Regge phenomenology of ω photoproduction

Features from t-ch. Regge poles at forward and from u-ch. Regge poles at backward angles

2017. 11. 2 @ JLab workshop

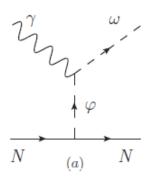
B.-G. Yu* (KAU)

in collaboration with

K.-J. Kong (KAU)

Outline

- Features of $\gamma N \to \omega N$ distinctive from ρ^0 and φ cases in low energy and wide angles;
- Motivation: Systematic approach to describe reaction $\gamma N \to \omega N$
 - t-ch. meson Regge pole in the forward direction
 Pion dominance with absorption mechanism from cuts
 - u-ch. baryon Regge pole in the backward direction
 Nucleon exch. with filled-up mechanism from partons
- Summary and outlooks


I. Photoproduction of $\gamma p \rightarrow \omega p$ at small $-\boldsymbol{t}$

■ AT FORWARD ANGLES

Reggeized model for meson exchanges

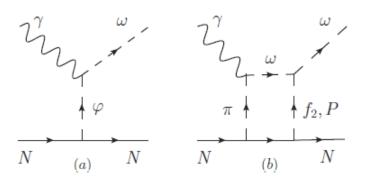
B.-G. Yu and K.-J. Kong, arXiv:1710.04511[hep-ph]

$$\mathcal{M}_{\varphi} = (\pi + f_1) + (\sigma + f_2 + \mathbb{P})$$

meson	$\operatorname{trajectory}(\alpha_{\varphi})$	phase factor	$g_{\gammaarphi\omega}$	$g_{arphi NN}$	
π	$0.7(t-m_{\pi}^2)$	$e^{-i\pi\alpha_{\pi}}$	I	± 13.4	\
σ		$(1+e^{-i\pi\alpha_{\sigma}})/2$			
f_2		$(1+e^{-i\pi\alpha_{f_2}})/2$		6.45; 0.0	
f_1	0.028 t + 0.9	$\left(-1 + e^{-i\pi\alpha_{f_1}}\right)/2$	0.18	2.5	

- σ exch. for natural parity cross section
- Feature of over dominating π exchange of unnatural parity with well-known cpl. const.
- Need of absorption mechanism

▶ Regge cuts for π exch.

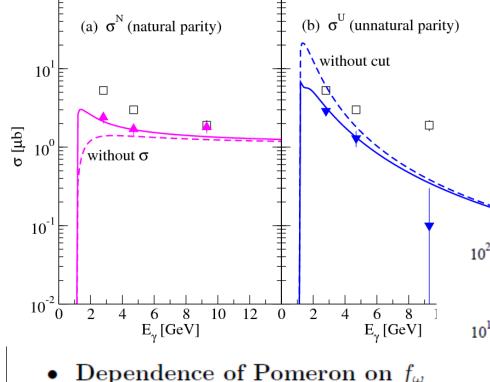

A. Donnachie and Yu. S. Kalashnikova, Phys. Rev. C 93, 025203 (2016)

Elastic cuts

$$\mathcal{M}_{\pi}^{cut} = \mathcal{M}_{\pi} \left[\mathcal{R}^{\pi}(s,t) + \sum_{\varphi = f_2, \mathbb{P}} C_{\varphi} e^{d^{\varphi} t} e^{-i\frac{\pi}{2}\alpha_c^{\varphi}(t)} \left(\frac{s}{s_0} \right)^{\alpha_c^{\varphi}(t) - 1} \right]$$

cut trajectory

$$\alpha_c^{\varphi}(t) = \frac{\alpha_{\pi}' \alpha_{\varphi}'}{\alpha_{\pi}' + \alpha_{\varphi}'} t + (\alpha_{\pi}(0) + \alpha_{\varphi}(0) - 1)$$

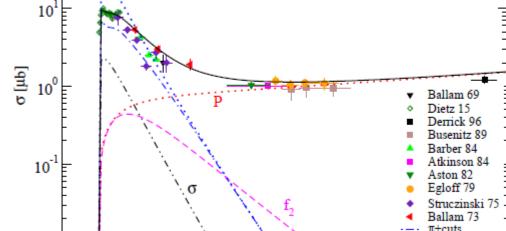


Cut parameters C_{φ} and d_{φ} given in units GeV⁻².

