Hadron form factors and transverse charge and spin densities

Hyun-Chul Kim

Department of Physics Inha University

Workshop on Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions @JLAB, Nov. 02-03, 2017

Interpretation of the Form factors

Non-Relativistic picture of the EM form factors

Interpretation of the EMFFs

Traditional interpretation of the nucleon form factors

$$F_1(Q^2) = \int d^3x e^{i\mathbf{Q}\cdot\mathbf{x}}\rho(\mathbf{r}) \rightarrow \qquad \rho(\mathbf{r}) = \sum \psi^{\dagger}(\mathbf{r})\psi(\mathbf{r})$$

However, the initial and final momenta are different in a relativistic case. Thus, the initial and final wave functions are different.

Probability interpretation is wrong in a relativistic case!

We need a correct interpretation of the form factors

Belitsky & Radyushkin, Phys.Rept. 418, 1 (2005)

G.A. Miller, PRL 99, 112001 (2007)

Interpretation of the EMFFs

Modern understanding of the form factors

Form factors

$$F(q^2) = \int d^2 b e^{i\mathbf{q}\cdot\mathbf{b}} \rho(\mathbf{b})$$

Hadron Tomography

D. Brömmel, Dissertation (Regensburg U.)

Generalised Parton Distributions

Probes are unknown for Tensor form factors and the Energy-Momentum Tensor form factors!

Structure of hadrons

Modern approach: Generalized parton distributions make it possible to get access to these EMT & tensor form factors.

Generalized form factors as Mellin moments of the GPDs

In the present talk, I would like to review various form factors of the pion with its transverse charge & spin structures.

The spin structure of the Pion

Vector & Tensor Form factors of the pion

x u y d xP b_{\perp} xP b_{\perp}

Pion: Spin S=0

Longitudinal spin structure is trivial. $\langle \pi(p') | \bar{\psi} \gamma_3 \gamma^5 \psi | \pi(p) \rangle = 0$

What about the transversely polarized quarks inside a pion?

Internal spin structure of the pion

The spin distribution of the quark

$$\rho_n(b_\perp, s_\perp) = \int_{-1}^1 dx \, x^{n-1} \rho(x, b_\perp, s_\perp) = \frac{1}{2} \left[A_{n0}(b_\perp^2) - \left(\frac{s_\perp^i \epsilon^{ij} b_\perp^j}{m_\pi} \frac{\partial B_{n0}(b_\perp^2)}{\partial b_\perp^2} \right) \right]$$

Spin probability densities in the transverse plane A_{n0} : Vector densities of the pion, B_{n0} : Tensor densities of the pion

$$\int_{-1}^{1} dx \, x^{n-1} H(x,\xi=0,b_{\perp}^2) = A_{n0}(b_{\perp}^2), \quad \int_{-1}^{1} dx \, x^{n-1} E(x,\xi=0,b_{\perp}^2) = B_{n0}(b_{\perp}^2)$$

Vector and Tensor form factors of the pion

$$\langle \pi(p_f) | \psi^{\dagger} \gamma_{\mu} \hat{Q} \psi | \pi(p_i) \rangle = (p_i + p_f) A_{10}(q^2)$$

$$\langle \pi^+(p_f) | \mathcal{O}_T^{\mu\nu\mu_1\cdots\mu_{n-1}} | \pi^+(p_i) \rangle = \mathcal{AS} \left[\frac{(p^\mu q^\nu - q^\mu p^\nu)}{m_\pi} \sum_{i=\text{even}}^{n-1} q^{\mu_1} \cdots q^{\mu_i} p^{\mu_{i+1}} \cdots p^{\mu_{n-1}} B_{ni}(Q^2) \right]$$

Nonlocal chiral quark model

Gauged Effective Nonlocal Chiral Action

$$S_{\text{eff}}[m,\pi] = -\text{Spln}\left[i\mathcal{D} + im + i\sqrt{M(iD,\,m)}U^{\gamma_5}(\pi)\sqrt{M(iD,\,m)}\right]$$
$$D_{\mu} = \partial_{\mu} - i\gamma_{\mu}V_{\mu}$$

The nonlocal chiral quark model from the instanton vacuum

- Fully relativistically field theoretic model.
- "Derived" from QCD via the Instanton vacuum.
- Renormalization scale is naturally given.
- •No free parameter

