Coupled-channel dynamics for excited hadrons

Workshop:

Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions

JLab, Nov. 2-3, 2017

Supported by	With slides from: Bonn-Gatchina, Burkert, Crede, Mai, ...
HPC support by JSC grant jikp07	

Outline

- Quark and hadron degrees of freedom
- Determination of the baryon spectrum and its properties
- Highlight: Three-body unitarity
- Coupled-channels global analysis
- Statistical aspects
- Transition form factors

Degrees of freedom: Quarks or hadrons?

The Missing Resonance Problem

Overview: Int.J.Mod.Phys. E22 (2013) 1330015

- above 1.8 GeV much more states are predicted than observed,
"Missing resonance problem"

Lattice calculation (single hadron approximation):

[Edwards et al., Phys.Rev. D84 (2011)]

- only 15 established N^{*} states (PDG 2015)
- $\sim 48 \%$ of the states have ${ }^{* * * *}$ or ${ }^{* * *}$ status (PDG 1982: 58\% with ${ }^{* * * *}$ or ${ }^{* * *}$)
N^{*} spectrum in a relativistic quark model:

Hybrid Baryons

J.J. Dudek and R.G. Edwards, PRD85 (2012) 054016

Rel. quark model: Aznauryan (2007)
Dyson-Schwinger: Wilson, Cloet, Chang,
C. D. Roberts (2012)
[source: Int. J. Mod. Phys. (2013)]

Hybrid states have same JP values as q^{3} baryons. How to identify them? \rightarrow Measure Q^{2} dependence of electro-couplings (CLAS 12)

- QCD at low energies
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states (missing resonance problem)
(2-quark/3-quark, hadron molecules, exotics,...)

Impact of data

Observable	σ	Σ	T	P	E	F	G	H	T_{x}	T_{z}	L_{x}	L_{2}	O_{x}	O_{2}	C_{x}	C_{2}
$\underline{p} \boldsymbol{r}^{0}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark						$\text { clos }{ }^{\circ}$		
$\mathrm{n} \boldsymbol{\pi}^{+}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark								
pn	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				$\gamma p \rightarrow X$				
p ${ }^{\prime}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark								
K ${ }^{+}$,	\checkmark															
$\mathbf{K}^{+} \Sigma^{\mathbf{0}}$	\checkmark															
$p \omega / \phi$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark SDME							
$\mathbf{K}^{+*} \Lambda$	\checkmark			\checkmark					SDME							
$\mathbf{K}^{0} \Sigma^{+}$	\checkmark	\checkmark									\checkmark	\checkmark		SDME		
$p \pi^{-}$	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark					$y n \rightarrow x$				
pp ${ }^{-}$	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark									
K- Σ^{+}	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark									
K ${ }^{\mathbf{N}}$	\checkmark		\checkmark													
K ${ }^{0}{ }^{0}$	\checkmark		\checkmark													
$\mathbf{K}^{0} \Sigma^{\mathbf{0}}$	\checkmark	\checkmark									\checkmark	\checkmark				

CBELSA/TAPS

Impact of new data

Data: CBELSA/TAPS Collaboration (T: Hartmann et al. PLB 748, 212 (2015) , E: Gottschall et al. PRL 112,
4012003 (2014), G: Thiel et al. PRL 109, 102001 (2012), Thiel et al. arXiv:1604.02922)
Predictions: black solid lines: BnGa, red dash-dotted: SAID, blue dashed: JüBo, green dotted: MAID

Impact of new data

Data: CBELSA/TAPS Collaboration (T: Hartmann et al. PLB 748, 212 (2015) , E: Gottschall et al. PRL 112, 012003 (2014), G: Thiel et al. PRL 109, 102001 (2012), Thiel et al. arXiv:1604.02922)