Reaction	Cut	C_{arphi}	d_{φ}
γp	π - f_2	41	2.2
	π - \mathbb{P}	-2.5	2
γn	π - f_2	32.5	2.2
	π - \mathbb{P}	2	2

Reggeons cuts from elastic scattering

Natural & unnatural parities of $\gamma p \rightarrow \omega p$

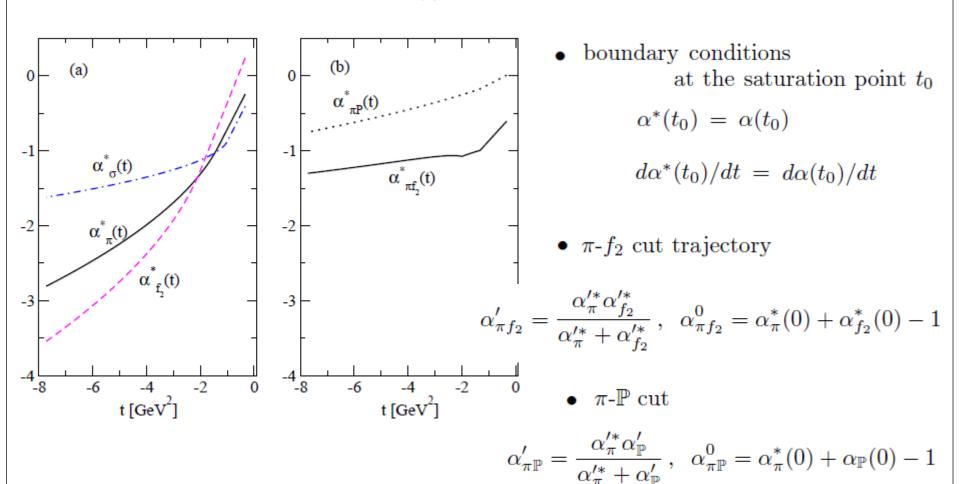


- Overdominance of π exch.
- Need of absorptive cuts for π
- Need of σ exch. for natural parity

• Dependence of Pomeron on
$$f_{\omega}$$

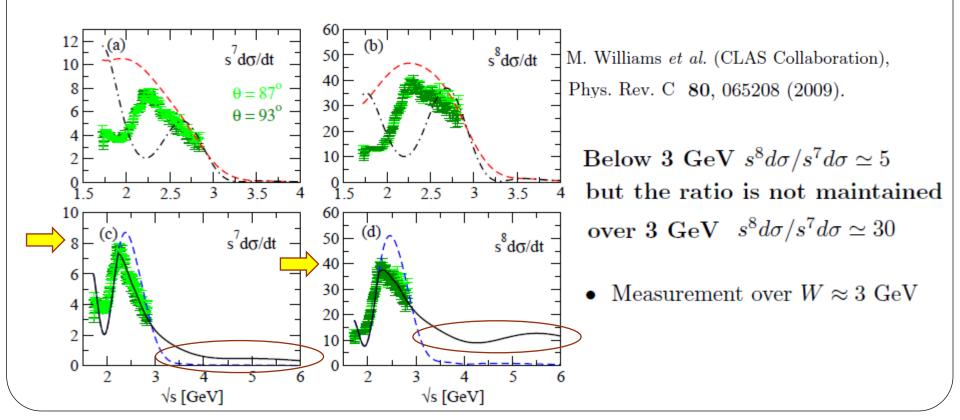
$$\frac{1}{f_{\rho}}: \frac{1}{f_{\omega}}: \frac{1}{f_{\phi}} = 3:1:-\sqrt{2}$$

$$f_{\rho} = 5.2$$
 $f_{\omega} = 15.6$ $f_{\phi} = -13.4$



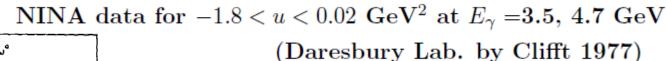
10¹ W [GeV] 10²

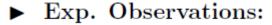
Scaling of differential cross sections $\gamma p \rightarrow \omega p$


