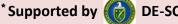
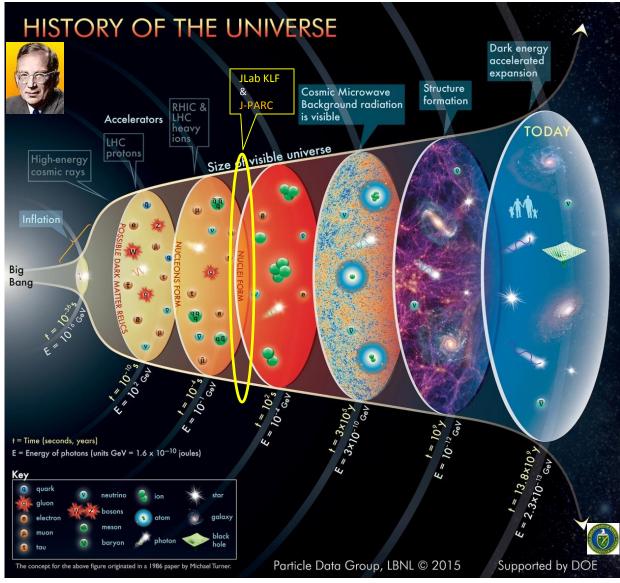
Physics Perspectives for Future K-Long Facility at JLab


Igor Strakovsky*

The George Washington University (for GlueX Collaboration)

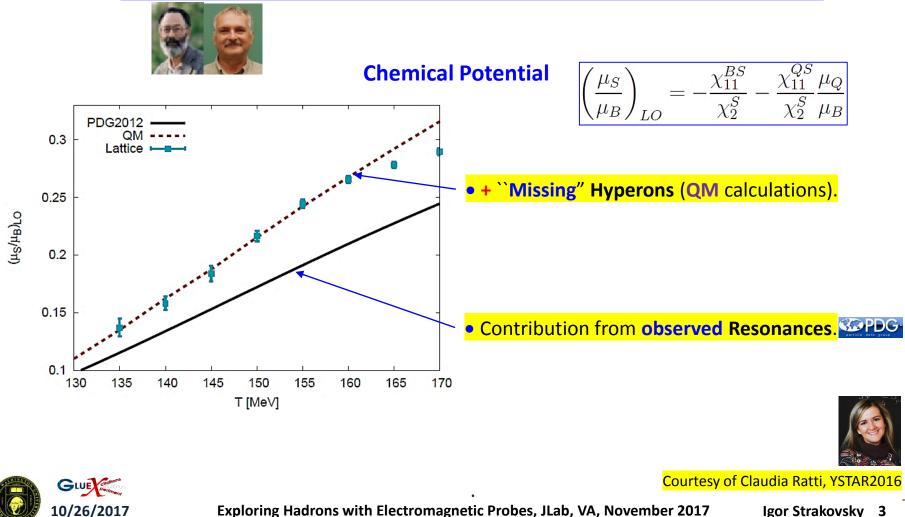


- Thermodynamics at freeze-out
- Spectroscopy of hyperons
- PWA for strange sector
- K_Lp database
- Opportunity with K_L beam
- Expected K_Lp data
- Summary

History of the Universe

The omission of any
 ``missing hyperon states"
 in Standard Model will
 negatively impact
 our understanding of
 QCD freeze-out in
 heavy-ion & hadron
 collisions, hadron
 spectroscopy, &
 thermodynamics of
 early Universe.

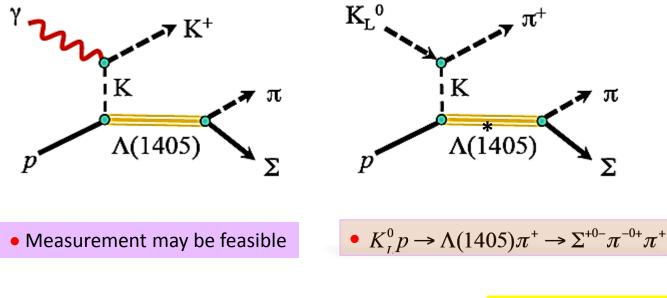
 For that reason, advancing our understanding of formation of baryons from quarks & gluons requires new experiments to search for any missing hyperon states or resonances.



Gui (26/2017

Thermodynamics at Freeze-Out

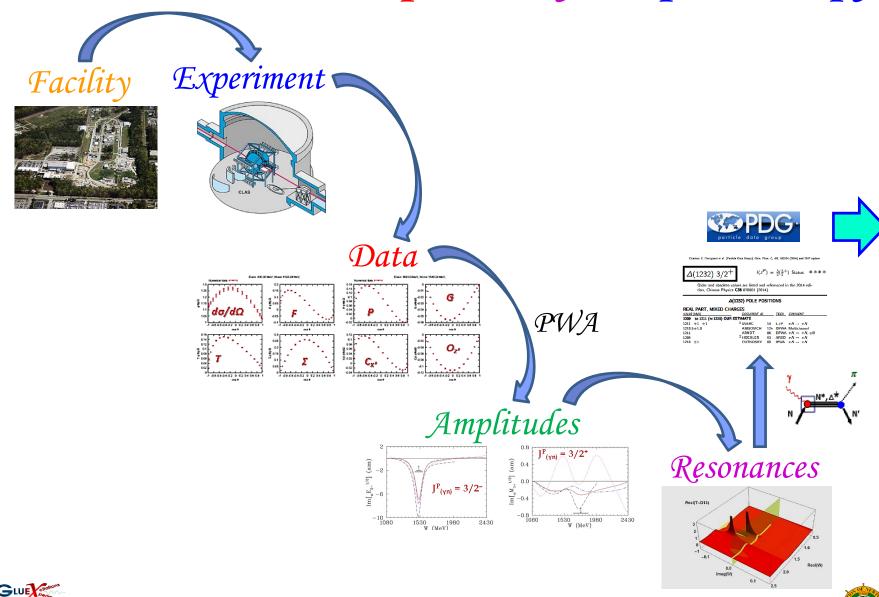
 Recent studies that compare LQCD calculations of thermodynamic, statistical Hadron Resonance Gas models, & ratios between measured yields of different hadron species in heavy ion collisions provide indirect evidence for presence of ``missing" resonances in all of these contexts.



Sample of Hunting for Bumps

Y Outlook at GlueX for ∧(1405) Line-Shape Measurement

 That is doable while
 PWA technology is much more promising.



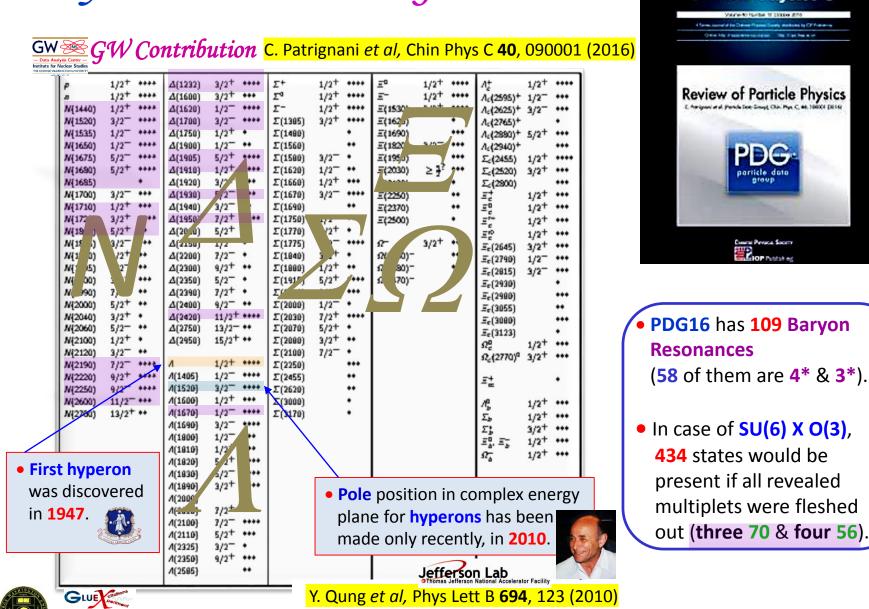
Road Map to Baryon Spectroscopy

Exploring Hadrons with Electromagnetic Probes, JLab, VA, November 2017

Igor Strakovsky 5 -

Chinese Physics C

and at al. Particle Same Simply Chin. Phys. C. 46, 166004 (2016)

