EM structure of $A = 2, 3$ nuclei in χEFT

———For Sergio’s 80th birthday———

R. Schiavilla

Theory Center, Jefferson Lab, Newport News, VA 23606, USA
Physics Department, Old Dominion University, Norfolk, VA 23529, USA

June 27, 2014
EM structure of few-nucleon systems in χEFT

Outline:

- General considerations
- EM current and charge operators up to one loop
- Elastic form factors of $A=2$ and 3 systems
- Summary and outlook

In collaboration with:

L. Girlanda L. Marcucci M. Piarulli
A. Kievsky S. Pastore M. Viviani

References:

Pastore et al., PRC80, 034004 (2009); Girlanda et al., PRL105, 232502 (2010);
Pastore et al., PRC84, 024001 (2011); Piarulli et al., PRC87, 014006 (2013)
Nuclear χEFT approach

Weinberg, PLB 251, 288 (1990); NPB 363, 3 (1991); PLB 295, 114 (1992)

- χEFT exploits the χ-symmetry of QCD to restrict the form of π interactions with other π’s, and with N’s, . . .
- The pion couples by powers of its momentum Q, and \mathcal{L}_{eff} can be systematically expanded in powers of Q/Λ_{χ}

$$\mathcal{L}_{\text{eff}} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \ldots$$

- χEFT allows for a perturbative treatment in terms of a Q—as opposed to a coupling constant—expansion
- The unknown coefficients in this expansion—the LEC’s—are fixed by comparison with experimental data
Formalism

- **Time-ordered perturbation theory (TOPT):**
 \[\langle f \mid T \mid i \rangle = \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} \mid i \rangle \]

- A contribution with \(N \) interaction vertices and \(L \) loops scales as
 \[
 \left(\prod_{i=1}^{N} Q^{\alpha_i - \beta_i/2} \right) \times Q^{-(N - NK - 1)} Q^{-2NK} \times Q^{3L} \]

- Each of the \(NK \) energy denominators involving only nucleons is of order \(Q^{-2} \)

- Each of the other \(N - NK - 1 \) energy denominators involving also pion energies is expanded as
 \[
 \frac{1}{E_i - E_I - \omega_\pi} = -\frac{1}{\omega_\pi} \left[1 + \frac{E_i - E_I}{\omega_\pi} + \frac{(E_i - E_I)^2}{\omega_\pi^2} + \ldots \right]
 \]

- **Power counting:**
 \[T = T^{LO} + T^{NLO} + T^{N^2LO} + \ldots , \text{ and } T^{N^nLO} \sim (Q/\Lambda_\chi)^n T^{LO} \]
$T^{(n)}$ up to order $n = 1$

Time-ordered diagrams contributing to the χEFT T-matrix up to order Q^1:
From amplitudes to potentials

- Construct v such that when inserted in LS equation
 \[v + v G_0 v + v G_0 v G_0 v + \ldots \quad G_0 = 1/(E_i - E_I + i\eta) \]
 leads to T-matrix order by order in the power counting

- Assume
 \[v = v^{(0)} + v^{(1)} + v^{(2)} + \ldots \quad v^{(n)} \sim Q^n \]

- Determine $v^{(n)}$ from
 \[
 \begin{align*}
 v^{(0)} & = T^{(0)} \\
 v^{(1)} & = T^{(1)} - \left[v^{(0)} G_0 v^{(0)} \right] \\
 v^{(2)} & = T^{(2)} - \left[v^{(0)} G_0 v^{(0)} G_0 v^{(0)} \right] - \left[v^{(1)} G_0 v^{(0)} + v^{(0)} G_0 v^{(1)} \right]
 \end{align*}
 \]

where
 \[v^{(m)} G_0 v^{(n)} \sim Q^{m+n+1} \]
\(\nu(n) \) up to order \(n = 1 \)

\[\nu^{(0)} = T^{(0)} \text{ consists of (static) OPE and contact terms} \]

\[\nu^{(1)} = T^{(1)} - [\nu^{(0)} G_0 \nu^{(0)}] \text{ vanishes} \]
Including EM interactions

- Power counting of EM interactions (treated in first order)

\[T_\gamma = T_\gamma^{(-3)} + T_\gamma^{(-2)} + T_\gamma^{(-1)} + \ldots \quad T_\gamma^{(n)} \sim e Q^n \]