Fits: black solid lines: BnGa, red dash-dotted: SAID, blue dashed: JüBo

Impact of new data

- Multipole solutions approach each other
- Remaining discrepancies

Julich-Bonn, BnGa, SAID
$\operatorname{var}(1,2)=\frac{1}{2} \sum_{i=1}^{16}\left(\mathcal{M}_{1}(i)-\mathcal{M}_{2}(i)\right)\left(\mathcal{M}_{1}^{*}(i)-\mathcal{M}_{2}^{*}(i)\right) .(31)$

Three-body unitarity

Excited baryons: Channel space

μ	$J^{P}=$		$\frac{1}{2}^{-}$	$\frac{1}{2}^{+}$	$\frac{3}{2}^{+}$	$\frac{3}{2}^{-}$	$\frac{5}{2}^{-}$	$\frac{5}{2}^{+}$	$\frac{7}{2}^{+}$	$\frac{7}{2}^{-}$	$\frac{9}{2}^{-}$
1	πN	$\frac{9}{2}^{+}$									
2	$\rho N(S=1 / 2)$	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
3	$\rho N(S=3 / 2,\|J-L\|=1 / 2)$	-	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
4	$\rho N(S=3 / 2,\|J-L\|=3 / 2)$	D_{11}	-	F_{13}	S_{13}	G_{15}	P_{15}	H_{17}	D_{17}	I_{19}	F_{19}
5	ηN	S_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}		
6	$\pi \Delta(\|J-L\|=1 / 2)$	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}	
7	$\pi \Delta(\|J-L\|=3 / 2)$	-	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
8	σN										
9	$K \Lambda$	D_{11}	-	F_{13}	S_{13}	G_{15}	P_{15}	H_{17}	D_{17}	I_{19}	F_{19}
10	$K \Sigma$	P_{11}	S_{11}	D_{13}	P_{13}	F_{15}	D_{15}	G_{17}	F_{17}	H_{19}	G_{19}

including full 3-body dynamics [Julich-Bonn analysis; ANL-Osaka: similar]

One aspect: Three-Body Unitarity

Unitary isobar parametrization
$2 \rightarrow 2$ scattering input for isobars $(\pi \pi)$
(not necessarily resonant)

Unitarity

$$
\begin{equation*}
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}^{+}-\hat{T}^{-}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int\left(\prod_{\ell=1}^{3} \frac{\mathrm{~d}^{4} k_{\ell}}{(2 \pi)^{4}}(2 \pi) \delta^{+}\left(k_{\ell}^{2}-m^{2}\right)\right)(2 \pi)^{4} \delta^{4}\left(P-\sum_{\ell=1}^{3} k_{\ell}\right) \tag{5}
\end{equation*}
$$

$$
\times\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{-}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}^{+}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

Solution:

- Three-body unitarity induces two-body unitarity of the sub-amplitude
- Solution of $3 \rightarrow 3$ scattering can be expressed in terms of $2 \rightarrow 2$ amplitudes:

$$
\begin{aligned}
\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}_{c}(s)\left|p_{1}, p_{2}, p_{3}\right\rangle & =\frac{1}{3!} \sum_{n=1}^{3} \sum_{m=1}^{3} T_{22}\left(\sigma_{\mathbf{q}_{n}}\right) \tilde{T}_{\mathbf{q}_{n} \mathbf{p}_{m}}(s) T_{22}\left(\sigma_{\mathbf{p}_{m}}\right) \\
\tilde{T}_{\mathbf{q p}}(s) & =\frac{1}{(P-p-q)^{2}-m^{2}}+\int \frac{\mathrm{d}^{3} \ell}{(2 \pi)^{3}} \frac{1}{2 E_{\ell}} \frac{T_{22}\left(\sigma_{\ell}\right)}{(P-p-\ell)^{2}-m^{2}} \tilde{T}_{\ell \mathbf{q}}(s)
\end{aligned}
$$

- 3-body equation is of integral type; no K-matrix-type reduction.
- Three-body unitarity fully dictates the imaginary parts of the amplitude in the physical region.
\rightarrow dictates the divergences in finite volume.
\rightarrow How to relate excited baryons to lattice QCD simulations?