 \blacktriangleright Nonlinear trajectory for saturation at large -t

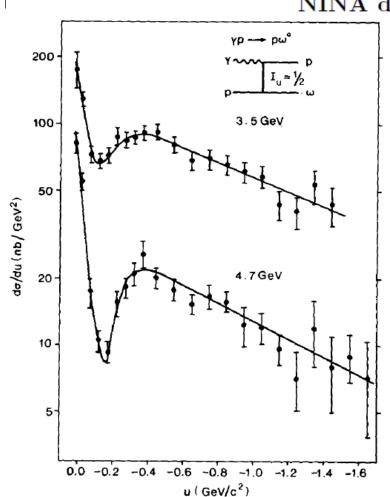
$$\alpha^*(t) = c_1 + c_2 \sqrt{t_1 - t}$$

Energy dependence of scaled differential cross sections

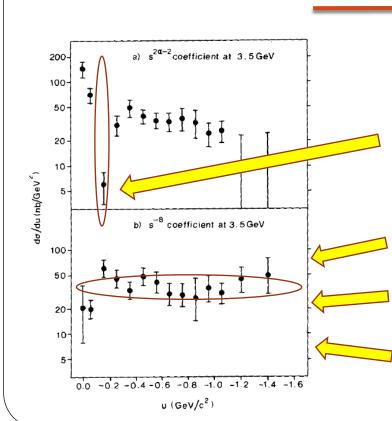

- \triangleright s^7 power from direct photon cpl. and s^8 from VMD
- ▶ Role of cuts and complex phase for π
- ▶ Different scaling between s^7 and s^8 power laws over $\sqrt{s} \approx 3$ GeV
- ▶ A criterion to discern priority between direct photon cpl. and VMD


II. Photoproduction of $\gamma p \rightarrow \omega p$ at small $-\boldsymbol{u}$

■ AT BACKWARD ANGLES

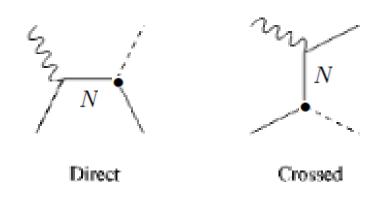

Theories and experiments are rare for backward ω photoproduction

R. W. Clifft et al., Phys. Lett. B 72, 144 (1977)



- Only N_α trajectory of u-ch. nucleon with a deep dip at u = -0.15 GeV², but the depth of a dip weakened by a fraction of 1/3 at E_γ = 3.5 GeV
- Needs a mechanism to fill in the dip

▶ Possibility of parton contribution in addition to the dip of N_{α} trajectory in NINA data


$$\frac{d\sigma}{du} = \left| A(u)s^{\alpha(u)-1} + Be^{i\phi(u)}s^{-4} \right|^2$$

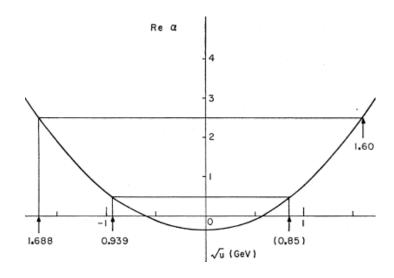
- $|A|^2 \sim N_{\alpha}$ trajectory of u-ch. nucleon with a deep dip at $u=-0.15~{
 m GeV^2}$
- Parton contributions with s⁸ scaling
- $\phi \sim 90^{\circ}$ incoherence of A and B
- $|B|^2 \sim$ isotropic and independent of u

Reggeization of nucleon in u-ch. exchange

• Gauge invariant Born terms

$$M_{s} = -\bar{u}(p')\Gamma_{\omega NN} \frac{p' + k + M_{N}}{s - M_{N}^{2}} \Gamma_{\gamma NN} u(p),$$

$$M_{u} = -\bar{u}(p')\Gamma_{\gamma NN} \frac{p' - k + M_{N}}{u - M_{N}^{2}} \Gamma_{\omega NN} u(p)$$


$$\begin{split} \Gamma_{\gamma NN} &= e \left(e_N \not \in -\frac{\kappa_N}{4 M_N^2} [\not e, \not k] \right), \\ \Gamma_{\omega NN} &= g_{\omega NN} \left(\not \eta^* + \frac{\kappa_\omega}{4 M_N^2} [\not \eta^*, \not q] \right) \\ g_{\omega NN} &= 15.6, \; \kappa_{\omega NN} = 0 \end{split}$$

