Experimental investigation of the nucleon transverse structure

Silvia Pisano
Laboratori Nazionali di Frascati
INFN

Elba XIII Workshop – June 23th - 27th, 2014.
The unsolved proton

How do the lagrangian degrees of freedom relate to the hadrons we observe?

How the spin and the mass of the nucleon emerge from its constituents characteristics?

How do the nucleon picture change with the resolution of the hard probe (evolution)?

What part of the nucleon spin is due to gluons and sea quarks?

What is the role of the s-quark in the nucleon?

Valence description

Valence + sea quarks + gluons
The response of the nucleon to the elastic scattering, as encoded in the electromagnetic form factors, is still not clear:

- two different behaviours depending on the method adopted in the measurement

![Graph showing the response of the nucleon to elastic scattering](image)

Scaling behaviour
SLAC, Rosenbluth-like extractions

New measurements
@JLab through Polarization Transfer
The partonic substructure: Deep-Inelastic Scattering

By increasing the virtuality of the virtual photon, i.e. by improving the spatial resolution of the probe, the **Deep-Inelastic Scattering** regime is entered.

The partonic substructure is resolved

→ **SCALING BEHAVIOUR**

- point-like constituents are identified (no Q^2 dependence)

The nucleon is described in terms of collinear partons sharing its momentum:

$$p_i = x'_i P, s_i$$
Longitudinal view of the nucleon

Longitudinal Parton Distribution Functions

- $q(x)$: number density of an unpolarized quark in an unpolarized nucleon

- $\Delta q(x)$: number density of longitudinally polarized quark in a longitudinally polarized nucleon

- $\delta q(x)$: number density of transversely polarized quarks in a transversely polarized nucleon

Elba XIII Workshop – June 23rd - 27th, 2014
The proton spin puzzle

\[
\frac{1}{2} = S_q + L_q + S_g + L_g
\]

\[
S_q(Q^2) = \frac{1}{2} \int_0^1 \Delta \Sigma(x, Q^2) dx
\]

\[
\Delta \Sigma = \Delta u + \Delta d + \Delta s \ldots
\]

indicating that the quark spins carry \((1 \pm 12 \pm 24)\)% of the proton spin.

In conclusion, measurements have been presented of the spin asymmetries in deep inelastic scattering of polarised muons on polarised protons. The spin-dependent structure function \(g_1\) of the proton has also been determined. The integral \(\int_0^1 g_1(x) dx = 0.114 \pm 0.012 \pm 0.026\) is significantly lower than the value expected from the Ellis–Jaffe sum rule. Assuming the validity of the Bjorken sum rule this result implies that the asymmetry measured from polarised neutrons should be significantly negative over at least part of its \(x\) range. In addition, the result implies that, in the scaling limit, a rather small fraction of the spin of the proton is carried by the spin of the quarks.
From longitudinal to transverse view

Why do we extend the description to a transverse view?

1. new degrees of freedom explored, that offer new insights into the nucleon structure

2. can help in addressing important open questions
 - what is the role of the parton Orbital Angular Momentum (OAM)?
 - s-quark content of the nucleon through the fragmentation process
 - what other contributions have to be included in the computation of the nucleon spin?

→ we need to extend the simple, longitudinal picture and allow transverse degrees!

Elba XIII Workshop – June 23th - 27th, 2014
5D mapping of the nucleon

Wigner «Mother» functions are quantum-phase distributions of quarks

→ not directly accessible, we can only extract their 3D reductions

Wigner distributions

\[\rho(x, k^+, b_T) \]

5-D correlations

W(x, b_T, k_T)

\[\int d^2b_T \]
\[\int d^2k_T \]

Fourier trf.

\(b_T \leftrightarrow \Delta \)

H(x,0,t)

\[t = -\Delta^2 \]

\[\xi = 0 \]

\[H(x,\xi,t) \]

generalized parton distributions (GPDs), exclusive processes

\[\int dx \]
\[\int dxx^{-1} \]

semi-inclusive processes

F_1(t)

form factors elastic scattering

A_{n,0}(t) + 4\xi^2 A_{n,2}(t) +

generalized form factors lattice calculations

Picture by A. Bacchetta

Elba XIII Workshop – June 23th - 27th, 2014
GPDs&TMDs: 3D reductions of the Wigner functions