 $\rho \approx 0.3 \, {\rm fm}, \ R \approx 1 \, {\rm fm}$

$\mu \approx 600 \,\mathrm{MeV}$

D. Diakonov & V. Petrov Nucl.Phys. B272 (1986) 457 H.-Ch.K, M. Musakhanov, M. Siddikov Phys. Lett. B **608**, 95 (2005). Musakhanov & H.-Ch. K, Phys. Lett. B **572**, 181-188 (2003)

EM form factor (A₁₀) $\langle \pi(p_f) | \psi^{\dagger} \gamma_{\mu} \hat{Q} \psi | \pi(p_i) \rangle = (p_i + p_f) A_{10}(q^2)$

 $\sqrt{\langle r^2 \rangle} = 0.675 \,\mathrm{fm}$ $\sqrt{\langle r^2 \rangle} = 0.672 \pm 0.008 \,\mathrm{fm} \,(\mathrm{Exp})$

$$F_{\pi}(Q^2) = A_{10}(Q^2) = \frac{1}{1 + Q^2/M^2}$$

M(Phen.): 0.714 GeV M(Lattice): 0.727 GeV M(XQM): 0.738 GeV

Tensor Form factor of the pion

Generalized tensor form factors

$$\langle \pi^{+}(p_{f}) | q^{\dagger}(0) \sigma_{ab} q(0) | \pi^{+}(p_{i}) \rangle = [(p_{i} \cdot a)(p_{f} \cdot b) - (p_{i} \cdot b)(p_{f} \cdot a)] \frac{B_{10}(Q^{2})}{m_{\pi}}, \qquad \sigma_{ab} = \sigma_{\mu\nu} a^{\mu} b^{\nu}$$

$$\langle \pi^{+}(p_{f}) | q^{\dagger}(0) \sigma_{ab}(i \overleftrightarrow{D} D \cdot a) q(0) | \pi^{+}(p_{i}) \rangle = \{ (p \cdot a) [(p_{i} \cdot a)(p_{f} \cdot b) - (p_{i} \cdot b)(p_{f} \cdot a)] \} \frac{B_{20}(Q^{2})}{m_{\pi}}$$

• Transverse spin density

$$\rho_{1}(b_{\perp}, s_{x} = \pm 1) = \frac{1}{2} \left[A_{10}(b^{2}) \mp \frac{b \sin \theta_{\perp}}{m_{\pi}} B_{10}(b^{2})' \right]$$

$$F(b_{\perp}^{2}) = \frac{1}{(2\pi)^{2}} \int d^{2}q_{\perp}e^{-ib_{\perp}\cdot q_{\perp}}F(q_{\perp}^{2}) = \frac{1}{2\pi} \int_{0}^{\infty} Q \, dQ \, J_{0}(bQ)F(Q^{2})$$

$$\frac{\partial F(b_{\perp}^{2})}{\partial b_{\perp}^{2}} \equiv F'(b_{\perp}^{2}) = -\frac{1}{4\pi b} \int_{0}^{\infty} Q^{2} \, dQ \, J_{1}(bQ)F(Q^{2}) \qquad \text{S.i. Nam & H.-Ch.K, Phys. Lett. B 700, 305 (2011)}$$
For the kaon, S.i. Nam & HChK, Phys. Lett. B707, 546 (2012)

Tensor Form factor of the pion

RG equation for the tensor form factor $B_{10}(Q^2, \mu) = B_{10}(Q^2, \mu_0) \left[\frac{\alpha(\mu)}{\alpha(\mu_0)}\right]^{\gamma/2\beta_0}$ $\gamma_1 = 8/3, \gamma_2 = 8, \beta_0 = 11N_c/3 - 2N_f/3$

p-pole parametrization for the form factor

$$B_{10}(Q^2) = B_{10}(0) \left[1 + \frac{Q^2}{pm_p^2} \right]^{-p}$$

S.i. Nam & H.-Ch.K, Phys. Lett. B 700, 305 (2011).

For the kaon, S.i. Nam & HChK, Phys. Lett. B707, 546 (2012)

Tensor Form factor of the pion

S.i. Nam & H.-Ch.K, Phys. Lett. B 700, 305 (2011). 14

Spin density of the quark

Spin density of the quark

Significant distortion appears for the polarized quark!