• Nucleon Regge pole with signature $\tau = +1$

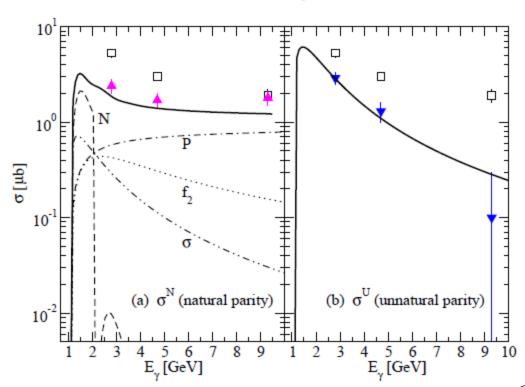
$$\mathcal{M}_N = (M_s + M_u) \times (u - M_N^2) \mathcal{R}^N(s, u)$$

$$\mathcal{R}^{N}(s,u) = \frac{\pi \alpha_{N}'}{\Gamma(\alpha_{N}(u) + 0.5)} \frac{\frac{1}{2} \left(1 + \tau e^{-i\pi(\alpha_{N}(u) - 0.5)}\right)}{\sin \pi(\alpha_{N}(u) - 0.5)} \left(\frac{s}{s_{0}}\right)^{\alpha_{N}(u) - 0.5}$$

- N_{α} trajectory $\alpha_N^+(\sqrt{u}) = 0.9 u 0.365$
- A dip at $u = -0.15 \text{ GeV}^2 \text{ from NWS zero, } 1 + e^{-i\pi(\alpha_N(u) 0.5)} = 0$

Fix background from meson exchanges

Reggeized model for nucleon exchange


$$\mathcal{M} = \mathcal{M}_N + \text{background}$$

- Background from t meson exch. with cutoff functions $F_{\varphi}(t) = \left(\frac{t m_{\varphi}^2}{t \Lambda_{\varphi}^2}\right)^n$
- Reggeized f₂

$$\mathcal{M}_{\text{nat.}} = \mathcal{M}_N + M_{\sigma} + M_{f_2} + M_{\mathbb{P}},$$

$$\mathcal{M}_{\text{unnat.}} = M_{\pi} + M_{f_1},$$

• Cutoff masses

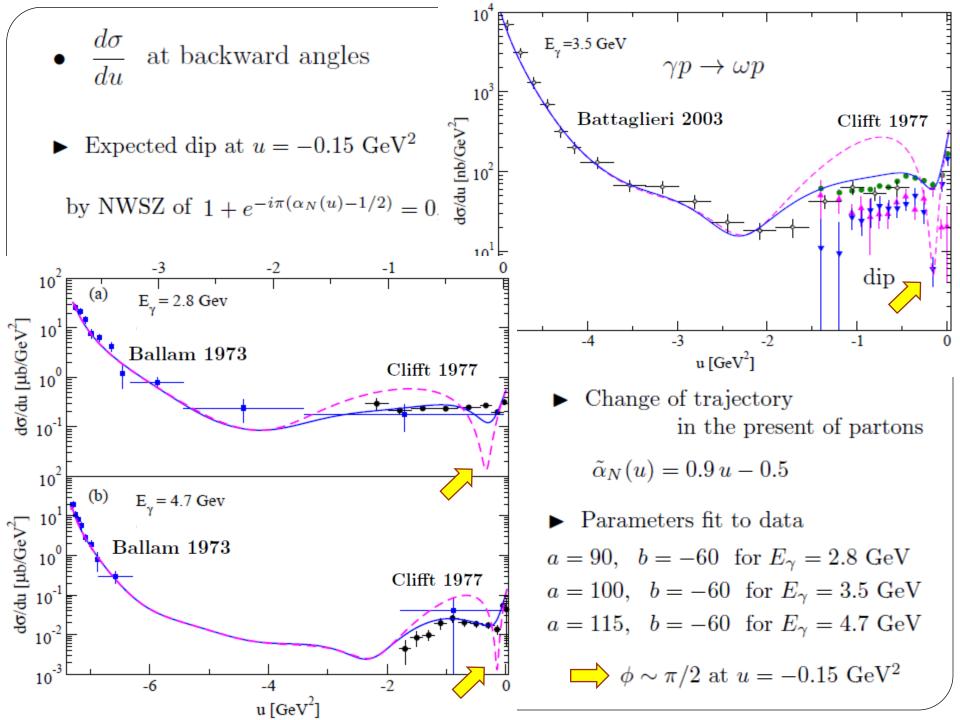
Meson	Mass	n	Λ_{arphi}	$g_{\gamma \varphi \omega}$	$g_{\varphi NN}$
π	139.57	2	720	-0.69	13.4
σ	500	1	650	-0.17	14.6
f_1	1281.9	1	1300	0.18	2.5