- Roper on lattice from BGR group [Lang et al., Phys.Rev. D95 (2017), 014510]

Three-body methods:

- Briceño, Hansen, Sharpe PRD96 (2017)
- Hammer, Pang, Rusetsky, arXiv: 1707.02176,

Data: HadronSpectrum (Dudek, PRD 2013,Briceño PRL 2016);
Analysis: M.D., B. Hu, M. Mai, arXiv 1610.10070
See also: Bolton, Briceno, Wilson, Phys.Lett. B757 (2016) 50
M. Mai, M.D., arXiv:1709.08222 [hep-lat]

Power-law finite-volume effects dictated by three-body unitarity

S-wave infinite volume vs. A_{1}^{+}finite volume

$$
(W=\sqrt{s})
$$

Phenomenology

The Julich-Bonn Dynamical Coupled-Channel Approach

e.g. EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions
The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

Jülich-Bonn approach (2)

- simultaneous fit of $\gamma p \rightarrow \pi^{0} p, \pi^{+} n, \eta p, K^{+} \Lambda \& \pi N \rightarrow \pi N, \eta N, K \Lambda, K \Sigma$
- ~ 40.000 data points, ~ 500 free parameters
\rightarrow fit with JURECA supercomputer: parallelization in energy ($\sim 300-400$ processes)

Kaon-photoproduction

Measurement of recoil polarization easier due to self-analysing decay of hyperons
\rightarrow more recoil and beam-recoil data available
\rightarrow possibility of finding new, so far missing states? ("missing resonances problem")

$N(1440)$ PHOTON DECAY AMPLITUDES AT THE POLE

$N(1440) \rightarrow p \gamma$, helicity-1/2 amplitude $A_{1 / 2}$

MODULUS ($\mathrm{GeV}^{-1 / 2}$)	PHASE (${ }^{\circ}$)	DOCUMENT ID		TECN	COMMENT
-0.044 ± 0.005	-40 ± 8	SOKHOYAN	15A	DPWA	Multichannel
$-0.054{ }_{-0.003}^{+0.004}$	5_{-5}^{+2}	ROENCHEN	14	DPWA	

Preliminary: $K^{+} \Lambda$ photoproduction in the JüBo model

simultaneous fit of $\gamma p \rightarrow \pi^{0} p, \pi^{+} n, \eta p, K^{+} \Lambda$ and $\pi N \rightarrow \pi N, \eta N, K \Lambda, K \Sigma$

$\gamma p \rightarrow K^{+} \Lambda:$

- Differential cross section

JU14: Jude PLB 735 (2014), MC10: McCracken PRC 81 (2010)

- Beam asymmetry

D. Rönchen et al., in progress
- Recoil polarization

MC04: McNabb PRC 69 (2004), MC10: McCracken PRC 81 (2010)

- Target asymmetry

Preliminary: $K^{+} \Lambda$ photoproduction in the JüBo model

simultaneous fit of $\gamma p \rightarrow \pi^{0} p, \pi^{+} n, \eta p, K^{+} \Lambda$ and $\pi N \rightarrow \pi N, \eta N, K \Lambda, K \Sigma$

$$
\gamma p \rightarrow K^{+} \Lambda:
$$

- C_{x}

BR07: Bradford PRC 75 (2007)

- O_{x}

LL09: Lleres EPJA 39 (2009)

- C_{z}

BR07: Bradford PRC 75 (2007)

- O_{z}

LL09: Lleres EPJA 39 (2009)

Influence of new CLAS data (Paterson et al. Phys. Rev. C 93, 065201 (2016))

Resonance content (preliminary)

Previous JüBo analyses of photoproduction:

- resonances included in studies of pion-induced reactions sufficient to describe $\gamma p \rightarrow \pi N, \eta N$
- no additional dynamically generated poles