$m_{\pi} = 140 \text{ MeV}$	$B_{10}(0)$	$m_{p_1} \; [\text{GeV}]$	$\langle b_y \rangle$ [fm]	$B_{20}(0)$	$m_{p_2} \; [\text{GeV}]$
Present work	0.216	0.762	0.152	0.032	0.864
Lattice QCD $[7]$	0.216 ± 0.034	0.756 ± 0.095	0.151	0.039 ± 0.099	1.130 ± 0.265

Results are in a good agreement with the lattice calculation!

S.i. Nam & H.-Ch.K, Phys. Lett. B 700, 305 (2011). 16

Spin density of the quark

S.i. Nam & H.-Ch.K, Phys. Lett. B 700, 305 (2011). 17

Energy-momentum tensor (Gravitational) form factor: A20, A22

M. V. Polyakov and C. Weiss, Phys. Rev. D 60, 114017 (1999)

Isoscalar vector GPD

 $2\delta^{ab}H^{I=0}_{\pi}(x,\xi,t) = \frac{1}{2}\int \frac{d\lambda}{2\pi} e^{ix\lambda(P\cdot n)} \left\langle \pi^{a}(p')|\bar{\psi}(-\lambda n/2)\not n[-\lambda n/2,\lambda n/2]\psi(\lambda n/2)|\pi^{b}(p)\right\rangle$

Its second moments

$$\int dx \, x H_{\pi}^{I=0}(x,\,\xi,t) = A_{2,0}(t) + 4\xi^2 A_{2,2}(t)$$

Energy-momentum tensor form factor

$$\langle \pi^{a}(p')|T_{\mu\nu}(0)|\pi^{b}(p)\rangle = \frac{\delta^{ab}}{2} \left[(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_{1}(t) + 4P_{\mu}P_{\nu}\Theta_{2}(t)\right],$$

- Energy-momentum tensor operator $T_{\mu\nu}(x) = \frac{1}{2} \bar{\psi}(x) \gamma_{\{\mu} i \overleftrightarrow{\partial}_{\nu\}} \psi(x).$
- The pion mass

 $\langle \pi^{a}(p)|T_{00}(0)|\pi^{b}(p)\rangle |_{t=0} = 2m_{\pi}^{2}\Theta_{2}(0)\delta^{ab}$

Spatial component — Pressure of the pion

$$\left\langle \pi^{a}(p)|T_{ii}(0)|\pi^{b}(p)\right\rangle \Big|_{t=0} = \left. \delta^{ab} \frac{3}{2} t \,\Theta_{1}(t) \right|_{t=0}$$

The pressure of any particle must be equal to zero: Stability condition (von Laue condition)

Pressure of the pion

(In the chiral limit, the pressure vanishes trivially.)

$$\begin{aligned} \mathcal{P} &= \langle \pi^{a}(p) | T_{ii}(0) | \pi^{a}(p) \rangle \\ &= \frac{12N_{c}mM}{f_{\pi}^{2}} \int d\tilde{l} \frac{-l^{2}}{[l^{2} + \overline{M}^{2}]^{2}} + \frac{12N_{c}M^{2}}{f_{\pi}^{2}} \int d\tilde{l} \int_{0}^{1} dx \frac{-p^{2}l^{2}}{[l^{2} + x(1-x)p^{2} + \overline{M}^{2}]^{3}} \\ \mathbf{Q}uark \text{ condensate} \\ i\langle \psi^{\dagger}\psi \rangle &= 8N_{c} \int d\tilde{l} \frac{\overline{M}}{[l^{2} + \overline{M}^{2}]} \end{aligned} \qquad \begin{aligned} \mathbf{P}^{ion \ decay \ constant} \\ f_{\pi}^{2} &= 4N_{c} \int_{0}^{1} dx \int d\tilde{l} \frac{M\overline{M}}{[l^{2} + \overline{M}^{2} + x(1-x)p^{2}]^{2}} \end{aligned}$$

The pressure of any particle must be equal to zero: Stability condition (von Laue condition)

$$\mathcal{P} = rac{3M}{f_{\pi}^2 \overline{M}} \left(m \left\langle \bar{\psi} \psi \right\rangle + m_{\pi}^2 f_{\pi}^2 \right) = 0$$