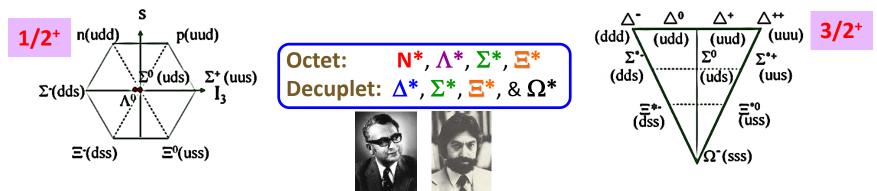

PDG

particle data

group

Country Personal Society

Igor Strakovsky



10/26/2017

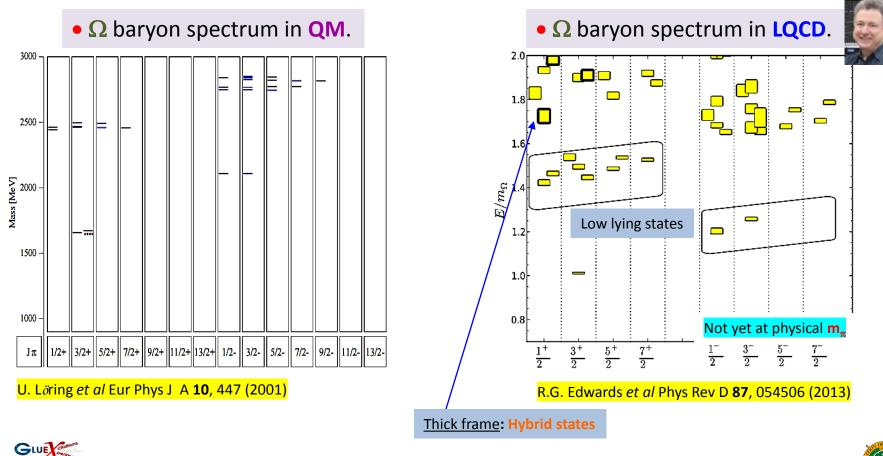
Baryon Resonances

- Three light quarks can be arranged in 6 baryonic families, N*, Δ*, Λ*, Σ*, Ξ*, & Ω*.
 Number of members in family that can exist is not arbitrary.
- If **SU(3)**_F symmetry of **QCD** is controlling, then:

- Number of experimentally identified resonances of each baryon family in Summary Tables is 16 N*, 10 Δ *, 14 Λ *, 10 Σ *, 6 Ξ *, & 2 Ω *.
- Constituent Quark models, for instance, predict existence of no less than 64 N*, 22 Δ * states with mass < 3 GeV.
- Seriousness of "missing-states" problem is obvious from these numbers.

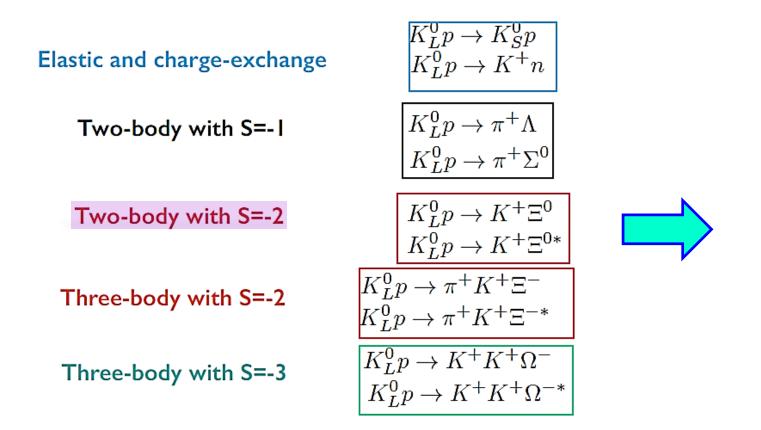
• To complete SU(3)_F multiplets, one needs no less than 17 Λ^* , 43 Σ^* , 42 Ξ^* , & 24 Ω^* .

B.M.K. Nefkens, π N Newsletter, **14**, 150 (1997)

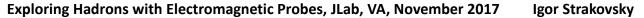


Very Strange Resonances & Problem of "Missing" States

 Experimental knowledge of hadron spectrum is incomplete: more excited states are expected to exist.



R. Koniuk & N. Isgur, Phys Rev Lett 44, 845 (1980)



What Can Be Learned with $\mathcal{K}^0_{\mathcal{L}}$ Beam ?

Why We Have to Measure Double-Strange Cascades in JLab

Particle

 $\Xi(1318)$

 $\Xi(1530)$

 $\Xi(1620)$ $\Xi(1690)$ 1/2+

3/2+

status

 Heavy quark symmetry (Isgur–Wise symmetry) suggests that multiplet splittings in strange, charm, & bottom hyperons should scale as approximately inverses of corresponding quark masses: 1/m,:1/m,:1/m,

 $1/m_s$: $1/m_c$: $1/m_b$

- If they don't, that scaling failure implies that structures of corresponding states are anomalous, & very different from one another.
- So far only hyperon resonance multiplet, where this scaling can be ``tested" & seen is lowest negative parity multiplet:

$\Lambda(1405)1/2^{-}-\Lambda(1520)3/2^{-}, \Lambda_{c}(2595)1/2^{-}-\Lambda_{c}(2625)3/2^{-}, \Lambda_{b}(5912)1/2^{-}-\Lambda_{b}(5920)3/2^{-}$

 It works approximately (30%) well for those Λ-splittings. It would work even better for Ξ, Ξ_c, Ξ_b splittings, & should be very good for Ω, Ω_c, Ω_b splittings.

Fison Lab	can do double cascade spectrum.	$\Xi(1820)$ $\Xi(1950)$ $\Xi(2030)$
is doir	ng double charm cascade spectrum.	$\Xi(2120)$ $\Xi(2250)$ $\Xi(2370)$
_ _	〒 (2790)1/2〒 (2815)3/2-	E(2500)

Courtesy of Dan-Olof Riska, 2017

Jeffer

As

R. Aaij et al, Phys Rev Lett **119**, 112001 (2017)

Status as seen in –

 ΛK

 ΣK

 $\Xi(1530)\pi$ Other channels

Decays weakly

3-body decays 3-body decays 3-body decays

N. Isgur & M.B. Wise, Phys Rev Lett **66** 1130 (1991)

PWA Formalism

• Differential cross section & polarization for K_Lp scattering are given by

$$\frac{d\sigma}{d\Omega} = \lambda^2 (|f|^2 + |g|^2)$$
$$P\frac{d\sigma}{d\Omega} = 2\lambda^2 \text{Im}(fg^*)$$

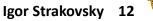
 $\lambda = \hbar/k_{\rm e} \otimes k$ is momentum of incoming kaon in CM.

 $f(W,\theta) \otimes g(W,\theta)$ are nonspin-flip & spin-flip amplitudes at $W \otimes \theta$.

11

Partial-Wave Expansion

• In terms of partial waves, $f(W,\theta) \otimes g(W,\theta)$ can be expanded as


$$f(W,\theta) = \sum_{l=0}^{\infty} [(l+1)T_{l+} + lT_{l-}]P_l(\cos\theta)$$
$$g(W,\theta) = \sum_{l=1}^{\infty} [T_{l+} - T_{l-}]P_l^{\dagger}(\cos\theta)$$

I is initial orbital angular momentum.
 P_I(cosθ) is Legendre polynomial.
 P_I'(cosθ) is associated Legendre function.

Total angular momentum for T_{l+} is J=l+1/2, while that for T_{l-} is J=l-1/2.

Isospin Amplitudes

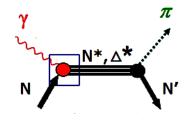
• Ignoring small CP-violating terms (~10⁻³), we can write

$$K_{L}^{0} = \frac{1}{\sqrt{2}}(K^{0} - \overline{K^{0}})$$
$$K_{S}^{0} = \frac{1}{\sqrt{2}}(K^{0} + \overline{K^{0}})$$

We have both I = 0 & I = 1 amplitudes for KN & KN scattering.

Amplitudes T_{I+-} can be expanded in isospin amplitudes as

$$T_{l\pm} = C_0 T_{l\pm}^0 + C_1 T_{l\pm}^1$$


 T^I_{I+-} are partial-wave amplitudes with isospin I & total angular momentum J = I+-1/2
 C^I are appropriate Clebsch-Gordon coefficients.