Inclusion of $\gamma p \rightarrow K^{+} \Lambda$ in JüBo ("JuBo2017-1"): 3 additional states
$\left.\begin{array}{c|c|c|c|c|c|} & z_{0}[\mathrm{MeV}] & \frac{\Gamma_{\pi N}}{\Gamma_{\text {tot }}} & \frac{\Gamma_{\eta N}}{\Gamma_{\text {tot }}} & \frac{\Gamma_{K \Lambda}}{\Gamma_{\text {tot }}} & \frac{\Gamma_{K \Sigma}}{\Gamma_{\text {tot }}} \\ \hline \mathrm{N}(1900) 3 / 2^{+} & 1923-i 108.4 & 1.5 \% & 0.78 \% & 2.99 \% & 69.5 \% \\ \mathrm{~N}(2060) 5 / 2^{-} & 1924-i 100.4 & 0.35 \% & 0.15 \% & 13.47 \% & 27.02 \% \\ \hline \Delta(2190) \mathbf{1}^{-} 2^{+} & 2191-i 103.0 & 33.12 \% & & & 3.78 \% \\ \left(N(1730) 1 / 2^{-}\right. & 1731-i 78.73 & 1.86 \% & 1.30 \% & 56.43 \% & 1.11 \% \\ \left(N(1750) 1 / 2^{-}\right. & 1750-i 158.8 & 1.80 \% & 0.29 \% & 0.57 \% & 5.63 \%\end{array}\right)$

- $N(1900) 3 / 2^{+}$: s-channel resonances, seen in many other analyses of kaon photoproduction (BnGa), 3 stars in PDG
- $N(2060) 5 / 2^{-}$: dynamically generated, 2 stars in PDG, seen e.g. by BnGa
- $\Delta(2190) 3 / 2^{+}$: dyn. gen., no equivalent PDG state
- $N(1730) 1 / 2^{-}, N(1750) 1 / 2^{-}$: dyn. gen., no equivalent PDG state previous JüBo solutions: one dyn. $N(1750) 1 / 2^{-}$with $z_{0} \sim 1745-i 155 \mathrm{MeV}$

Spectrum of N* resonances

- Most new resonances by Bonn-Gatchina group; [Slide: V. Crede/Nstar 2017, slight modifications]
- Many from kaon photoproduction

FROST/CLAS

CLAS/JuBo (M. D., D. Rönchen), Phys.Lett. B755 (2016)

- First-ever measurement of observable E in η photoproduction, enabled through the FROST target

Is this a new narrow baryonic resonance?
\rightarrow Conventional explanation in terms of interference effects.

Statistical Aspects

Different models can give satisfactory fits. How do we determine the optimal one?
[J. Landay, M.D., C. Fernandez, B. Hu. R. Molina, PRC 2017]

$\left(\gamma p \rightarrow \pi^{0} p\right)$
All solutions pass Pearson's ChiSquared test.

Orange Solution- 23 parameters
Red Solution - 13 parameters

$$
\begin{aligned}
& \text { LASSO: } \\
& \chi^{2}=\chi_{\text {stat. }}^{2}+\lambda \sum_{i}\left|a_{i}\right|
\end{aligned}
$$

Predicted Region
Data: MAMI [Hornidge PRL 111 (2013)]
[PLB 750 (2015)]

Resonance selection

Form factors

Transition form factors @ CLAS 12

CLAS12

SAID group performed fits including all available pion electroproduction data

Transition Form Factors at the Pole

Common effort MAID/SAID/Zagreb/JuBo [Tiator, M.D., R. Workman, et al., PRC (2017)]

Pole: point of comparison for (unitary) chiral models \& lattice [Jido, M.D., Oset, PRC77 (2008); for lattice: A. Agadjanov, Bernard, Meissner, Rusetsky, NPB886 (2014)]

Said/Maid Results for $\Delta(1232) 3 / 2^{+}$

[Tiator, M.D., R. Workman, et al. PRC (2017)]

"Data points": Aznauryan et al.