(By the Gell-Mann-Oakes-Renner relation)

• LECs in the curved space: L_{11} , L_{12} , L_{13}

$$\Theta_1(t) = 1 + \frac{2}{f_\pi^2} \left[t(4L_{11} + L_{12}) - 8m_\pi^2 (L_{11} - L_{13}) \right]$$

$$\Theta_2(t) = 1 - \frac{2t}{f_\pi^2} L_{12}.$$

$$L_{11} = \frac{N_c}{192\pi^2} = 1.6 \times 10^{-3}, \\ L_{12} = -2L_{11} = -3.2 \times 10^{-3}, \\ L_{13} = -\frac{N_c}{96\pi^2} \frac{M}{B_0} \Gamma\left(0, \frac{M^2}{\Lambda^2}\right) = 0.84 \times 10^{-3}$$

In XPT, $(L_{11} = 1.4, L_{12} = -2.7, L_{13} = 0.9 \text{ in unit of } 10^{-3})$

J. F. Donoghue and H. Leutwyler, Z. Phys. C 52, 343 (1991)

H.D. Son & HChK, Phys. Rev. D90 (2014) 111901(R) 22

Transvere charge density of the pion

$$\rho_{20}(b) = \int_0^\infty \frac{QdQ}{2\pi} J_0(bQ)\Theta_2(t)$$

H.D. Son & HChK, Phys. Rev. D90 (2014) 111901(R) 23

EM Form factor of the kaon

EM form factor (A_{10})

$$\langle K(p_f) | \psi^{\dagger} \hat{Q} \psi | \pi(p_i) \rangle = (p_i + p_f) A_{10}^K(q_2)$$

24

Kaon spin structure

Kaon to pion tensor form factors

* Kaon semileptonic decay (K_{l3})

Vector transitions

 $F_{\mu}^{K^{0}}(p_{l}, p_{\nu}) = \langle \pi^{-}(p_{\pi}) | \bar{s} \gamma_{\mu} u | K^{0}(p_{K}) \rangle = (p_{K} + p_{\pi})_{\mu} f_{l+}(t) + (p_{K} - p_{\pi})_{\mu} f_{l-}(t)$

Kaon to pion tensor form factors

- * Kaon semileptonic decay (K_{l3})
 - Tensor transitions

$$F_{\mu\nu}^{K^{0}}(p_{\pi}, p_{K}) = \langle \pi^{-}(p_{\pi}) | \bar{s}\sigma_{\mu\nu}u | K^{0}(p_{K}) = \frac{p_{K\mu}p_{\pi\nu} - p_{K\nu}p_{\pi\mu}}{m_{K}} B_{T}^{K\pi}(t)$$

Kaon to pion GPDs

Weak GPDs

$$2P^{+}H_{\phi}^{K\pi}(X,\xi,t) = \int \frac{dz^{-}}{2\pi} e^{iXP^{+}z^{-}} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2}, \frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2}, \frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2}, \frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2}, \frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2}, \frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2}, \frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2}, \frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2}, \frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2}, \frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2}, \frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2}, \frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2})\gamma^{+} \left[-\frac{z^{-}}{2} \right] u(\frac{z^{-}}{2}) |K^{0}(p_{i})\rangle \bigg|_{z^{+}=z_{\perp}=0} \langle \pi^{-}(p_{f}) | \bar{s}(-\frac{z^{-}}{2}) | \bar{s}(-\frac{z^{-}$$

$$\frac{P^{[+}t^{j]}}{m_{K}}E_{\phi}^{K\pi}(X,\xi,t) = \int \frac{dz^{-}}{2\pi}e^{iXP^{+}z^{-}}\langle \pi^{-}(p_{f})|\bar{s}(-\frac{z^{-}}{2})i\sigma^{+j}\left[-\frac{z^{-}}{2},\frac{z^{-}}{2}\right]u(\frac{z^{-}}{2})|K^{0}(p_{i})\rangle\Big|_{z^{+}=z_{\perp}=0}$$

We can define the generalized transition form factors & transverse charge densities.