Exploring Hadrons with Electromagnetic Probes, JLab, VA, November 2017 Igo

Igor Strakovsky 13

Photo-Decay Amplitudes in BW & Pole Forms

Pole is main signature of resonance !

$$\begin{array}{c}
 A_{h}^{\text{BW}} = C \sqrt{\frac{q_{r}}{k_{r}} \frac{\pi (2J+1)M_{r}\Gamma_{r}^{2}}{m_{N}\Gamma_{\pi,r}}} \tilde{\mathcal{A}}_{\alpha}^{h} & A_{h}^{\text{pole}} = C \sqrt{\frac{q_{p}}{k_{p}} \frac{2\pi (2J+1)W_{p}}{m_{N}\text{Res}_{\pi N}}} \operatorname{Res} \mathcal{A}_{\alpha}^{h} \\
 Evaluated at \\
 Res Energy & Pole
\end{array}$$

TABLE I. Breit-Wigner and pole values for selected nucleon resonances. Masses, widths, and residues are given in units of MeV, the helicit 1/2 and 3/2 photo-decay amplitudes in units of $10^{-3}(\text{GeV})^{-1/2}$. Errors on the phases are generally 2–5 degrees. For isospin 1/2 resonances the values of the proton target are given.

Resonance	В	reit-Wig	ner values		· ·	Pole	e values	
	(Mass, width)	$\Gamma_{\pi}/2$	A1/2	A3/2	$({\rm Re}\;W_p,-2\;{\rm Im}\;W_p)$	R_{π}	A1/2	A3/2
Δ(1232) 3/2+	(1233, 119)	60	-141 ± 3	-258 ± 5	(1211, 99)	52 [-47°]	-136 ± 5 [-18°]	$-255 \pm 5 [-6^{\circ}]$
N(1440) 1/2+	(1485, 284)	112	-60 ± 2		(1359, 162)	38 [-98°]	$-66 \pm 5 [-38^{\circ}]$	
N(1520) 3/2-	(1515, 104)	33	-19 ± 2	$+153 \pm 3$	(1515, 113)	38 [-5°]	$-24 \pm 3 [-7^{\circ}]$	$+157 \pm 6 [+10^{\circ}]$
N(1535) 1/2-	(1547, 188)	34	$+92 \pm 5$		(1502, 95)	16 [-16°]	$+77 \pm 5 [+4^{\circ}]$	
N(1650) 1/2-	(1635, 115)	58	$+35\pm5$		(1648, 80)	14 [-69°]	$+35 \pm 3 [-16^{\circ}]$	

R

R.L. Workman *et al,* Phys Rev C **87**, 068201 (2013) A. Svarc *et al*, Phys Rev C **89**, 065208 (2014)

$$KN \& \overline{KN} Final States$$

$$\begin{split} T(K^-p \to K^-p) &= \frac{1}{2}T^1(\overline{K}N \to \overline{K}N) + \frac{1}{2}T^0(\overline{K}N \to \overline{K}N) \\ T(K^-p \to \overline{K^0}n) &= \frac{1}{2}T^1(\overline{K}N \to \overline{K}N) - \frac{1}{2}T^0(\overline{K}N \to \overline{K}N) \\ T(K^+p \to K^+p) &= T^1(KN \to KN) \\ T(K^+n \to K^+n) &= \frac{1}{2}T^1(KN \to KN) + \frac{1}{2}T^0(KN \to KN) \end{split}$$

New Guiles data with Complete data with Advance of the second data with Advance o

$$\begin{split} T(K_L^0 p \to K_S^0 p) &= \frac{1}{2} \left(\frac{1}{2} T^1(KN \to KN) + \frac{1}{2} T^0(KN \to KN) \right) \\ &- \frac{1}{2} T^1(\overline{K}N \to \overline{K}N) \\ T(K_L^0 p \to K_L^0 p) &= \frac{1}{2} \left(\frac{1}{2} T^1(KN \to KN) + \frac{1}{2} T^0(KN \to KN) \right) \\ &+ \frac{1}{2} T^1(\overline{K}N \to \overline{K}N) \\ T(K_L^0 p \to K^+ n) &= \frac{1}{\sqrt{2}} \left(\frac{1}{2} T^1(KN \to KN) - \frac{1}{2} T^0(KN \to KN) \right) \\ &- \frac{1}{2} T^1(\overline{K}N \to \overline{K}N) \end{split}$$

How to Search for "Missing" Hyperons

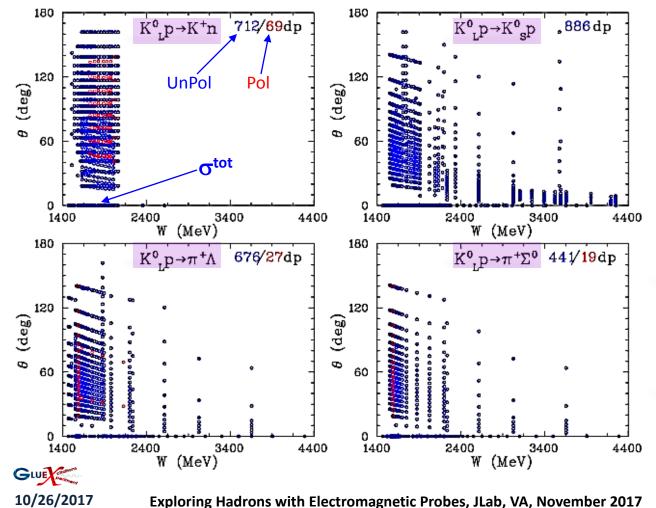
- New data for inelastic $K_L p$ scattering would significantly improve our knowledge of Σ^* , Λ^* , & Ξ^* resonances.
- Very few polarization data are available for any K_Lp reactions but are needed to help remove ambiguities in PWAs.

• To search for ``missing" hyperons, we need measurements of production reactions:

 If such measurements can be performed with good energy & angular coverage with good statistics.

• Then it is very likely that measurements with K_L beam would find several ``missing" hyperons.

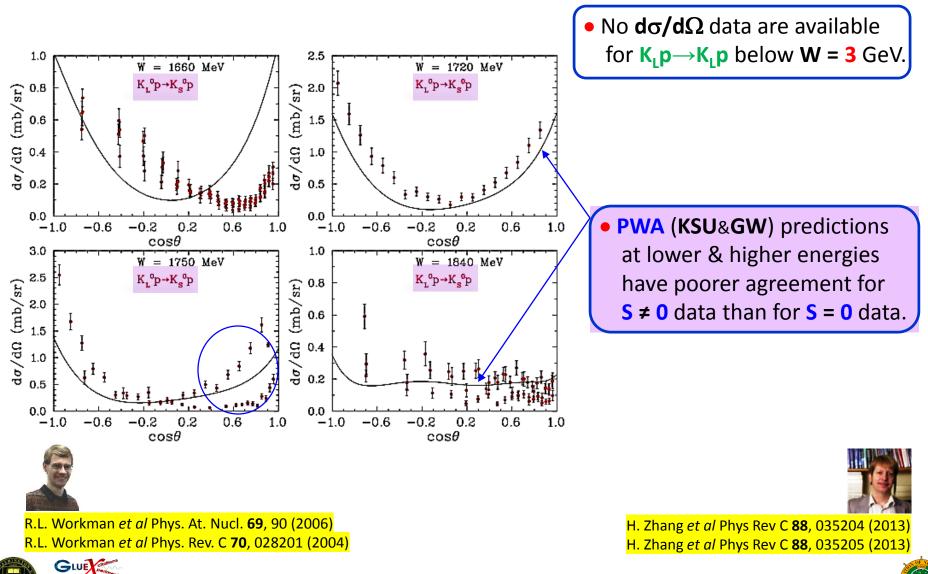
World K–long Data – Ground for Hyperon Phenomenology


— Data Analysis Center — Institute for Nuclear Studies THE GEORGE WASHINGTON UNIVERSITY

W = 1.45 – 5.05 GeV

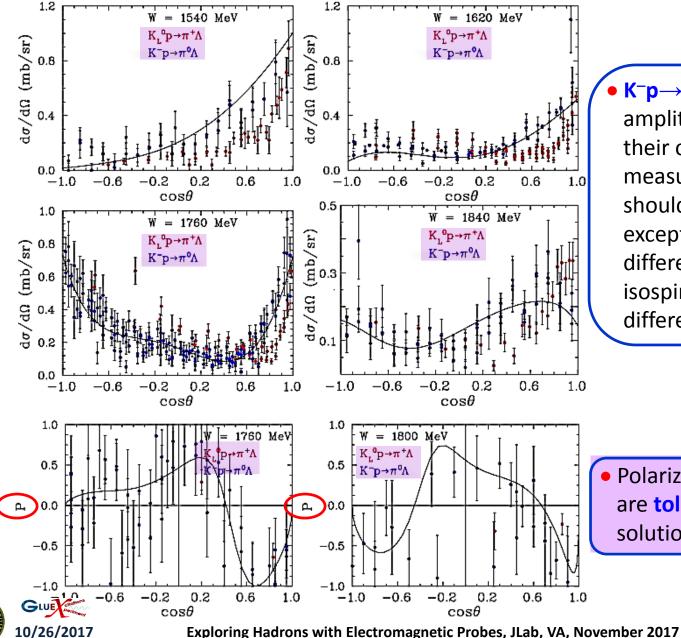
5AID: http://gwdac.phys.gwu.edu/

Limited number of K_L induced measurements (1961 – 1982) 2426 d σ /d Ω , 348 σ^{tot} , & 115 P observables do not allow today to feel comfortable with Hyperon Spectroscopy results.