Wigner Functions: quantum phase-space quark distributions in the nucleon

\[W_R(r, k) = \int \frac{dk^-}{(2\pi)^2} W_R(r, k) \]

integrated over spatial coordinates:
Tranverse Momentum Distributions
→ accessed through Semi-Inclusive Deep Inelastic Scattering

integrated over momentum space:
Generalized Parton Distributions
→ measured through exclusive reactions

TMDs: 3D imaging in the momentum space
GPDs: 3D imaging in the coordinate space
8 leading-twist TMDs

They depend on the parton longitudinal fraction x and on its transverse momentum k_T → full 3D dynamics

Two natural momentum scales: Q^2 & p_T, the transverse p of the produced hadron

3 survive the k_T-integration and reduce to the longitudinal, 1D PDFs

Off-diagonal elements → interference among wave function of different angular momenta (OAM, spin-orbit effect)
Experimental access to TMDs through SIDIS

Semi-Inclusive Deep-Inelastic Scattering:
(at least) one hadron observed in the final state with the outgoing electron

Structure Functions $\propto TMD \times FF \times C$

→ it also brings information on the fragmentation process, important to understand HADRONIZATION
The nucleon content through the fragmentation process

\[\sigma^{ep\to ehX} = \sum_q DF \times \sigma^{eq\to eq} \times FF \]

In the structure functions TMDs are coupled to the Distribution Functions:

- they allow to understand how we go from the Lagrangian degrees of freedom – quarks and gluons – to the hadrons we observe
- can shed light on the flavour content of the nucleon

<table>
<thead>
<tr>
<th>N/q</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>(D_1) Unpolarized</td>
<td>(H_1^{+}) Collins</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>(G_{LL})</td>
<td>(H_{1L}^{+})</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>(D_{1T}^{+})</td>
<td>(G_{1T})</td>
<td>(H_{1}^{+})</td>
</tr>
</tbody>
</table>
Transverse correlations inside the nucleon through TMDs

Three transverse degrees of freedom appear:

1. the nucleon transverse spin \vec{S}^N_{\perp}
2. the quark transverse spin \vec{s}^q_{\perp}
3. the quark transverse momentum \vec{k}^q_{\perp}

\rightarrow Correlations explored through specific TMDs, *i.e.* specific modulations in the cross-section

\rightarrow observable also with an unpolarized target

Transversity \rightarrow correlation among \vec{s}^q_{\perp} and \vec{S}^N_{\perp}

Sivers function \rightarrow correlation between \vec{k}^q_{\perp} and \vec{S}^N_{\perp}

Boer-Mulders \rightarrow correlation among \vec{s}^q_{\perp} and \vec{k}^q_{\perp}
Generalized Parton Distributions → transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction

\[t = (p - p')^2 \]
\[\xi \approx \frac{x_B}{2 - x_B} \]

4 GPDs for any quark flavor:
2 helicity-conserving and 2 helicity-flipping

\(H, \text{ vector} \)

\(E, \text{ tensor} \)

\(\tilde{H}, \text{ axial-vector} \)

\(\tilde{E}, \text{ pseudo-scalar} \)
Exploring the Orbital Angular Momentum through GPDs

Under specific kinematical conditions, GPDs relate to PDFs and FFs.

Optical theorem: \textit{forward GPDs} \rightarrow DIS

\[H^q(x, 0, 0) = \begin{cases}
q(x), & x > 0 \\
-q(-x), & x < 0
\end{cases} \]

\[\tilde{H}^q(x, 0, 0) = \begin{cases}
\Delta q(x), & x > 0 \\
\Delta q(-x), & x < 0
\end{cases} \]

\[\int_{-1}^{+1} dx H^q(x, \xi, t) = F^q_1(t) , \quad \int_{-1}^{+1} dx E^q(x, \xi, t) = F^q_2(t) \]

\[\int_{-1}^{+1} dx \tilde{H}^q(x, \xi, t) = G^q_A(t) , \quad \int_{-1}^{+1} dx \tilde{E}^q(x, \xi, t) = G^q_P(t) \]

Second x- moment \rightarrow Ji's sum rule

\[J_q = \frac{1}{2} \int_{-1}^{+1} dx \, x \left[H^q(x, \xi, t = 0) + E^q(x, \xi, t = 0) \right] \]
Accessing GPDs: Deeply-Virtual Compton Scattering

In the Deeply-Virtual Compton Scattering an incident electron exchanges a virtual photon with a quark of the proton. An emission of a real photon from the target follows.

