Non-Relativistic Impulse Approximation (IA)

- Few-Body FFs are, simplistically in the IA, convolutions of the nuclear wave functions with the nucleon form factors.
- **Deuteron**
 - Ground state is solved using the Schrödinger equation with a realistic $N-N$ potential.
 - All calculations are complemented by Meson Exchange Currents (MEC).
- **Helium-Tritium**
 - Ground state is solved using the coupled Faddeev equations ($^3\text{He},^3\text{H}$) or Faddeev-Yakubovski equations (^4He) with a realistic $N-N$ potential, or
 - Variational or Green’s Functions Monte Carlo Methods.
 - All calculations are complemented by MEC and selected diagrams of Three-Body Force Effects (3BFE).
“Few-body form factors are the observables of choice for testing the $N-N$ interaction and the associated current operator” (Laura Marcucci et al.)
Relativistic Approaches

Deuteron

- **Propagator Dynamics**: Ground state is solved using three-dimensional reductions of Bethe-Salpeter (BS) equation [also called as Relativistic Impulse Approximation (RIA)]:
 - Quasi-potential approximation: Gross spectator equation or Blankenbeckler-Sugar equation
 - Equal-time approximation: Wallace-Mandelzweig equation
 - Both methods are complemented by the $\rho \pi \gamma$ interaction current
- **Hamiltonian Dynamics**: Based on Hilbert space Quantum Mech. with instant, point or light form dynamics (LFD) quantization.

Helium-3/Tritium

- Quasi-potential propagator calculation was recently completed (Gross, Pinto, and Stadler), no inclusion of $\rho \pi \gamma$ current yet.
- LFD calculations have started, no MEC inclusion yet (Baroncini, Kievsky, Pace, and Salme).
Quark-Gluon Approaches

- **Deuteron**
 - Addition of quark-cluster admixtures in the ground-state wave function
 - Dimensional-Scaling Quark Model (DSQM)
 - Perturbative QCD (pQCD)
 - DSQM/pQCD prediction: $F_d = [A(Q^2)]^{1/2} \sim (Q^2)^{-6.1}$

- **Helium-Tritium**
 - Addition of quark-cluster admixtures in the ground-state wave function
 - DSQM/pQCD:
 - 3He/3H Form Factor prediction: $[A(Q^2)]^{1/2} \sim (Q^2)^{-9.1}$
 - 4He Form Factor prediction: $[A(Q^2)]^{1/2} \sim (Q^2)^{-12.1}$
DSQM

^3He
Deuteron Form Factors
RIA + [ρπγ current]

Thick Dots: Gross Equation
Tripole nucleon F3

Solid: Gross Equation
Dipole nucleon F3

Dots: Blankenbeckler-Sugar Equation

Dashes: Wallace-Mandelzweig Equation
Deuteron Quark Scaling?

Deuteron Form Factor

\(F_d(Q^2)[(Q^2)^5] \)

\(Q^2 \) \([(GeV/c)^2] \)

JLab Hall A

SLAC E101
Jefferson Lab Helium Experiment E04-018
The Jefferson Lab Hall A Collaboration

- Measurement of the charge and magnetic form factors of 3He and charge form factor of 4He, via elastic scattering.
- Used the two Hall A High Resolution Spectrometers (HRS) to detect scattered electrons and recoil nuclei in coincidence.
- Electrons were identified using a gas threshold Cherenkov counter and a lead-glass segmented E-M Calorimeter.
- Helium nuclei were identified using double-arm TOF, and recoil scintillator ADC signals.
- Normalization checked with elastic coincidence $e-p$ scattering.
- Full Monte Carlo simulation of the double-arm experiment, which provided the effective coincidence $\Delta\Omega$ solid angle, with radiative and Landau energy losses, multiple scattering, etc.
JLab Hall A Helium Form Factor Setup

DETECTORS
Cherenkov, Calorimeter, 2 Scintillator planes, and Drift Chamber set

Electron Spectrometer

Detector Hut

Hadron Spectrometer

Dipole

Q3

Q2

Q1

Beamline

Scattering Chamber

DETECTORS
Two Scintillator planes, and Drift Chamber Set
JLab E04-018 Hall A Collaboration

Argonne, Cal. State, Duke, Florida International, INFN, JLab, Kent State, Kentucky, Longwood, MIT, Rutgers, Seoul, Smith, St. Norbert, UST China, Temple, Virginia, William and Mary, Yerevan