Limited number of K_L observables in hyperon spectroscopy at present poorly constrain theoretical analyses.

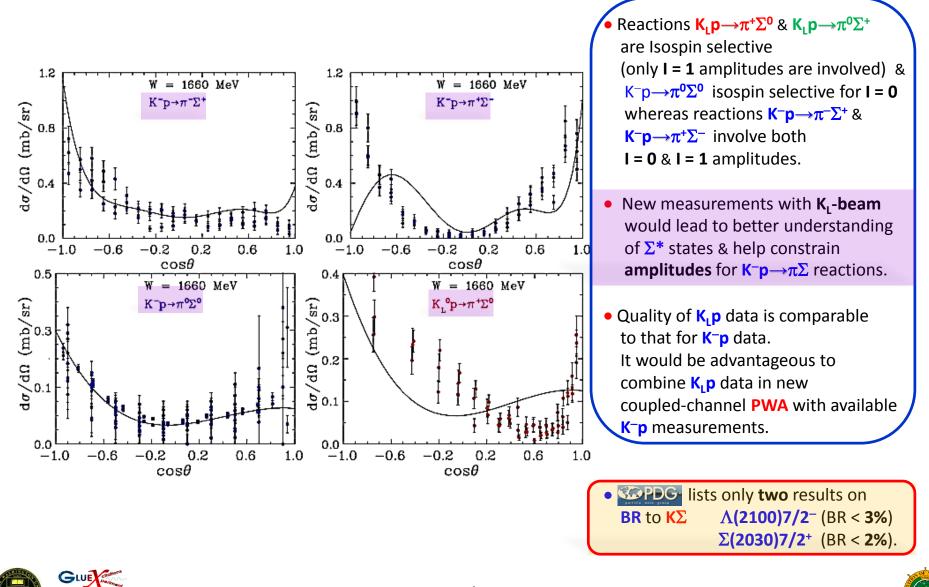
 Overall systematics of previous experiments varies between
 15% & 35%.
 Energy binning is much broader than hyperon widths.


- There were no measurements using polarized target.
 It means that there are no double polarized observables which are critical for complete experiment program.
- We are not aware of any data on neutron targe
 Igor Strakovsky 17

Data for $\mathcal{K}_{\mathcal{L}}p \longrightarrow \mathcal{K}_{\mathcal{S}}p$

10/26/2017

Data for $K_{\mathcal{L}}p \rightarrow \pi^+\Lambda \ll K^-p \rightarrow \pi^0\Lambda$



 K^-p → $\pi^0\Lambda \& K_Lp$ → $\pi^+\Lambda$ amplitudes imply that their observables measured at same energy should be identical except for small differences due to isospin-violating mass differences in hadrons.

Polarized measurements are **tolerable** for **any PWA** solutions.

Igor Strakovsky 19

Data for $\mathcal{K}_{\mathcal{L}} p \longrightarrow \pi^+ \Sigma^0 \ll \mathcal{K}^- p \longrightarrow \pi \Sigma$

10/26/2017

A bit of History

PHYSICAL REVIEW

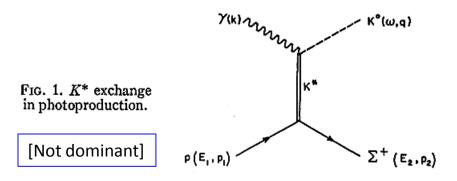
VOLUME 138, NUMBER 5B

7 JUNE 196

CP-violation (1964)

Hot topic!

Photoproduction of Neutral K Mesons*


S. D. DRELL AND M. JACOBT

First paper on subject Stanford Linear Accelerator Center, Stanford University, Stanford, California (Received 6 January 1965)

Photoproduction of a neutral K-meson beam at high energies from hydrogen is computed in terms of a K* vector-meson exchange mechanism corrected for final-state interactions. The results are very encouraging for the intensity of high-energy K_2 beams at high-energy electron accelerators. A typical magnitude is 20 μ b/sr for a lower limit of the K⁰ photoproduction differential cross section, at a laboratory peak angle of 2°, for 15-BeV incident photons.

Our motivation in carrying out this calculation is to emphasize the strong suggestion that an intense "healthy" K_2 beam will emerge from high-energy electron accelerators (SLAC in particular) and will be available for detailed experimental studies.

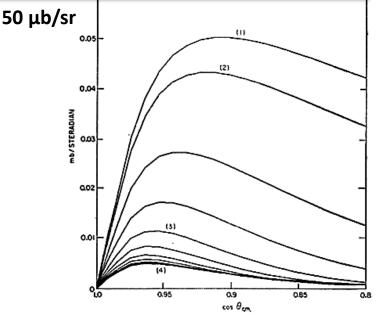
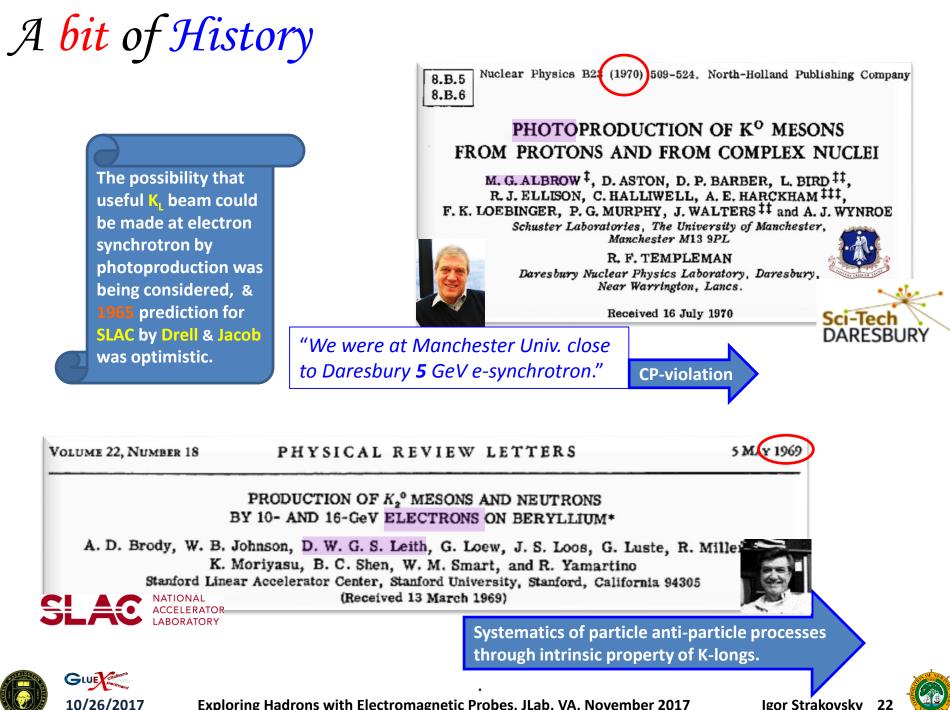



FIG. 3. Center-of-mass differential cross section at 10 BeV. Curve (1) gives the Born approximation. Curve (2) is obtained

Courtesy of Mike Albrow, KL2016 Exploring Hadrons with Electromagnetic Probes, JLab, VA, November and directly obtained from and drawn by the comp

Exploring Hadrons with Electromagnetic Probes, JLab, VA, November 2017

Igor Strakovsky 22

JLab PR12-17-001

Proposal for JLab PAC46

PR12-17-001

Strange Hadron Spectroscopy with a Secondary KL Beam at GlueX

A.

