DISCUSSION FOR SESSION II

Workshop on Exploring Hadrons and Electromagnetic Probes: Structure, Excitations, Interactions@

CLAS-12 & GlueX

HADRONS IN NUCLEAR MEDIUM AND STRANGENESS

TALKS GIVEN

- Photoproduction of vector mesons off nuclei with the GlueX detector
- Features of omega meson photoproduction
- Resonances in hadronic medium
- Quarkonium in thermal environment
- Hypernuclear and strangeness physics
- Physics Perspectives for future K-long Facility
- Electro- and photo-production of Lambda(1405)

Photon probes

The photon has a tidy probe to study the production mechanism of excited hadrons.

Internal structure of excited baryons

- Strong vertices: Form factors & coupling constants
- EM vertices: photo-couplings
- With virtual photon, one can study
 EM form factors of excited N and hyperons.
- Production of strangeness

Theoretical uncertainties

- Form factors, always pain in the neck
- How to treat higher spins without any ambiguity

- Excited hadrons are constructed from multi-particle productions.
- Experimenters are trying to reconstruct two-body processes based on the following basic multi-particle reactions.

Basic reactions

- Excited hadrons are constructed from multi-particle productions.
- Experimenters are trying to reconstruct two-body processes based on the following basic multi-particle reactions.

Basic reactions

 $\gamma N \to \pi \pi N$

- Excited hadrons are constructed from multi-particle productions.
- Experimenters are trying to reconstruct two-body processes based on the following basic multi-particle reactions.

Basic reactions

- Excited hadrons are constructed from multi-particle productions.
- Experimenters are trying to reconstruct two-body processes based on the following basic multi-particle reactions.

$$\gamma N
ightarrow
ho N$$

There exist mainly old calculations.

$$\gamma N \to \rho N$$

There exist mainly old calculations.

Decays of N* to the rho meson

 $N^{*}(1440) \rightarrow \rho N < 8\%$ $N^{*}(1535) \rightarrow \rho N < 4\%$ $N^{*}(1520) \rightarrow \rho N : (15 - 24)\%$ $N^{*}(1650) \rightarrow \rho N : (4 - 12)\%$ $N^{*}(1680) \rightarrow \rho N : (3 - 15)\%$ $N^{*}(1720) \rightarrow \rho N : (70 - 85)\%$

$\gamma N \to K \pi \Lambda$

$$\gamma N \rightarrow K\pi \Lambda$$

$$(K\pi)_{I=1/2}^{S-\text{wave}} = K_0^*(800) \text{ or } \kappa$$

$$(K\pi)_{I=1/2}^{S-\text{wave}} = K^*(892)$$

$$K_2^*(1430) - \text{ tensor meson}$$

$$\gamma N \to \overline{K\pi} \Lambda \to \Sigma^*(1385), \Sigma^*(1670), \Sigma^*(1775)$$

$$(K\pi)_{I=1/2}^{S-\text{wave}} = K_0^*(800) \text{ or } \kappa$$

$$(K\pi)_{I=1/2}^{S-\text{wave}} = K^*(892)$$

$$K_2^*(1430) - \text{ tensor meson}$$

 $\gamma N \to K \bar{K} N$

$$\gamma N
ightarrow K ar{k} N$$

PDG, 2014-2015

$$\gamma N \rightarrow K\bar{K}N \rightarrow \gamma N \rightarrow K\Lambda^{*}(1520)$$

$$\gamma N \rightarrow K\Lambda^{*}(1670)\frac{1}{2}^{-}$$

$$\gamma N \rightarrow K\Lambda^{*}(1690)\frac{3}{2}^{-}$$

$$\gamma N \rightarrow K\Lambda^{*}(1820)$$

$$\gamma N \rightarrow K\Lambda^{*}(1830) \bar{K}N \text{ dominant}$$

$\gamma N \to K \pi \Sigma$

$\gamma N \to \pi \pi \pi N$

 $\gamma N
ightarrow \omega N$ B.G. Yu's talk & A. Somov's talk $\gamma N
ightarrow h_1 N$

 $\gamma N \to \pi \pi K \Lambda : \begin{array}{cc} \gamma N \to K^* \Sigma^* \\ \gamma N \to K_1 \Lambda \end{array}$ $\gamma N \to K_2^* \Lambda$

 $\gamma N \to \pi \pi K \Lambda : \begin{array}{ll} \gamma N \to K^* \Sigma^* \ \gamma N \to K_1 \Lambda \ \gamma N \to K_2^* \Lambda \end{array}$

 $\gamma N \to K K K \Omega$

$$\gamma N \to \pi \pi K \Lambda : \begin{array}{cc} \gamma N \to K^* \Sigma^* \\ \gamma N \to K_1 \Lambda \\ \gamma N \to K_2^* \Lambda \end{array}$$

$\gamma N \to K K K \Omega$

Extreme cases

$$\gamma N \to \pi \pi \pi \pi \pi N (\gamma N \to b_1 N)$$

$$\gamma N \to \pi \pi \pi \pi \pi \pi N (\gamma N \to XN)$$

GlueX Experiment: Searching for hybrid-exotics

Hadrons in nuclear medium

- $\gamma + A \rightarrow \omega + A$ $\gamma + A \rightarrow \rho + A \longrightarrow$ $\gamma + A \rightarrow \phi + A$
- Changes of vector mesons in medium
- Mass dropping in medium or not?
- Shift of the widths or not?
- If any, what is the merit of using photon beams to study the change of hadrons in medium?

Talks by A. Somov, S.-T. Cho, S. Kim

Hypernuclei

ΛN interaction A talk by L.Tang

$NN, \Lambda N, \Lambda \Lambda$

- Hyperon-Nucleon interactions are still not much known.
- Hyperon-neutron: No single data.
- One can get access to Hyperon-Nucleon interactions via Hypernuclei

 Λnn Resonance as T=1 3-body resonance

 $^{3}H(e,e'K^{+})(\Lambda nn)$

K_L Physics

Both S=1 and S=-1 physics are possible.
I. Strakovsky's talk

- Excited hyperons are still not much known.
 - ----> Dynamics related to strange quarks
- Possible pentaquark study by direct formation.

Heavy flavors

 $\gamma N o J/\psi N$: Heavy pentaquarks P_c $\gamma N o D_c \Lambda_c^+$ $\gamma N o D_c^* \Lambda_c^+$

 Ω_c^* : Newly found excited Omega_cs by LHCb

- Charm photo-production is also a very exciting subject, since many things are unknown.
- Possibly, there are many heavy pentaquark states!
- For Heavy pentaquarks, coupled-channels will come into play.
- Effective Lagrangians may not be enough or even not correct!

QUESTIONS POSED

- What are the key goals of investigating strangeness in hadron physics?
- What are the connections between different areas of studying hadron interactions with nuclear medium?
- Hypernuclear Physics@JLAB & @J-PARC, what complementarity?
- Possible studies on heavy flavors using photon beams?