The process, under appropriate kinematic conditions, gives access to the GPDs.

\[
Q^2 = -(e - e')^2
\]

\[
x_B = \frac{Q^2}{2m \nu}
\]

\[
t = (p - p')^2
\]

\[
\xi \approx \frac{x_B}{2 - x_B}
\]

\[
\nu = E_e - E_{e'}
\]
Accessing GPDs through DVCS observables

The following observables are sensible to different combinations of Compton Form Factors and electromagnetic Form Factors:

1. **Beam-Spin Asymmetry:**
 \[\Delta \sigma_{LU} \propto \sin \varphi \text{ Im}\{ F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} + k F_2 \mathcal{E} \}d\varphi \]

2. **Target-Spin Asymmetry:**
 \[\Delta \sigma_{UL} \propto \sin \varphi \text{ Im}\{ F_1 \tilde{\mathcal{H}} + \xi (F_1 + F_2) \mathcal{H} + k F_2 \mathcal{E} \}d\varphi \]

3. **Double-Spin Asymmetry:**
 \[\Delta \sigma_{LL} \propto (A + B \cos \varphi) \text{ Re}\left\{ F_1 \tilde{\mathcal{H}} + \xi (F_1 + F_2) \left(\mathcal{H} + \frac{x_B}{2} \mathcal{E} \right) \right\} d\varphi \]

4. **Transverse Target-Spin Asymmetry:**
 \[\Delta \sigma_{UT} \propto \sin \varphi \text{ Im}\{ k (F_2 \mathcal{H} - F_1 \mathcal{E}) + \ldots \}d\varphi \]

The ideal experiment to map the nucleon

Both TMDs\&GPDs need specific experiment characteristics to be explored:

1. Beam energy high enough to reach hard regime

2. large kinematic coverage for full mapping

3. polarized beams\&targets to access ALL the modulations in the cross-sections

4. Different Targets as H_2, D_2, NH_3, ND_3 with longitudinal/transverse polarizations

5. High luminosity to extract small cross sections in a fully differential analysis

6. Hermetic detectors (to ensure exclusivity for DVCS) and excellent hadron identification (fragmentation in SIDIS)

$\omega' = \frac{1}{x} + \frac{m^2}{Q^2}$

F. Gross, «Making the case for Jefferson Lab»

The first decade of Science at Jefferson Lab

Elba XIII Workshop – June 23th - 27th, 2014
Worldwide facilities (a non exhaustive map)

SIDIS in fixed-target experiments e-p:
- Hermes
- JLab (Hall-A, B, C)
- Compass

Fragmentation in e^+e^- annihilations:
- BaBar@SLAC
- Belle@KeK
A joint venture to explore the phase-space

Elba XIII Workshop – June 23th - 27th, 2014
The **Continuous Electron Beam Accelerator Facility (CEBAF)** is installed in the Thomas Jefferson National Accelerator Facility (Newport News, VA, USA).

- It provides a continuous electron beam with a duty factor ~ 100%;
- with a beam energy up to 6 GeV;
- has a good energy resolution \(\frac{\sigma_E}{E} \sim 10^{-5} \);
- and the beam has a polarization ~ 85%
Jefferson Lab in the 6 GeV era

Hall-A
1. Very-high luminosity
2. Test of kinematic approximations (scaling)
3. Transversely-polarized 3He target

Hall-B
1. High luminosity
2. Large acceptance
3. Unpolarized 2H Longitudinally-polarized 3NH target

Hall-C
1. Very-high luminosity
2. Systematics tests
3. High-precision measurements

Elba XIII Workshop – June 23rd - 27th, 2014
The 12-GeV upgrade

4 experimental halls with a longitudinally-polarized electron beam of E_e^- up to 12 GeV.
Generalized Parton Distributions

1. Does the theoretical description encoded in the Handbag Diagram apply to the kinematics explored with fixed-target experiments? → test of SCALING in Hall-A@JLab

2. DVCS Beam-Spin Asymmetries and transverse spatial distributions of the quarks → A_{LU} in Hall-B@JLab

3. Phenomenological constraints on the OAM from DVCS measurements → neutron A_{LU} & proton A_{UT} in Hall-B@JLab

Transverse Momentum Dependent Distributions

1. Does the target polarization affect the quark momentum distributions? → Sivers @COMPASS & Hermes

2. Is the flavour content of the nucleon as explored through fragmentation consistent with expectations? → Collins @COMPASS & Hermes