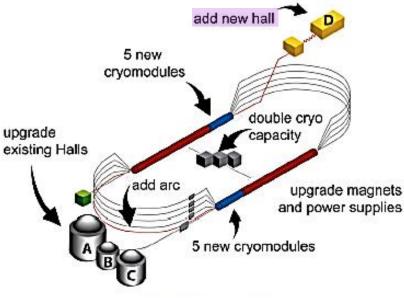
177 people from
54 institutes are co-authors.

Hyperon & Strange Meson Spectroscopy

We plan to resubmit full Proposal for JLab PAC46 in 2018.

Aims of Jlab KLF Project

- KLF project has to establish secondary K_L beam line at \mathcal{F}_{L} beam line \mathcal{F}_{L} , with flux of three order of magnitude higher than SLAC \mathcal{F}_{L} had, for scattering experiments on both proton & neutron (first time !) targets in order to determine differential cross sections & self-polarization of strange hyperons with \mathcal{F}_{L} detector to enable precise PWA in order to determine all resonances up to 3 GeV in spectra of Λ^* , Σ^* , Ξ^* , & Ω^* .
- In addition, we intend to do strange meson spectroscopy by studies of the π -K interaction to locate the pole positions in I = 1/2 & 3/2 channels.



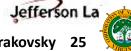
CEBAF Upgrade to 12 GeV

CHI

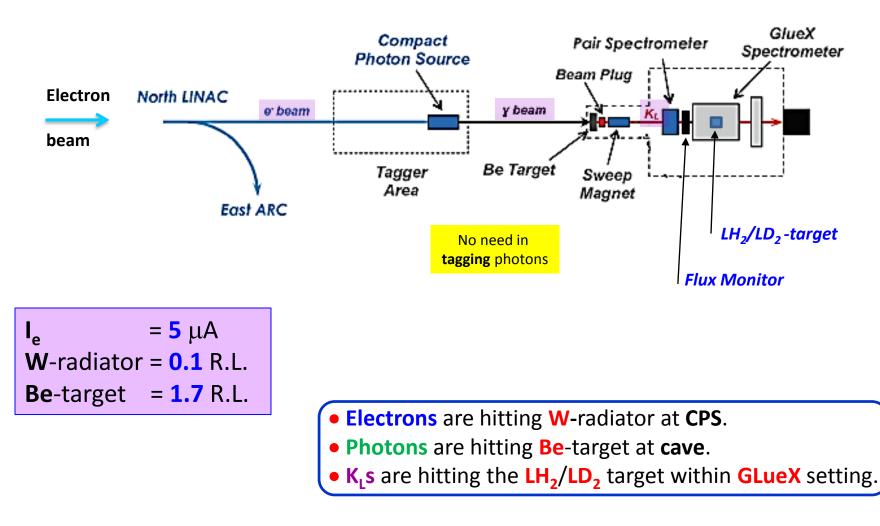
Upgrade Goals

- Accelerator: 6 GeV ⇒ 12 GeV
- Halls A,B,C: $e^- < 11$ GeV, $< 100 \mu$ A
- Hall D: e^- 12 GeV $\Rightarrow \gamma$ -beam

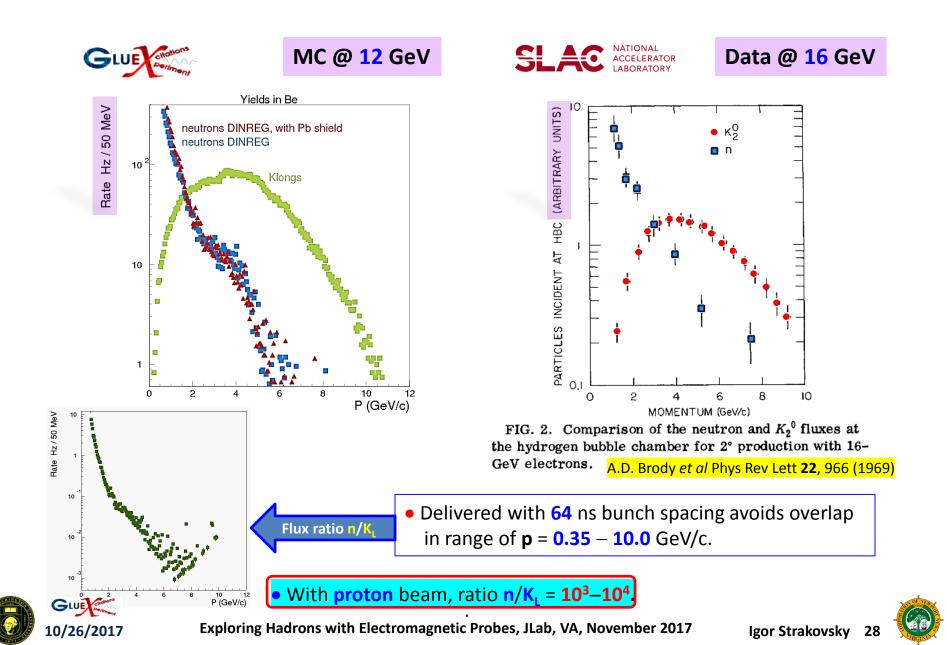
Upgrade Status

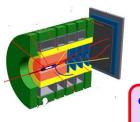

- Reached 12 GeV in Dec 2015
- Halls A,D: finished
- Halls B,C: about a year to go

KL2016, Feb 2016


Overview of Hall D

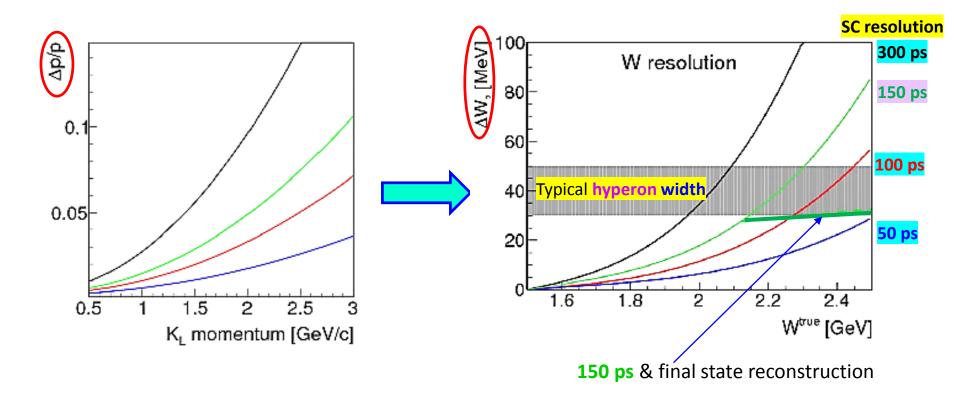
Gui Hall D Beam Line Set up for K-longs





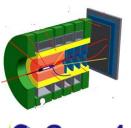
Hall D/GlueX

K-long & Neutron Rate on $Glue X LH_2/LD_2$ -target

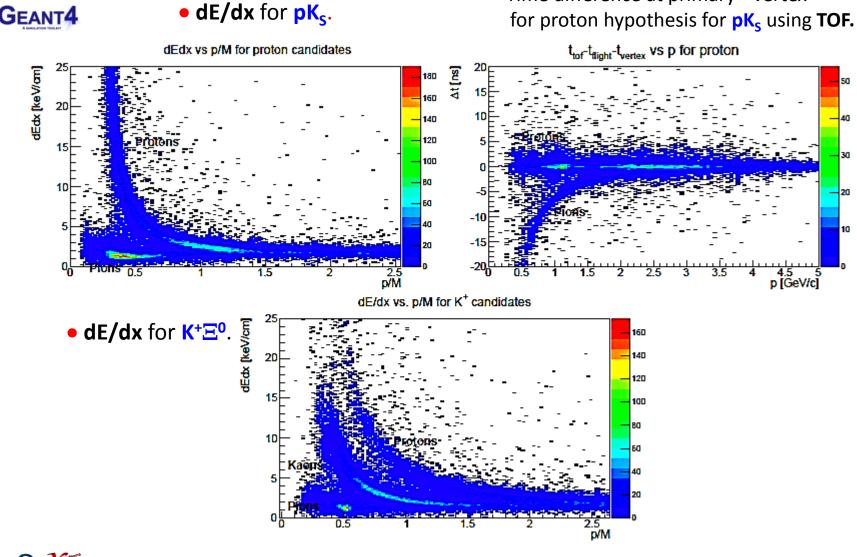

Expected Energy-Resolution

• Mean lifetime of K⁻ is 12.38 ns ($c\tau = 3.7$ m) whereas mean lifetime of K_L is 51.16 ns ($c\tau = 15.3$ m).