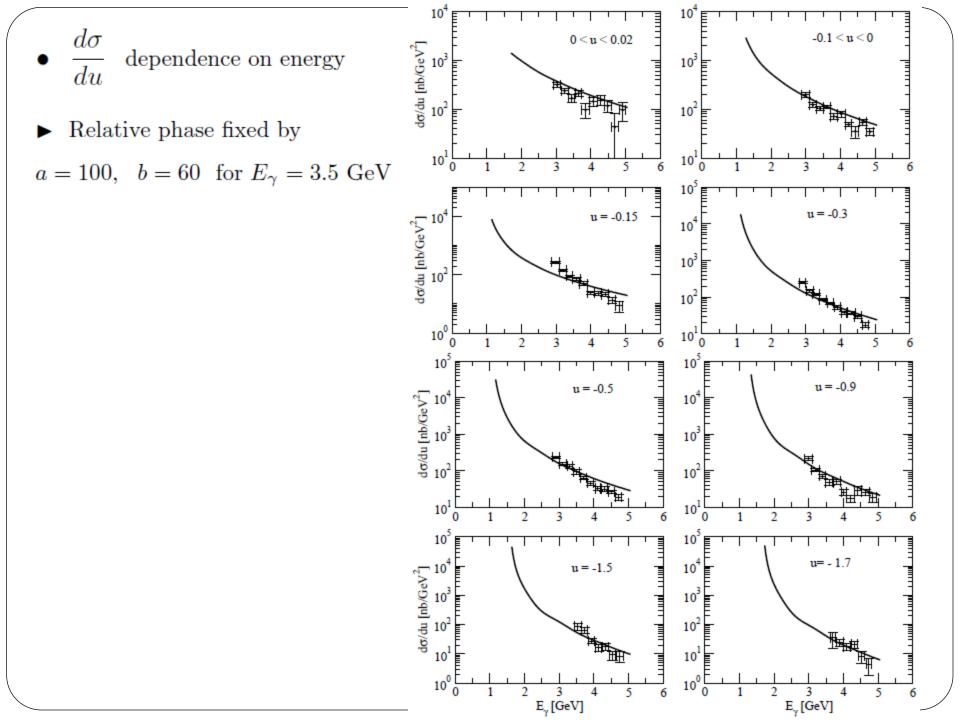
Parton contribution

- ▶ Nonforward parton distribution as a fill-up mechanism at the dip
- Extended ωNN vertex to include isoscalar FF by similarity to γ^*NN vertex

$$g_{\omega NN} \gamma^{\mu} \left(\frac{s}{s_0}\right)^{\alpha(u)} \longrightarrow g_{\omega NN} \gamma^{\mu} \left(\frac{s}{s_0}\right)^{\alpha(u)} + g_{\omega NN} F_s(u) \gamma^{\mu} \left(\frac{s}{s_0}\right)^{\tilde{\alpha}(u)} e^{i\phi(u)}$$

$$\mathcal{R}^N \to \mathcal{R}^N + e^{i\phi(u)} F_s(u) \tilde{\mathcal{R}}^N$$


- ► nucleon isoscalar form factor $F_s = F_1^p + F_1^n$ ► quark contents $F_1^p = e_u u + e_d d$, $F_1^n = e_u d + e_d u$
- Regge-like ansatz R2 for parton density M. Guidal et al., Phys. Rev. D 72, 054013 (2005)