- For \(v_\gamma = A^0 \rho - A \cdot j \) to match \(T_\gamma \) order by order

\[
\begin{align*}
 v_\gamma^{(-3)} &= T_\gamma^{(-3)} \\
 v_\gamma^{(-2)} &= T_\gamma^{(-2)} - \left[v_\gamma^{(-3)} G_0 v^{(0)} + v^{(0)} G_0 v_\gamma^{(-3)} \right] \\
 v_\gamma^{(-1)} &= T_\gamma^{(-1)} - \left[v_\gamma^{(-3)} G_0 v^{(0)} G_0 v^{(0)} + \text{permutations} \right] \\
 &\quad - \left[v_\gamma^{(-2)} G_0 v^{(0)} + v^{(0)} G_0 v_\gamma^{(-2)} \right]
\end{align*}
\]

and so on up to \(n = 1 \ (e Q) \)
EM operators up to one loop

NN potential:

and consistent EM current (and charge) operators:

LO : eQ^{-2}

NLO : eQ^{-1}

N^2LO : eQ^0

N^3LO : eQ

unknown LEC's
The LEC’s characterizing ρ and j

- Pion loop corrections known (g_A and F_π)
- No unknown LEC’s in ρ
- Five unknown LEC’s in j: d’s could be determined by (γ, π) data on the nucleon

- d^S, d^V_1, d^V_2 fixed by assuming Δ dominance, d^S_1, c^S, and c^V fixed by fitting $A = 2$ and 3 EM observables
- Three-body currents at N3LO vanish:
Determining the unknown LEC’s in j

- After (perturbative) renormalization, resulting operators still need to be regularized:

$$C_\Lambda(k) = e^{-(k/\Lambda)^4}$$

- For each Λ:
 - Isovector (d^V_1, d^V_2) from Δ-resonance saturation, isoscalar (d^S, c^S) by reproducing μ_d and μ^S
 - Isovector c^V fixed by reproducing either σ_{np} or μ^V

<table>
<thead>
<tr>
<th>Λ</th>
<th>c^S</th>
<th>$d^S \times 10$</th>
<th>$c^V(\sigma_{np})$</th>
<th>$c^V(\mu^V)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>4.072</td>
<td>2.190</td>
<td>-13.3</td>
<td>-7.98</td>
</tr>
<tr>
<td>600</td>
<td>11.38</td>
<td>3.231</td>
<td>-22.3</td>
<td>-11.7</td>
</tr>
</tbody>
</table>
Deuteron static properties

- $r_d^{\text{EXP}} = 1.9734(44) \text{ fm}$ versus N3LO (AV18)

<table>
<thead>
<tr>
<th>Λ</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>1.976 (1.969)</td>
<td>1.968 (1.969)</td>
</tr>
<tr>
<td>N3LO</td>
<td>1.976 (1.969)</td>
<td>1.968 (1.969)</td>
</tr>
</tbody>
</table>

- $Q_d^{\text{EXP}} = 0.2859(3) \text{ fm}^2$ versus N3LO (AV18)

<table>
<thead>
<tr>
<th>Λ</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>0.275 (0.270)</td>
<td>0.2711 (0.270)</td>
</tr>
<tr>
<td>N2LO</td>
<td>0.273 (0.268)</td>
<td>0.2692 (0.268)</td>
</tr>
<tr>
<td>N3LO</td>
<td>0.285 (0.281)</td>
<td>0.2820 (0.280)</td>
</tr>
</tbody>
</table>
Deuteron waves
Deuteron A and T_{20} structure functions
Deuteron B structure function
$r(^3\text{He}) = 1.959(30) \text{ fm}$ and $r(^3\text{H}) = 1.755(86) \text{ fm}$ versus N3LO/N2LO

<table>
<thead>
<tr>
<th></th>
<th>^3He</th>
<th></th>
<th>^3H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ</td>
<td>500</td>
<td>600</td>
<td>500</td>
</tr>
<tr>
<td>LO</td>
<td>1.966</td>
<td>1.958</td>
<td>1.762</td>
</tr>
<tr>
<td>N4LO</td>
<td>1.966</td>
<td>1.958</td>
<td>1.762</td>
</tr>
</tbody>
</table>

and versus AV18/UIX values of $r(^3\text{He}) = 1.950 \text{ fm}$ and $r(^3\text{H}) = 1.743 \text{ fm}$
3He/3H charge form factors
$^3\text{He}/^3\text{H}$ magnetic form factors

Summary

$^3\text{He}/^3\text{H}$ results

^2H results

EM operators

EM structure

Nuclear χEFT

Formalism

^2H results

Summary
Sensitivity to LEC’s in $A=3$ magnetic structure

- Set II: c^V fixed by σ_{np}; μ^V overestimated by $\approx 3\%$
- Set III: c^V fixed by μ^V; σ_{np} underestimated by $\approx 1\%$
Summary

- Charge operators at one loop only depend on g_A and F_π; current operators depend on five additional LEC's.
- Various strategies to fix these LEC's investigated.
- Q_d^{EXP} reproduced (under-predicted) by N3LO (AV18) potential; differences traced back to deuteron w.f.'s.
- EM structure of $A=2$–3 nuclei well reproduced with chiral charge and current operators for $q \lesssim 3 m_\pi$.