Comparison with ChPT at the pole

data points: average MAID+SAID (2016)

Summary

- Light baryon spectrum below $\mathrm{W}=1.7 \mathrm{GeV}$ established
- New polarization data brings different analyses closer
- More focus on statistical aspects desirable
- Matching between meson vs. quark degrees of freedom in baryon models is still a challenge
- Realistic lattice QCD results on excited baryons require 3-body hadron dynamics and probably simulations close to physical quark masses

Spare slides

Spectrum of N* resonances

- Most new resonances by Bonn-Gatchina group; [Slide: V. Crede/Nstar 2017, slight modifications]
- Many from kaon photoproduction
[See also: Crede, Roberts, Rep. Prog. Phys. 76 (2013)]

Experimental studies of hadronic reactions: major progress in recent years
Photoproduction: e.g. from JLab, ELSA, MAMI, GRAAL, SPring-8

source: ELSA; data: ELSA, JLab, MAMI

- enlarged data base with high quality for different final states
- (double) polarization observables
\rightarrow alternative source of information besides $\pi N \rightarrow X$
\rightarrow towards a complete experiment: unambiguous determination of the amplitude (up to an overall phase)

Electroproduction: e.g. from JLab, MAMI, MIT/Bates

- electroproduction of $\pi N, \eta N, K Y, \pi \pi N$
- access the Q^{2} dependence of the amplitude, information on the internal structure of resonances

Resonances or not?

A2 MAMI, PRL 118 (2017)

Using ONLY meson-baryon degrees of freedom (no explicit quark dynamics):

Manifestly gauge invariant approach based on full BSE solution

[M. Mai, P.C. Bruns, U.-G. Meissner PRD 86 (2012) 094033 [arXiv:1207.4923]

Gauge invariance

- Exact unitary meson-baryon scattering amplitude T with parameters, fixed to reproduce:
- πN-partial wave S_{11} and S_{31} for $\sqrt{s}<1560 \mathrm{MeV}$

Arndt et al. (2012)

- $\pi^{-} p \rightarrow \eta n$ differential cross sections

> Prakhov et al. (2005)

II. $E_{0+}(\pi N)$ to be compared with SAID and MAID2007 analyses:

\rightarrow Making the "Missing resonance problem" worse ?!

Visible influence of new states

$N(1900) 3 / 2^{+}, N(2060) 5 / 2^{-}$in $\sigma_{\text {tot }}$ in $\pi^{-} p \rightarrow K^{+} \Sigma^{-}$

Analyzed reactions (incomplete)

- Bonn-Gatchina: $(\pi N \rightarrow \pi N), \rightarrow \eta N, K \Lambda, K \Sigma, \pi \pi N, \omega N$

$$
\begin{aligned}
& \gamma p \rightarrow \pi N ; \rightarrow \eta N, K \Lambda, K \Sigma, \pi \pi N, \omega N, \eta^{\prime} N \\
& \gamma n \rightarrow \pi N
\end{aligned}
$$

- Giessen: $(\pi N \rightarrow \pi N), \rightarrow \eta N, K \Lambda, K \Sigma,(\pi \pi N), \omega N$

$$
\gamma p \rightarrow \pi N ; \rightarrow \eta N, K \Lambda, K \Sigma, \omega N
$$

- SAID: $\quad \pi N \rightarrow \pi N ; \rightarrow \eta N, \gamma p \rightarrow \pi N, \gamma n \rightarrow \pi N ; \gamma^{*} p \rightarrow \pi N$
- MAID: $\quad(\pi N \rightarrow \pi N) ; \gamma p \rightarrow \pi N,(\rightarrow \eta N, \rightarrow K \Lambda), \gamma n \rightarrow \pi N ; \gamma^{*} p \rightarrow \pi N$
- ANL-Osaka: $(\pi N \rightarrow \pi N), \rightarrow \eta N, K \Lambda, K \Sigma, \pi \pi N$

$$
\gamma p \rightarrow \pi N ; \rightarrow \eta N, K \Lambda, \pi \pi N ;\left(\gamma^{*} p \rightarrow \pi N\right)
$$