Thus, it is possible to perform measurements of K_Lp scattering

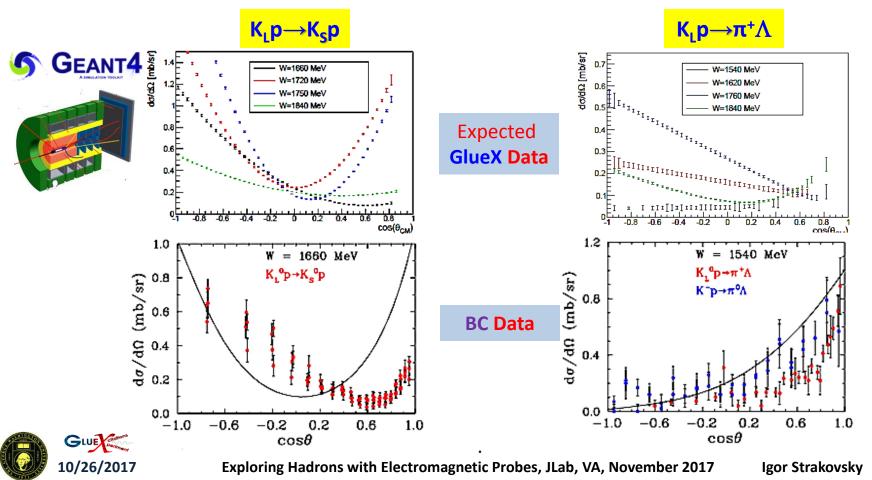

at **lower energies** than **K⁻p** scattering due to high beam flux.

• Momentum measured with TOF between SC (surrounded LH₂/LD₂) & RF from CEBAF.

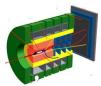


Expected Particle Identification

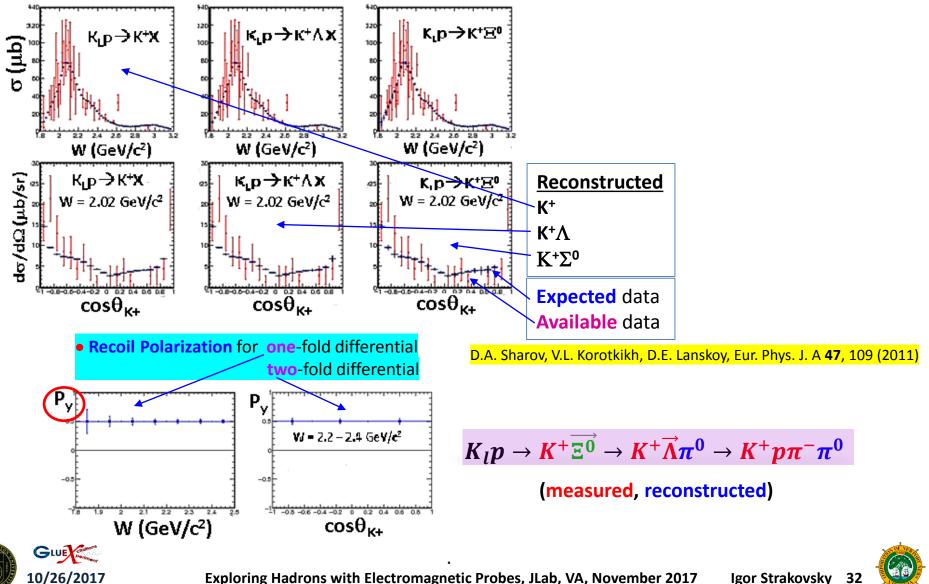
Time difference at primary ``vertex"



Expected Cross Sections vs Bubble Chamber Data

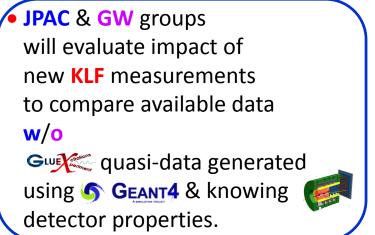

• **GlueX** measurements will span $\cos\theta$ from -0.95 to 0.95 in CM above W = 1490 MeV.

- K_L rate is 10⁴ K_L/s = 2500 xSLAC ACCELERATOR ABORATORY
- Uncertainties (statistics only) correspond to **100** days of running time for:



31

$K_{\mathcal{L}}p \rightarrow K^{+}\Sigma^{0}$ for Double Strange Hyperons


Total & diff Xsec for different topologies

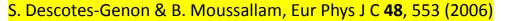
Quasi-Data Impact

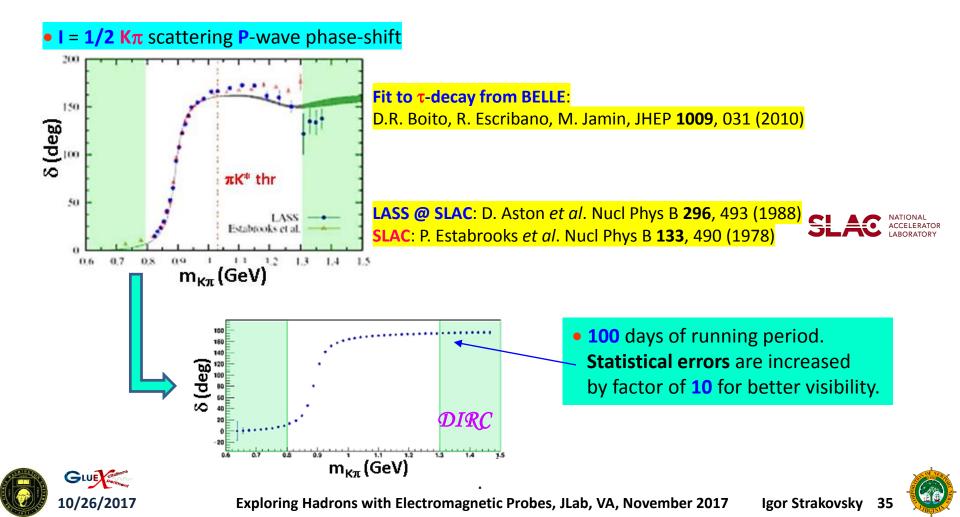
PAC45 Report:

The beam time request is dominated by the hyperon polarimetry measurements. A simulated example of a partial wave analysis, and how it would feed into the proposed spectroscopy measurements, will be needed in a future proposal.

Pion-Kaon Interaction

• Detailed study of $K\pi$ system is very important to extract so-called $K\pi$ vector & scalar form factors to be compared with $\tau \rightarrow K\pi v_{\tau}$ decay & can be used to constrain V_{us} Cabibbo-Kobayashi-Maskawa (CKM) matrix element as well as to be used in testing CP violation from Dalitz plot analysis of open charm D meson decays & in charmless decays of B mesons into $K\pi\pi$ final states.




K ₀ (800) MASS				- 1	K*(800) WIDTH					C DDC.		
V	/ALU	E (MeV)		EVTS		VALU	E (MeV)		EVTS	DOCUMENT ID	TECN	
6	582	±29	OUR	R AVERAGE	Ern	547	± 24	OUR A	VERAGE	Error includes se	cale factor of 3	1.1.
8	326	±49	+49 -34	1338	1	449	±156	+144 - 81	1338	18 ABLIKIM	11B BES2	$J/\psi \rightarrow \ K^0_S K^0_S \pi^+ \pi^-$
8	349	±77	$^{+18}_{-14}$	1421	2,3	512	± 80	+ 92 - 44	1421 ¹⁹	^{,20} ABLIKIM	10E BES2	$J/\psi \to \ \kappa^\pm \kappa^0_S \pi^\mp \pi^0$
8	841	±30	+81 -73	25k				$^{+ 96}_{-144}$	25k ¹⁹	^{,21} ABLIKIM	06C BES2	$J/\psi \rightarrow \overline{K}^*(892)^0 K^+ \pi^-$
6	58	± 13			6	557	± 24			22 DESCOTES-	G06 RVUE	$\pi K \rightarrow \pi K$
7	97	±19	±43	15k	7,8	410	± 43	± 87	15k ²³	^{,24} AITALA	02 E791	$D^+ \rightarrow K^- \pi^+ \pi^+$

 Results coming from Roy—Steiner & data at higher energy not in agreement with low energy experimental data need improvement !