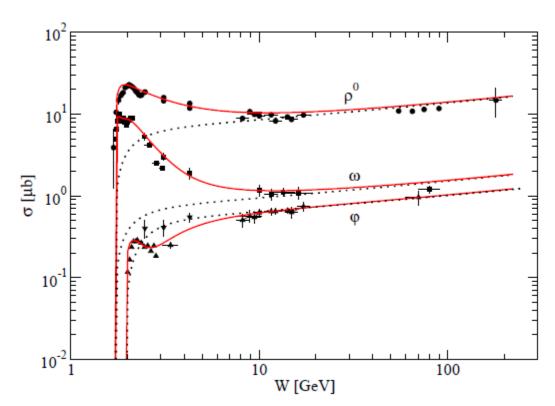

$$q(u) = \int dx q_v(x) x^{-(1-x)\alpha'(u-u_0)}, \quad \alpha' = 0.3 \text{ GeV}^2$$

• Unpolarized parton distributions from MRST2002 global NNLO fit A. D. Martin, Phys. Lett. B 531, 216 (2002) $u_v = 0.262x^{-0.69}(1-x)^{3.5}\left(1+3.8x^{0.5}+37.65x\right)\,,$

$$d_v = 0.061x^{-0.65}(1-x)^{4.03}\left(1+49.05x^{0.5}+8.65x\right)$$

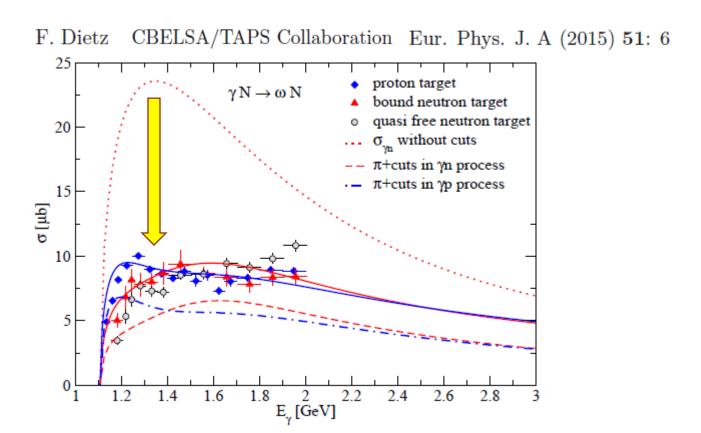
relative phase between hadron and parton $\phi(u) = (a + bu) \frac{\pi}{180}$

Summary and Outlooks

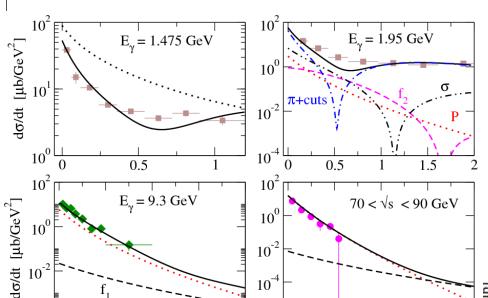

- We studied $\gamma N \to \omega N$ in Reggeized models at forward and backward angles for a comprehensive understanding of the reaction over the resonance region.
- Role of π with π -cuts introduced as a absorption mechanism are crucial to describe the reaction at forward angles and analyze scaling of cross sections with nonlinear trajectories for saturation at wide angles.
- Possibility of parton contrib. is investigated as a fill-up mechanism of the dip from nucleon Regge pole with nucleon isoscalar form factor at backward angles.
- It is desirable to measure the ω photoproduction in intermediate energy to explore those findings in the scaling and possibility of parton contributions.