Elba XIII Workshop – June 23th - 27th, 2014
Scaling test for DVCS in Hall-A

Beam-polarized and unpolarized cross sections with high precision at different electron-beam energies to test the scaling $\rightarrow Q^2$ dependence of $d\sigma$ at fixed x_B.

$$\Delta\sigma_{LU} \propto \sin \varphi \text{Im}\{F_1 \mathcal{H} + \xi (F_1 + F_2 \overline{\mathcal{H}}) + kF_2 \mathcal{E}\} d\varphi$$

Large Q^2 region explored with high statistics

High-statistics A_{LU} extraction@Hall-B in the 6 GeV era

First CLAS DVCS devoted experiment

Elba XIII Workshop – June 23th - 27th, 2014
\(\Delta \sigma_{LU} \propto \sin \varphi \text{ Im}\{F_1 \mathcal{H} + \xi (F_1 + F_2) \mathcal{H} + k F_2 \mathcal{E}\} d\varphi \)
From GPDs to quark spatial distributions

$-t$ dependence of the imaginary part of the GPD H can be translated into the spatial charge density

arXiv:1303.6600
M. Guidal, H. Moutarde, M. Vanderhaeghen
Quark orbital angular momentum & GPD E

$J_q = \frac{1}{2} \int_{-1}^{+1} dx \, x \left[H^q(x, \xi, t = 0) + E^q(x, \xi, t = 0) \right]$

To access E_u & E_d both E_p & E_n are needed.

Proton GPD E_p: cos φ modulation in σ_{UT} on proton

Neutron GPD E_n: A_{LU} on the neutron

$(H, E)_u(\xi, \xi, t) = \frac{9}{15} [4(H, E)_p(\xi, \xi, t) - (H, E)_n(\xi, \xi, t)]$

$(H, E)_d(\xi, \xi, t) = \frac{9}{15} [4(H, E)_n(\xi, \xi, t) - (H, E)_p(\xi, \xi, t)]$
Spin-Orbit information through the Sivers Function

Non-zero Sivers \(\rightarrow \) distribution of quarks in transverse momentum affected by the direction of the nucleon’s spin

Elba XIII Workshop – June 23th - 27th, 2014
Collins Function: the kaon puzzle and the role of the s-quark

Scattering on u-quark dominate \rightarrow same Fragmentation behaviour expected for pions and kaons

$k^+ \text{ Collins bigger than } \pi^+ \text{ one } \rightarrow \text{ what is the role of the } s\text{-quark?}$
Looking the nucleon at a higher resolution

With an increasing Q^2, both sea-quarks and gluons degrees of freedom start to play a more and more important role.

Jefferson Lab and Hermes explored the valence-quark region, while COMPASS moved toward the sea-quark one.

What about the gluon-dominated regime?

What it the spatial distributions of sea-quarks and gluons?

How do gluon contribute to the nucleon spin?

Where the saturation of gluon densities begins?

How does the nuclear environment affect the parton distributions?

EIC White Paper
Electron-Ion Collider

- A collider is needed to reach the gluon-saturated domain
- Electron probe will provide the unmatched precision of the electromagnetic probes
- Dynamical interplay between sea quarks & gluons through their distributions
- Change of distributions when going from small to large x, to relate sea and valence quarks
- Dependence on the quark flavours
EIC candidates

Current polarized DIS data:
- CERN
- DESY
- JLab
- SLAC

Current polarized BNL-RHIC pp data:
- PHENIX π0
- STAR 1-jet

Elba XIII Workshop – June 23th - 27th, 2014
Conclusions

- Despite being a building block of the observed matter, the nucleon – protons and neutrons – is far from being fully understood.

- The mechanisms leading from its constituents to its macroscopic characteristics, as its mass and spin, are not clear.

- To shed light on these aspects it is needed to access nucleon transverse degrees of freedoms, both in momentum (TMDs) and in coordinate (GPDs) space.

- Semi-Inclusive Deep-Inelastic Scattering provides access to the correlations among the transverse degrees of freedom, and allows to explore the fragmentation mechanism.