Pion-Kaon Interaction [PKI2018] Workshop at JLab February 14th through 16th , 2018

The π -K scattering enables direct investigations of scalar and vector K* states, including the not yet established S-wave $\kappa(800)$ state. These studies are also needed to get precise values of vector and scalar form factors: to independently extract CKM matrix element Vus and to test the Standard Model unitarity relation in the first row of CKM matrix, to study CP violation from the Dalitz plot analysis of open charm D meson decays and in a charmless decays of B mesons in K $\pi\pi$ final states. Significant progress is made lately in Lattice QCD, in the phenomenology and in the Chiral Perturbation Theory to describe different aspects of π -K scattering. The main source of experimental data is based on experiments performed in SLAC almost five decades ago at 1970-80s. The recently proposed KL Facility incorporating the GlueX spectrometer at JLab will be able to improve the π -K scattering database by about three orders of magnitude in statistics. The workshop will discuss the necessity for and the impact of the future high statistics data obtained at JLab on π -K scattering.

<u>Organizers</u>: Moskov Amaryan Ulf-G. Meissner Curtis Meyer James Ritman Igor Strakovsky

https://www.jlab.org/conferences/pki2018/

Summary

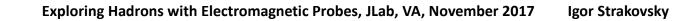
Our goal is

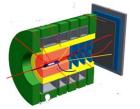
• To establish KL Facility at JLab. Jefferson Lab

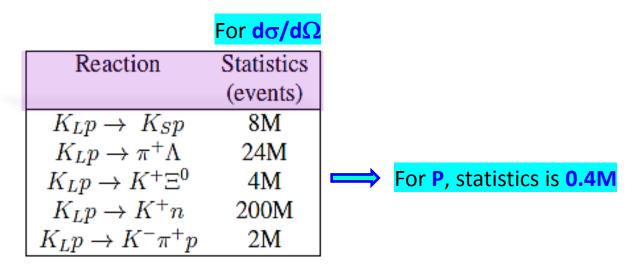
To do measurements which bring new physics.

 Here we reviewed what can be learned by studying K_Lp & K_Ln scattering leading to two-body final states (1st stage).
 <u>At later stages</u>, we plan to do K_LN on aka FROST with hydrogen & deuterium.

- JLab K-long Facility would advance Hyperon Spectroscopy & study of strangeness in nuclear & hadronic physics.
 It may extract very many missing strange states.
 To complete SU(3)_F multiplets, one needs no less than 17 Λ*, 43 Σ*, 42 Ξ*, & 24 Ω*.
- Discovering of ``missing" hyperon states would assist in advance our understanding of formation of baryons from quarks & gluons microseconds after Big Bang.

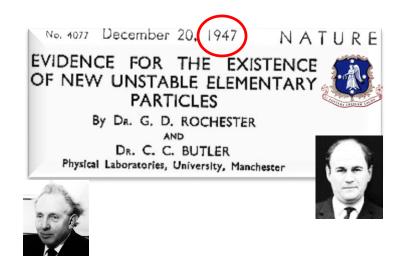

• Full Proposal is coming for PAC46 in 2018, WELCOME to JOIN US.


Backup Slides

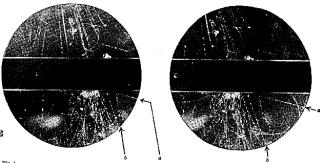


38

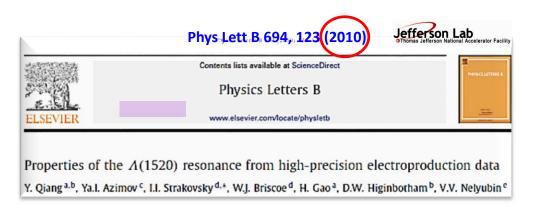
Time Request

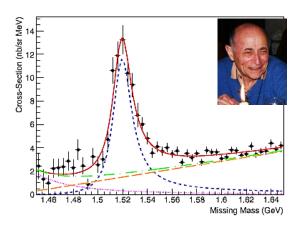

Expected statistics for differential cross sections of different reactions with LH₂ & below W = 3.5 GeV for 100 days of beam time.

There are no data on ``neutron" targets &, for this reason, it is hard to make realistic estimate of statistics for K_Ln reactions.
 If we assume similar statistics as on proton target, full program will be completed after running 100 days with LH₂ & 100 days with LD₂ targets.



A bit of Strange History

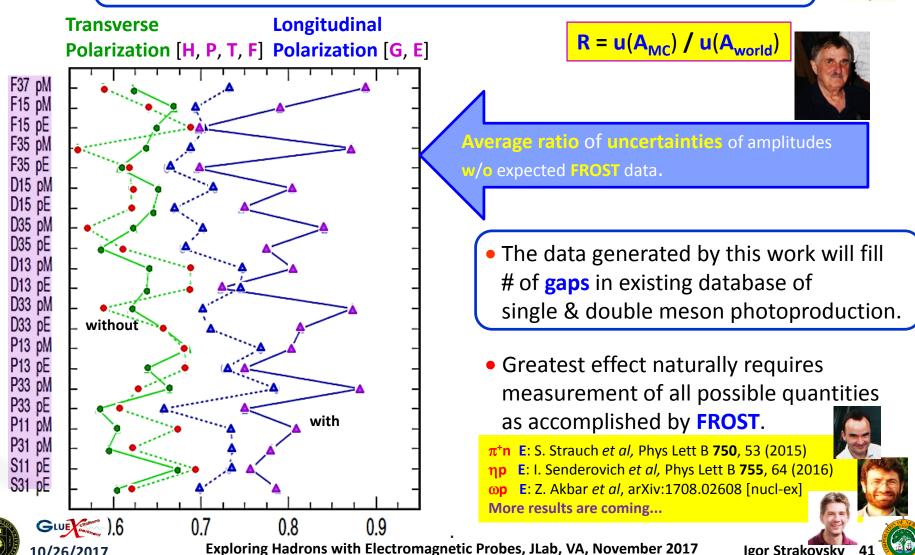

 First hyperon, Λ(1116)1/2⁺, was discovered during study of cosmic-ray interactions.


• It led to discovery of strange quark.

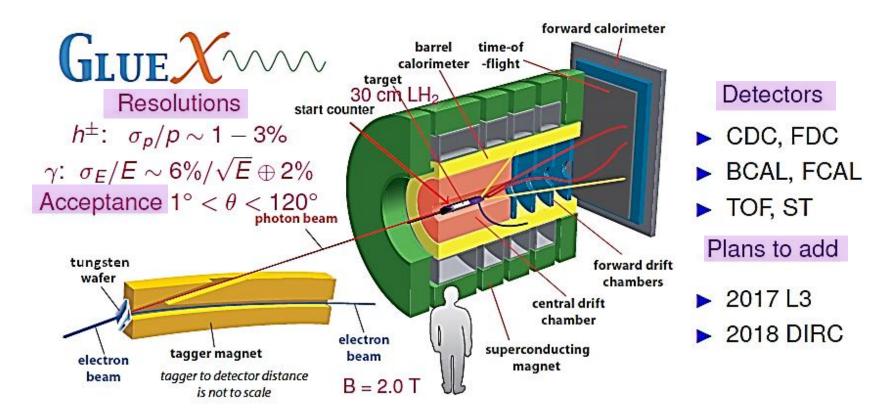
STELEOSCOPIC PHOTOGRAPHS SHOWING AN UNUSUAL FORE (a b) in the GAS. The direction of the magnetic field is such that a positive particle coming downwards is deviated in an intelockwise direction

 Pole position in complex energy plane for hyperons has began to be studied only recently, first of all for Λ(1520)3/2⁻.

Quasi-Data: What to Expect When you're Expecting


10/26/2017

Prove motivation of JLab Proposal \mathcal{E} -03-105


Pion PhotoProduction from Polarized Target for FROST Project.