Note refit in [Kamano, Nakamura, Lee, Sato, PRC 94 (2016)]

- Jülich-Bonn: $(\pi N \rightarrow \pi N), \rightarrow \eta N, K \Lambda, K \Sigma$

$$
\gamma p \rightarrow \pi N ; \rightarrow \eta N, K \Lambda
$$

- JLAB-MSU: $\gamma^{*} N \rightarrow \pi \pi N$

Amplitude parametrization

Disp. rel. (Aznauryan, Burkert,..) KT equations, t-channel analyticity; Restoration of crossing symmetry via dispersion relations (Aitchison, Kubis, Szczepaniak, Tiator)

Non-factorizing Integral-equation implementation of amplitude

- Giessen

$T=V+V G T$,

Genuine Resonance:

Unitarity loop G:

- Re G $\rightarrow 0$: K-matrix
- V point-like: SAID Integral equation: Julich-Bonn, ANL-Osaka

Input parameters and their stability

Eur. Phys. J. A (2013) 49: 44

Force bare mass of $\Delta(1600)$ to fixed value; refit full data base $\pi \mathbf{N} \rightarrow \pi \mathbf{N}, \eta \mathbf{N}, \mathrm{K} \bar{\Lambda}, \mathrm{K} \boldsymbol{\Sigma}$

Amplitude parametrization
 below threshold?

Disp. rel. (Aznauryan, Burkert,..) KT equations, t-channel analyticity; Restoration of crossing symmetry via dispersion relations (Aitchison, Kubis, Szczepaniak, Tiator, ...)
\qquad

Explicit resonance	Yes	Yes	No	(Yes)	Yes	Yes/No
Terms?						
Analyticity (math.)	No	Yes	Yes	Yes	Yes	Yes
Analyticity (disp.)	No	No/Yes	Yes			Yes

Effective $\pi \pi N$?

Analytic structure

Resonance states: Poles in the T-matrix on the $2^{\text {nd }}$ Riemann sheet

$$
\operatorname{Re}\left(E_{0}\right)=" m a s s ",-2 \operatorname{lm}\left(E_{0}\right)=" \text { width" }
$$

- (2-body) unitarity and analyticity respected
- 3-body $\pi \pi N$ channel:
- parameterized effectively as $\pi \Delta, \sigma N, \rho N$
- $\pi N / \pi \pi$ subsystems fit the respective phase shifts
- pole position E_{0} is the same in all channels
- residues \rightarrow branching ratios

\rightarrow branch points move into complex plane

Unitarity above breakup

(b)

Bound-state particle scattering requires only comparing these.
Three-body unitarity for isobars only proven for bound statespectator scattering
[Aaron, Amamdo, Young, PR (1969)]
\rightarrow Proof above breakup needed!

(3a)

$>{ }^{-}\left(-T^{-}\left(B^{+}-B^{-}\right]\right) \tau^{+}$

- Match Ansatz to unitarity
- Determine three-body amplitude
- Consistency of matching relations shown.
- Proof finished

Finite volume spectrum

- Spinless particles; isobar S-wave decay

- Isobar-spectator in A_{1}
- Organization of amplitude in shells $|\mathbf{p}|=n$
- Each blue line is a transition from shell $\mathrm{i} \leftrightarrow \mathrm{j}$ (i,j=0, .., 8)
- Genuine three-body poles in $T(3 \rightarrow 3)$ give the finite-volume eigenvalues
- Green lines are free 3-body energies

Fit to world data on $\pi N \rightarrow \pi N, \eta N, K \Lambda, K \Sigma$ ($\sim 10^{5} \exp$. points) [Rönchen, M.D. et al., EPJA 49 (2013)]

Selected results for $\pi^{-} p \rightarrow K^{0} \Lambda$ [almost complete experiment]

Re-measuring hadron-induced reactions

Fits: D. Rönchen, M.D., et al., EPJ A49 (2013)

\rightarrow Physics Opportunities with meson beams, Briscoe, M.D., Haberzettl, Manley, Naruki, Strakovsky, Swanson, EPJ A51 (2015)

Improvement in Modern Experimental Facilities: $\pi N \rightarrow \pi N$

EPECUR \& GWU/SAID, Alekseev et al., PRC91, 2015

Black: WI08 prediction; Red: WI14 fit; green: KA84.