- The role of the s-quark in the nucleon is still unclear → Fragmentation Functions can bring information on the role this flavour plays inside the proton.

- New data are coming in the close (JLab12&COMPASS) and far (EIC) future.

- Stay tuned!
backup
Sensitivity to GPDs in observables - Compton Form Factors

Only \((\xi, t)\) are experimentally accessible, not \(x\). GPDs will enter in the observables through

\[
\int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi + i\epsilon} = \mathcal{P} \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi} - i\pi H(\xi, \xi, t)
\]

The two parts will be accessible through observables sensible to the *imaginary* \((A_{LU}, A_{UL})\) or the *real part* \((A_{LL}, A_{BeamCharge})\) of the amplitude.

The following *Compton Form Factors* are introduced (experimentally observable):

\[
Re \mathcal{H}_q = e^2 q P \int_0^1 (H^q(x, \xi, t) - H^q(-x, \xi, t)) \left[\frac{1}{\xi-x} - \frac{1}{\xi+x} \right] dx
\]

\[
Im \mathcal{H}_q = \pi e^2 q (H^q(\xi, \xi, t) - H^q(-\xi, \xi, t))
\]

Elba XIII Workshop – June 23\(^{th}\) - 27\(^{th}\), 2014
Deep Inelastic Scattering

$\sigma_{NC}(x, Q^2) \times 2^i$

$Q^2 (GeV^2)$

$g_1^p(x, Q^2) + c(x)$

$Q^2 (GeV^2)$

Elba XIII Workshop – June 23th - 27th, 2014
Semi-Inclusive DIS cross-section

\[
\frac{d\sigma^h}{dx\,dy\,d\phi\,dz\,d\phi\,dP^2_{h\perp}} = \frac{\alpha^2}{xyQ^2\,2\,(1-\epsilon)} \left(1 + \frac{\gamma^2}{2\,r} \right)
\]

\[
\begin{align*}
\{ & F_{UU,T} + \epsilon F_{UU,L} \\
+ & \lambda_l \left[\sqrt{2\epsilon(1-\epsilon)} \sin(\phi) F_{LU}^{\sin(\phi)} \right] \\
+ & S_L \left[\sqrt{2\epsilon(1+\epsilon)} \sin(\phi) F_{UL}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{UL}^{\sin(2\phi)} \right] \\
+ & S_T \left[\sin(\phi - \phi S) \left(F_{UT,T}^{\sin(\phi - \phi S)} + \epsilon F_{UT,L}^{\sin(\phi - \phi S)} + \epsilon \sin(\phi + \phi S) F_{UT}^{\sin(\phi + \phi S)} + \epsilon\sin(3\phi - \phi S) F_{UT}^{\sin(3\phi - \phi S)} + \sqrt{2\epsilon(1+\epsilon)} \sin(\phi S) F_{UT}^{\sin(\phi S)} + \sqrt{2\epsilon(1-\epsilon)} \sin(2\phi - \phi S) F_{UT}^{\sin(2\phi - \phi S)} \right) \right] \\
+ & S_T \lambda_l \left[\sqrt{1-\epsilon^2} \cos(\phi - \phi S) F_{LT}^{\cos(\phi - \phi S)} + \sqrt{2\epsilon(1-\epsilon)} \cos(\phi S) F_{LT}^{\cos(\phi S)} + \sqrt{2\epsilon(1-\epsilon)} \cos(2\phi - \phi S) F_{LT}^{\cos(2\phi - \phi S)} \right] \}
\end{align*}
\]

18 structure functions appear in the cross-section

\[F_{ij,K} \propto DF \otimes FF \]

They can be identified through specific modulations

It is important combine measurements with unpolarized/longitudinally/transversely-polarized beam\&targets
Upgraded halls@12 GeV

High Resolution Spectrometer (HRS) pair
and specialized large installation experiments

Super High Momentum Spectrometer (SHMS)
at high luminosity and forward angles

Hall-A

Hall-A - SoLID

Hall-C

Hall-B

CLAS12: large acceptance, high luminosity

Elba XIII Workshop – June 23rd - 27th, 2014
Deeply-Virtual Compton Scattering & GPD knowledge

DVCS data in the valence region

- Hall-A: unpolarized and beam-polarized cross-section
- Hall-B: beam-spin asymmetries, longitudinally-polarized target spin-asymmetries
- HERMES: beam-charge, beam-spin and target-spin asymmetries