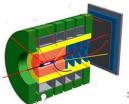
Igor Strakovsky

Hall D/GlueX Spectrometer and DAQ

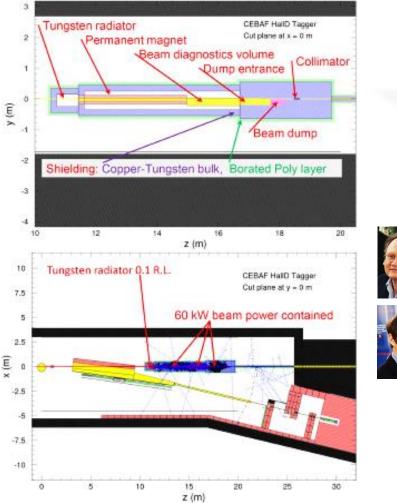
Photoproduction γp 1.5 kHz for a 10 MHz beam; Trigger $\sum E_{CAL} > X$ GlueX-I 10 MHz/peak: trigger 20 kHz \Rightarrow DAQ \Rightarrow tape 30 kHz spring 2016 GlueX-II 50 MHz/peak: trigger 100 kHz \Rightarrow DAQ \Rightarrow L3 farm \sim 20 kHz \Rightarrow tape

E.Chudakov

YSTAR2016, Nov 2016


Hall D Facility

9/24

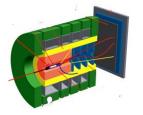


Igor Strakovsky 42

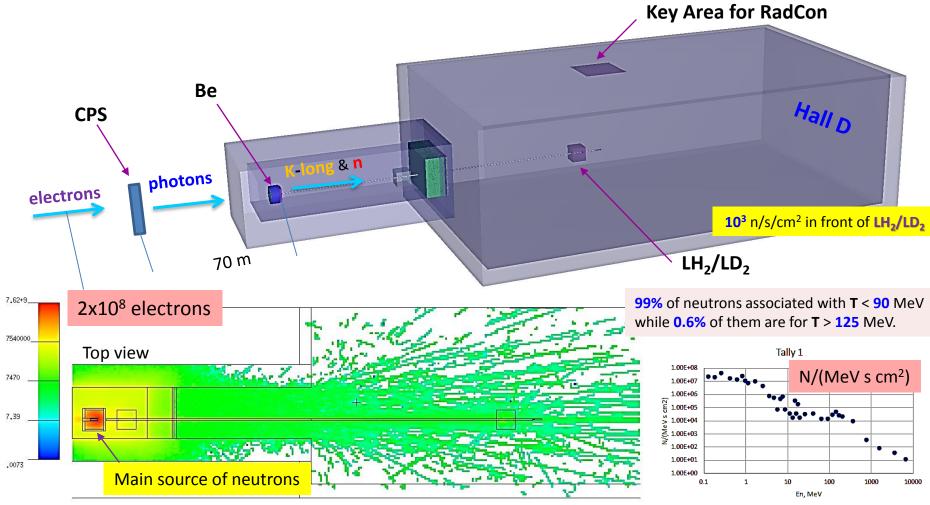
PAC45 Report:

The **CPS** design is progressing but details on the **KL** target and shielding for the detector need to be fleshed out.

JLab CPS group is still working to make general design which will work for both Halls \mathcal{D} \mathcal{L} \mathcal{C} .


Exploring Hadrons with Electromagnetic Probes, JLab, VA, November 2017

Igor Strakovsky 43



Expected Neutron Background

For neutron calculations, we use MCNP6 transport code.

Most important & unpleasant background for K_L comes from neutrons.

Exploring Hadrons with Electromagnetic Probes, JLab, VA, November 2017

Los Alamos

Igor Strakovsky 44

Speakers:

^{S:} Amaryan

Manley

Filippi

Myhrer

Degtyarenko

Nakayama

Ohnishi

Goity

Mai

Ziegler

Albrow

1100 111

FEBRUARY 1-3, 2016 Jefferson LAB Newport News, Virginia

SCOPE

The Workshop is following Lo112-15-001 "Physics Opportunities with Secondary KL beam at JLab" and will be dedicated to the physics of hyperons produced by the kaon beam on unpolarized and polarized targets with GlueX set up in Hall D. The emphasis will be on the hyperon spectroscopy. Such studies could contribute to the existing scientific program on hadron spectroscopy at Jefferson Lab. The Workshop will also sim at boosting the International collaboration, in

particular between the US and EU research institutions and universities. The Workshop would help to address the comments made by the PAC43, and to

prepare the full proposal for the next PAC44.

RGANIZING COMMITTEE

Keith

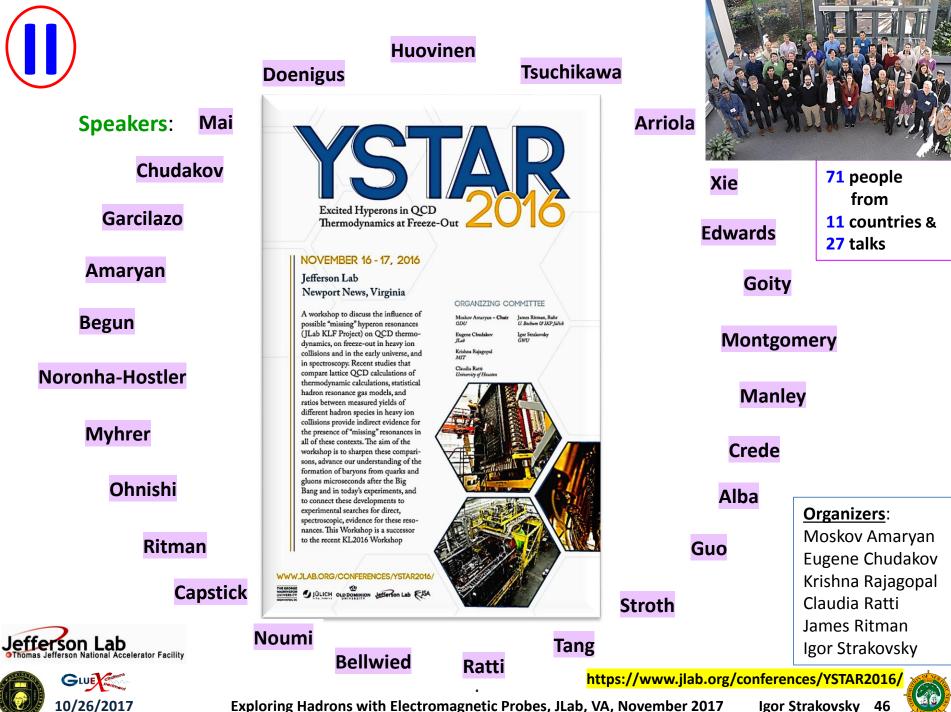
Moskov Amaryan, ODU, chair Eugene Chudakov, JLab Curtis Mayer, CMU Michael Pennington, JLab James Ritman, Ruhr-Uni-Bochum & IKP Julich Iger Strakovsky, GWU

WWW.JLAB.ORG/CONFERENCES/KL2016

Kohl

Exploring Hadrons with Electromagnetic Probes, JLab, VA, November 2017 Igor

0


JULICH OLDDOMINION J

Larin

Richards		all Guara					
Ra	mos	MUP		When we will			
	Zou	A Bales	60 people				
17	Sch	numacher		from 9 countries &			
		Oset		30 talks			
	Montgomery						
	Kamano						
		Santopinto					
		Szczepaniak					
		Mathieu					
	P	assemar	Orgai	nizers:			
	Тау	lor	Moskov Amaryan Eugene Chudakov				
N Jefferson Lab F.M	Oh		Curtis Meyer Michael Pennington				
Penningto	n			s Ritman itrakovsky			

https://www.jlab.org/conferences/kl2016/

Exploring Hadrons with Electromagnetic Probes, JLab, VA, November 2017

Igor Strakovsky 46

	Golty	Perera
Speakers: Mai	HIPS 2	017
Dominguez	New Opportunities with High-Intensity This workshop aims at producing an optimized photon source concept with	y Photon Sources February 6-7. Catholic University of Ar Washington. DC
Tadevosyan	potential increase of scientific output at Jefferson Lab, and at refining the science for hadron physics experiments benefitting from such a high-intensity photon source. The workshop is dedicated to bringing together the communities directly using such sources for photo-production	Washington, DC
Beminiwhatta Wojtsekhowski	experiments, or for conversion into K ₁ beams. The combination of high precision calorimetry and high intensity photon sources can provide greatly enhanced scientific benefit to (deep) exclusive processes like wide-angle and time-like Compton scattering. Potential prospects of such a high-intensity source with	
Degtyarenko	of such a high-intensity source with modern polarized targets will also be discussed. The availability of K, beams would open new avenues for hadron spectroscopy, for example for the investigations of "missing" hyperon resonances, with potential impact on QCD thermodynamics and on freeze-out both in	n 1
Niculescu	beavy ion collisions and the early universe.	Organizi Committe Twisition - CU Oversitions - CU Oversitions - CU Oversitions - CU Oversitions - CU
		Com.

Liuti

C - **!**+...

Jefferson Lab

C. S. Call

Zhang

Exploring Hadrons with Electromagnetic Probes, JLab, VA, November 2017

Patsyuk

Sargsian