With the Invaluable Support of the JLab Accelerator and Technical Staff

Special Thanks to: F. Gross, A. Kievsky, L. Marcucci, D. Riska, R. Schiavilla, M. Viviani, and R. Wiringa
Electron-Recoil TOF Spectrum

^3He elastic
$Q^2 = 30 \text{ fm}^{-2}$

Electron-Recoil TOF Spectrum

^4He elastic
$Q^2 = 34 \text{ fm}^{-2}$
Elastic e-He Cross Section Determination

\[
\frac{d\sigma}{d\Omega}(E, \theta_e) = \frac{N_{e'r}}{N_e N_t (\Delta\Omega)_{\text{eff}}} F(Q^2) \prod_i C_i
\]

- **Standard Terms**
 - Number of electron-nucleus TOF coincidence events
 - Number of incident electrons
 - Number of target nuclei
 - Effective solid angle with radiative corrections
 - \(Q^2\)-only-dependent part of radiative corrections

- **Multiplicative Corrections \(C_i\)**
 - Computer dead time
 - Detector inefficiencies
 - Absorption of recoil nuclei in target and windows
 - Beam-induced target density reduction
Monte Carlo Simulation Model

- Landau Ionization energy loss for incident electrons, scattered electrons and recoil nuclei.
- Internal and external bremsstrahlung radiation energy loss for incident and scattered electrons (Mo and Tsai formalism).
- Multiple scattering for incident electrons, scattered electrons and recoil nuclei.
- Ray-tracing of scattered electrons and recoil nuclei in the two High Resolution Spectrometers of Hall A.
- Model weights scattering events with their cross section probability.
- Effective solid angle for N_{suc} successful events reaching electron and recoil detectors out of N_{trial} trial events from the electron $\Delta\theta \cdot \Delta\varphi$ phase space:

$$\left(\Delta\Omega \right)_{eff} = \Delta\theta \cdot \Delta\varphi \frac{N_{suc}}{N_{trial}}$$
Elastic e-p Halls A and C Cross Sections vs Fit

Fit: Arrington et al.

JLab Data / Fit

Epsilon

Christy (2008)
Dutta (2003)
Niculescu (1999)
Hall A
Electron “Elastic” Scattering from 3He clusters in 4He !!

Strength of “elastic” e-He3 “peak is very comparable to e-He4 peak. Strong evidence for A=3 clustering in He4 (possibly in all nuclei?)!!

[DC (Drift Chamber) HRS position is proportional to particle momentum]
Possible JLab experiment using the HRS and BigBite Hall A Spectrometers. JLab Letter of Intent using the tritium target for the 12 GeV DIS experiment. (Submitted in May 2013; well received, will proceed with full proposal.)
Possible JLab experiment using the HRS and BigBite Hall A Spectrometers. JLab Letter of Intent using the tritium target for the 12 GeV DIS experiment. (Submitted in May 2013; well received, will proceed with full proposal.)
Deuteron Form Factors

Curves: Relativistic Propagator and Hamiltonian Dynamics, and selected non-relativistic with relativistic corrections

B: **MOST** Sensitive Observable!!
Possible MAMI Measurement
Deuteron Magnetic Form Factor

A1 Facility
Spectrometer A

0.6-1.6 GeV beam
80 μA current
10 cm target
410 W cooling
1 MeV resolution
160 deg.

Add Calorimeter

Bonus: THRESHOLD inelastic scattering data for FREE
Have submitted a Note of Expression of Interest to MAMI
Summary

- 4He F_C data exhibit a second diffraction minimum at $Q^2=52$ fm$^{-2}$, ruling out, for the JLab accessible Q^2 range, applicability of quark counting rules/pQCD.
- 3He F_C data point to another diffraction minimum just over $Q^2=60$ fm$^{-2}$; incompatible with quark counting rules/pQCD.
- 3He F_M seems to possess a second diffraction minimum in the vicinity of $Q^2=50$ fm$^{-2}$.
- JLab Hall A data *significantly* disagree with SLAC data (4He F_C) and Saclay data (3He F_M).
- Standard Model IA, with inclusion of MEC and 3BFE fails to describe well (YET!) all few-body form factor data.
- Strong evidence for 3He-cluster configurations in 4He!!
- JLab (MAMI) would be the ideal place to extend the triton F_C and F_M (deuteron B) measurements to higher Q^2 …
“Diamonds are Forever and Form Factors are Eternal”

Bogdan Wojtsekhowksi (JLab)

Spring 2009 APS Meeting Talk
Denver, Colorado