SAID Analysis of New Data

FIG. 2. $\pi^{-} p$ elastic scattering. Red solid lines correspond to the present calculations. Dashed lines lines are the XP15 solution.

Fit (no K $\Sigma, K \wedge$ channel)

Dashed Line

Fit including $K \Sigma, K \wedge$ channels

Solid Line

Narrow structures largely accounted for by threshold cusp effects.

Phys Rev C93 (2016) 062201

How to decide best value of λ ?

$$
\begin{array}{rlrl}
A I C & =2 k+\chi^{2} & \begin{array}{l}
k: \text { Number of parameters } \\
n: \text { Number of data points }
\end{array} \\
A I C c & =A I C+\frac{2 k(k+1)}{(n-k+1)} & &
\end{array}
$$

Lasso Example: Fit to data from toy model with known best

 parameters

Resonance selection

[M.D., J. Landay, H. Haberzettl, M. Mai, K. Nakayama, in progress]
Synthetic data with hidden resonances

Total cross section + diff cs (not shown) + Polarization P (not shown) assuming Reaction kinematics of $K^{-} p \rightarrow K \Xi$

LASSO is capable of setting coefficients exactly to zero

$$
\sum_{i=1}^{n} \underbrace{\frac{\left(y_{i}-f\left(x_{i}, \beta_{j}\right)\right)^{2}}{\sigma_{i}^{2}}}_{\text {Normal } x^{2}}+\underbrace{\lambda}_{\text {LAsso }} \underbrace{m=1}_{\text {Penaly Term }}\left|\beta_{j}\right|
$$

$\hat{\beta}_{i}$: Best parameters without penalty
$\beta_{i}=0$: Best parameters only penalty

Ridge Regression

(Least Absolute Shrinkage and Selection Operator LASSO)

Toy Model Results

- Generate data from a toy model using a 9 parameter model (2 real Swaves, 1 imaginary S-wave, and 2 real $P_{1,2,3}$-waves shown in blue
- LASSO (red) eliminates 36 parameters from a 46 parameter fit (orange) and reconstructs the true solution (blue) quite accurately
- LASSO sets all imaginary parts of Pwaves and D- waves correctly to 0
- LASSO solution predicts true solution quite accurately beyond the fitted $\mathrm{W}_{\text {max }}=1120 \mathrm{MeV}$

Model selection with real data

46 parameter fit
10 parameter fit
SE Extraction: D. Hornidge et al. Phys. Rev. Lett. 111, 062004(2013) SE Extraction: S. Schumann et al, Phys. Lett. B 750, 252 (2015).
\rightarrow Selection of relevant partial waves in fit of scarce lattice QCD data

Electroproduction - SAID

- Energy dependent SM08 and associated SES \& SQS
- $W=1080-2000 \mathrm{MeV}$
$Q^{2}=0-6 \mathrm{GeV}^{2}$
- PWs = 60 [multipoles]
[J < 6]
- Prms = 171
- Constraint: JN + Pion Photo PWAs [no theoretical input]