Back up

Overall features of vector meson photoproductions

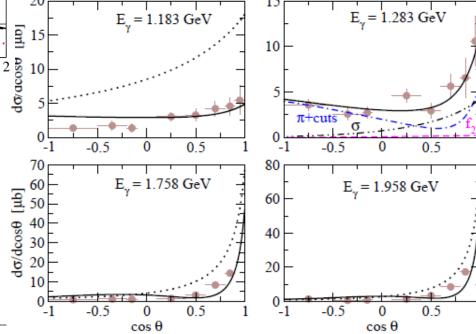

TABLE I. Physical constants in lighter vector meson photoproductions ρ^0 , ω , and ϕ .

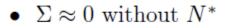
	$ ho^0$	ω	ϕ
$g_{V\pi\gamma}$	0.254	-0.69	0.065
$g_{\pi NN}$	13.4	13.4	13.4
$g_{V\sigma\gamma}$	-0.235	-0.17	-0.085
$g_{\sigma NN}$	14.6	14.6	14.6
g_{VNN}	2.6	15.6	3.4



Regge cuts for γp and γn total cross sections

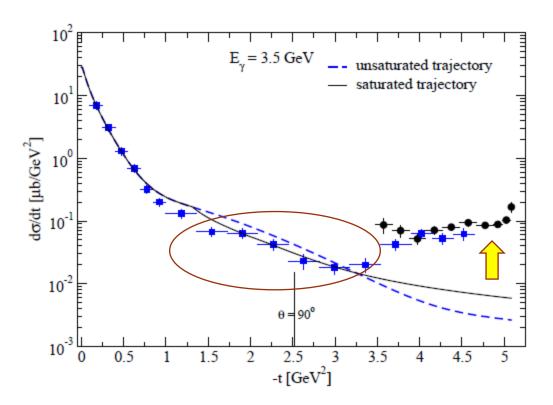
- Cuts in total cross sections
- Agreements with σ and $d\sigma/d\cos\theta$




Differential cross sections for γp and γn reactions

-t $[GeV^2]$

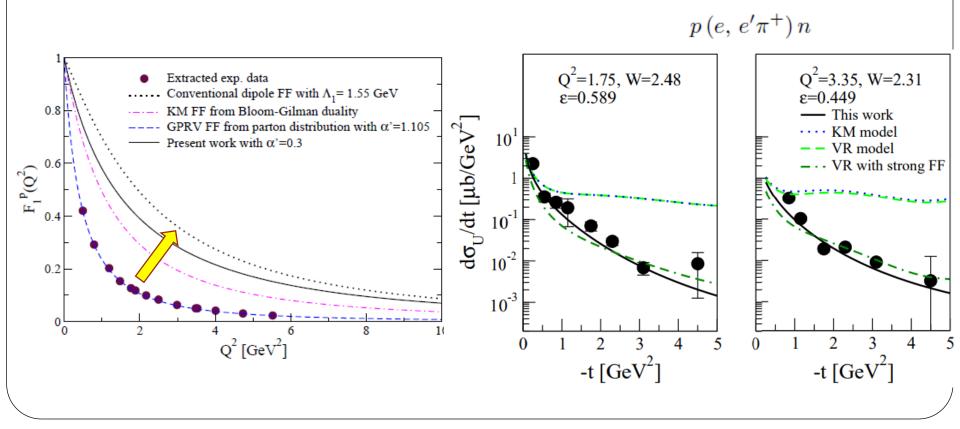
- Agreements with σ and $d\sigma/d\cos\theta$
- Roles of $\pi + \sigma + f_2$ near threshold
- Roles of Pomeron+ f_1 at high energies


 $-t [GeV^2]$

 10^{-4}

−t dependence of differential cross section

R. W. Clifft et al., Phys. Lett. B 72, 144 (1977)


M. Battaglieri et al. (CLAS Collaboration), Phys. Rev. Lett. 90, 022002-1 (2003)

- Good fit at θ ≈ 90°
- A limit to t_{max} without u-ch. exch.

On parameter α'

- Proton charge FF in electroproduction of $p(e, e'\pi^+)n$ T. K. Choi, K.-J. Kong, B.-G. Yu, arXiv:1508.00969[nucl-th]
- Data favors the dipole FF with $\Lambda = 1.55 \text{ GeV}$