All included in CFFs extractions

→ $H_{Im} CFF$ constrained at the level of 15%

Wanted:
1. more observables
2. more precise data
3. larger phase-space coverage

- **COMPASS**: DVCS program (2016) → 160 GeV muon beam (recoil detector for full exclusivity): $x_B = 0.01 \div 0.1$ region explored
- **JLAB12**: Hall-A, B, C → high-statistics in a wide kinematics

Elba XIII Workshop – June 23th - 27th, 2014
12-GeV DVCS program

- Nucleon polarization
 - Unpolarized: H, \bar{H}, E
 - Longitudinally-polarized: \tilde{H}, H, E
 - Transversely-polarized: E, H

- Sensitivity to GPDs
 - E12-06-114: Hall-A, p
 - E12-06-119: Hall-B, p
 - E12-11-003: Hall-B, n
 - E12-13-010: Hall-C, p
 - PR12-06-108: Hall-B, p

- Good mapping in the $(x_B, Q^2, -t)$ bins → big impact in constraining CFFs

Two processes contribute to the same \((e, p, \gamma)\) final state: Bethe-Heitler and Deeply-Virtual Compton Scattering.

\[
\sigma = |BH|^2 + I(BH \cdot DVCS) + |DVCS|^2
\]

\(I(BH \cdot DVCS)\) gives rise to spin asymmetries, which can be connected to combinations of GPDs.
Semi-Inclusive DIS@JLab with 12 GeV

- Three halls involved
- ALL Beam/Target combinations explored
- Different targets for FLAVOR SEPARATION
- multi-D mapping

<table>
<thead>
<tr>
<th>N/q</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>f_1</td>
<td></td>
<td>h_1^+</td>
</tr>
<tr>
<td>L</td>
<td>g_1</td>
<td></td>
<td>h_{1L}^+</td>
</tr>
<tr>
<td>T</td>
<td>f_{1T}^-</td>
<td>g_{1T}</td>
<td>h_1, h_{1T}^+</td>
</tr>
</tbody>
</table>

proton (H_2, NH_3, HD)
deuterium (D_2, ND_3)
helium (3He)

E12-06-112: π^+, π^-, π^0
E12-09-008: k^+, k^-, k^0
E12-09-017: π^+, π^-, k^+, k^-
C12-11-102: π^0

E12-06-112: π^+, π^-, π^0
E12-09-008: k^+, k^-, k^0

E12-09-008: k^+, k^-, k^0
E09-009: k^+, k^-, k^0

C12-11-108 (SoLID)
PR12-11-111: $\pi^+, \pi^-, \pi^0, k^+, k^-, k^0$
PR12-12-009: di-hadron SIDIS

E10-006: $\pi^+, \pi^-(\text{SoLID})$
E12-09-018: $\pi^+, \pi^-, k^+, k^-(\text{SBS})$

Elba XIII Workshop – June 23th - 27th, 2014
Physics Program@Hall-B in the 12-GeV era