$$\int_{-1}^{1} dx \, x^{n-1} H(x,\xi=0,b_{\perp}^2) = A_{n0}(b_{\perp}^2), \quad \int_{-1}^{1} dx \, x^{n-1} E(x,\xi=0,b_{\perp}^2) = B_{n0}(b_{\perp}^2)$$

Kaon to pion tensor form factors

* Generalized form factors for kaon transitions: n =1 $\langle \pi^{-}(p_{f})|\bar{s}(0)\gamma_{\mu}u(0)|K^{0}\rangle = 2P_{\mu}A_{10}^{K\pi}(t) + q_{\mu}C_{10}^{K\pi}(t)$

$$\langle \pi^{-}(p_f) | \bar{s}(0) \sigma_{\mu\nu} u(0) | K^0 \rangle = \frac{p_{i\mu} p_{f\nu} - p_{i\nu} p_{f\mu}}{m_K} B_{10}^{K\pi}(t)$$

Quarks with definite transverse polarization s

$$\frac{1}{2}\bar{\psi}\left[\gamma^{+}-s^{j}i\sigma^{+j}\gamma_{5}\right]\psi\qquad\qquad\sigma^{\mu\nu}\gamma_{5}=-\frac{1}{2}\epsilon^{\mu\nu\alpha\beta}i\sigma_{\alpha\beta}$$

Transverse transition density

$$\rho^{K\pi}(b_{\perp},s_{\perp}) = \int dX \rho(X,b_{\perp},s_{\perp}) = \frac{1}{2} \left[A_{10}^{K\pi}(b_{\perp}^2) - \frac{s_{\perp}^i \epsilon^{ij} b_{\perp}^j}{m_K} \frac{\partial B_{10}^{K\pi}(b_{\perp}^2)}{\partial b_{\perp}^2} \right]$$

Kaon to pion transverse charge densities

H.D. Son, S.i. Nam, HChK, PLB 747 (2015) 460 30

Kaon to pion transverse spin densities

Radiative form factor of the pion

 Radiative pion (kaon) decays provide yet more information on their internal structures.

 $\pi^+ \to e^+ \nu_e \gamma \quad \pi^+ \to e^+ \gamma \nu_e e^+ e^-$

$$\langle \gamma(k) | V_{12}^{\mu}(0) | \pi^{+}(p) \rangle = -\frac{e}{m_{\pi}} \epsilon_{\alpha}^{*} F_{V}(q^{2}) \epsilon^{\mu \alpha \rho \sigma} p_{\rho} k_{\sigma}$$

$$\langle \gamma(k) | A_{12}^{\mu}(0) | \pi^{+}(p) \rangle = i e \epsilon_{\alpha}^{*} \sqrt{2} f_{\pi} \left[-g^{\mu\alpha} + q^{\mu} (q^{\alpha} + p^{\alpha}) \frac{F_{\pi}(k^{2})}{q^{2} - m_{\pi}^{2}} \right]$$

$$+ i \epsilon_{\alpha}^{*} \frac{e}{m_{\pi}} \left[F_{A}(q^{2}) \left(k^{\mu} q^{\alpha} - g^{\mu\alpha} q \cdot k \right) + R_{A}(q^{2}) \left(k^{\mu} k^{\alpha} - g^{\mu\alpha} k^{2} \right) \right],$$

$$V_{12}^{\mu} = \bar{\psi} \gamma^{\mu} \frac{\tau_1 - i\tau_2}{2} \psi, \quad A_{12}^{\mu} = \bar{\psi} \gamma^{\mu} \gamma_5 \frac{\tau_1 - i\tau_2}{2} \psi$$

S. Shim, HChK, PLB 772 (2017) 687 33

Radiative form factor of the pion

Summary & Outlook

 We reviewed in this talk a series of recent works on the EM and spin structure of the pion, based on the nonlocal chiral quark model derived from the instanton vacuum.

Future programs, a personal view

- -The transition tensor form factors of hadrons: Physics beyond the standard model
- -Probing dark matter and dark photon, using the pion and kaon
- Physics of excited baryons: Transition form factors, transverse charge and spin densities.
- -Internal view of heavy hadrons

Internal shape of hadrons, literally hadron tomography.

Though this be madness, yet there is method in it.

Hamlet Act 2, Scene 2

Thank you very much!