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Physics</th>
<th>Contact</th>
<th>Rating</th>
<th>Days</th>
<th>Group</th>
<th>New equipment</th>
<th>Energy</th>
<th>Run Group</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>E12-06-108</td>
<td>Hard exclusive electro-production of π^0, η</td>
<td>Stoler</td>
<td>B</td>
<td>80</td>
<td></td>
<td>RICH (1 sector) Forward tagger</td>
<td></td>
<td></td>
<td>liquid H_2</td>
</tr>
<tr>
<td>E12-06-112</td>
<td>Proton’s quark dynamics in SIDIS pion production</td>
<td>Avakian</td>
<td>A</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-119</td>
<td>Deeply Virtual Compton Scattering</td>
<td>Sabatie</td>
<td>A</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-09-003</td>
<td>Excitation of nucleon resonances at high Q^2</td>
<td>Gothe</td>
<td>B+</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-11-005</td>
<td>Hadron spectroscopy with forward tagger</td>
<td>Battaglieri</td>
<td>A-</td>
<td>119</td>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-12-001</td>
<td>Timelike Compton Scatt. & J/ψ production in e^+e^-</td>
<td>Nadel-Turanski</td>
<td>A-</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-12-007</td>
<td>Exclusive ϕ meson electroproduction with CLAS12</td>
<td>Stoler, Weiss</td>
<td>B+</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR12-12-008</td>
<td>Photoproduction of the very strangest baryon</td>
<td>Guo</td>
<td>--</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-07-104</td>
<td>Neutron magnetic form factor</td>
<td>Gilfoyle</td>
<td>A-</td>
<td>30</td>
<td></td>
<td>Neutron detector RICH (1 sector) Forward tagger</td>
<td>11</td>
<td>B</td>
<td>liquid D_2 target</td>
</tr>
<tr>
<td>PR12-11-109(a)</td>
<td>Dihadron DIS production</td>
<td>Avakian</td>
<td>-</td>
<td>-</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-09-007a</td>
<td>Study of partonic distributions in SIDIS kaon production</td>
<td>Hafidi</td>
<td>A-</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>K. Hafidi</td>
</tr>
<tr>
<td>E12-09-008</td>
<td>Boer-Mulders asymmetry in K SIDIS w/ H and D targets</td>
<td>Contalbrigo</td>
<td>A-</td>
<td>TBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-11-003</td>
<td>DVCS on neutron target</td>
<td>Nicolai</td>
<td>A</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-109</td>
<td>Longitudinal Spin Structure of the Nucleon</td>
<td>Kuhn</td>
<td>A</td>
<td>80</td>
<td></td>
<td>Polarized target RICH (1 sector) Forward tagger</td>
<td>11</td>
<td>C</td>
<td>NH_3 ND_3</td>
</tr>
<tr>
<td>E12-06-119(b)</td>
<td>DVCS on longitudinally polarized proton target</td>
<td>Sabatie</td>
<td>A</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-07-107</td>
<td>Spin-Orbit Correl. with Longitudinally polarized target</td>
<td>Avakian</td>
<td>A-</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR12-11-109(b)</td>
<td>Dihadron studies on long. polarized target</td>
<td>Avakian</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-09-007(b)</td>
<td>Study of partonic distributions using SIDIS K production</td>
<td>Hafidi</td>
<td>A-</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-09-009</td>
<td>Spin-Orbit correlations in K production w/ pol. targets</td>
<td>Avakian</td>
<td>B+</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-106</td>
<td>Color transparency in exclusive vector meson production</td>
<td>Hafidi</td>
<td>B+</td>
<td>60</td>
<td>1170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-117</td>
<td>Quark propagation and hadron formation</td>
<td>Brooks</td>
<td>A-</td>
<td>60</td>
<td>1170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-10-102</td>
<td>Free Neutron structure at large x</td>
<td>Bueltman</td>
<td>A</td>
<td>40</td>
<td>119</td>
<td>Radial TPC</td>
<td>11</td>
<td>F</td>
<td>Gas D_2</td>
</tr>
<tr>
<td>TOTAL approved run time (PAC days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1491</td>
<td>559</td>
<td></td>
</tr>
</tbody>
</table>
JLab12 impact on $Im(\mathcal{H})$ & $Re(\mathcal{H})$

H_{Re} fit of $\sigma_{tot}, A_{UL}, A_{UL}, A_{LL}, A_{UX}, A_{UY}, A_{LX}, A_{LY}$

H_{Im} fit of $\sigma_{tot}, A_{UL}, A_{UL}, A_{LL}, A_{UX}, A_{UY}, A_{LX}, A_{LY}$

Elba XIII Workshop – June 23th - 27th, 2014
$^3\text{He} \rightarrow 60\text{-cm long target}$
Projected luminosity: $2 \times 10^{37} \text{ electron} - \text{nucleon} \text{ cm}^{-2}\text{s}^{-1}$
($2 \times 10^{36} \text{ electron} - \text{polarized neutron} \text{ cm}^{-2}\text{s}^{-1}$)
SBS for SIDIS experiments

Beam path

Distance from the target to the detector, cm
- Central angle θ_c, degree: 417, 14
- Horizontal range: $\Delta\theta_h$, degree: ±3.6
- Vertical range: $\Delta\theta_v$, degree: ±12
- Angular resolution: σ_{θ_v}, degree: 0.02
- Vertex resolution (along beam), cm: 0.2
- Momentum resolution σ_p/p: 0.001x[GeV]

Elba XIII Workshop – June 23th - 27th, 2014
1. tracker
2. gas Cherenkov counter
3. two-layer electromagnetic calorimeter
4. scintillator hodoscope