Details $3 \rightarrow 3$ formalism

$$
\begin{aligned}
&\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}(s)\left|p_{1}, p_{2}, p_{3}\right\rangle=\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}_{c}(s)\left|p_{1}, p_{2}, p_{3}\right\rangle+\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}_{d}(s)\left|p_{1}, p_{2}, p_{3}\right\rangle \\
&=\frac{1}{3!} \sum_{n=1}^{3} \sum_{m=1}^{3} v\left(q_{\bar{n}}, q_{\bar{n}}\right) \hat{T}\left(q_{n}, p_{m} ; s\right) v\left(p_{\bar{m}}, p_{\overline{\bar{m}}}\right) \\
&:=\frac{1}{3!} \sum_{n=1}^{3} \sum_{m=1}^{3} v\left(q_{\bar{n}}, q_{\overline{\bar{n}}}\right)\left(\tau\left(\sigma\left(q_{n}\right)\right) T\left(q_{n}, p_{m} ; s\right) \tau\left(\sigma\left(p_{m}\right)\right)-2 E\left(q_{n}\right) \tau\left(\sigma\left(q_{n}\right)\right)(2 \pi)^{3} \delta^{3}\left(\mathbf{q}_{n}-\mathbf{p}_{m}\right)\right) v\left(p_{\bar{m}}, p_{\bar{m}}\right) \\
& T(q, p ; s)=B(q, p ; s)-\int \frac{\mathrm{d}^{3} \boldsymbol{l}}{(2 \pi)^{3}} B(q, l ; s) \frac{1}{2 E(l) D(\sigma(l))} T(l, p ; s) \\
& \frac{1}{\tau(\sigma(l))}=\sigma(l)-M_{0}^{2}-\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \frac{\lambda^{2}\left(f\left(4 \boldsymbol{k}^{2}\right)\right)^{2}}{2 E(k)\left(\sigma(l)-4 E(k)^{2}+i \epsilon\right)} \\
& B(q, p ; s)=-\frac{\lambda^{2} f\left((P-q-2 p)^{2}\right) f\left((P-2 q-p)^{2}\right)}{2 E(q+p)(W-E(q)-E(p)-E(q+p)+i \epsilon)}
\end{aligned}
$$

Which role do other "diagrams" play?

- Preferable to think in on-shell amplitudes ($2 \rightarrow 2$ and $3 \rightarrow 3$), not in "diagrams"; if one still insists:

Genuine 3-body force

Non-local but real interaction

Part of isobar Insertion (d)

Cancellation mechanism of 2-body poles

$2 \rightarrow 2$ boosted eigenvalues In principle present

- Where is the $3 * N(1710)$?
[S. Ceci, M.D. et al, PRC84, 2011]

- Roper pole $+\pi \Delta$ branch point \rightarrow non-standard resonance shape.
- See results by GWU/SAID data analysis center.

Fit of a model without ρN branch point (CMB type) [solid lines] to the Jülich amplitude [dashed lines]

- CMB fit to JM has pole at 1698-130i MeV, simulates missing branch point.
- Inclusion of full analytic structure important to avoid false pole signals in baryon spectroscopy.

Toward Data-driven Analyses

[M.D., Revier, Rönchen, Workman, arXiv:1603.07265, PRC 2016]

- Multi-channel analyses to detect faint resonance signals
- All groups use GW/SAID partial waves for $\pi N \rightarrow \pi N$
- The chi-square obtained in fits to single-energy solutions is not related to chi-square of a fit to data \rightarrow Statistical interpretation of resonance signals difficult.
- Provide online covariance matrices etc. to allow other groups to perform correlated chi-square fits.

Slight adaptation of their code allows other groups to obtain a χ^{2} (almost) as if they fitted to $\pi N \rightarrow \pi N$ directly.

$$
\begin{aligned}
& \chi^{2}(\mathbf{A})=\chi^{2}(\hat{\mathbf{A}})+(\mathbf{A}-\hat{\mathbf{A}})^{T} \hat{\Sigma}^{-1}(\mathbf{A}-\hat{\mathbf{A}}) \\
&+\mathcal{O}(\mathbf{A}-\hat{\mathbf{A}})^{3} \\
& \text { Covariance matrices etc. can be downloaded } \\
& \text { on the SAID and JPAC web pages. }
\end{aligned}
$$

$$
S=\mathbb{1}+i T
$$

Unitarity: $S S^{\dagger}=1 \Leftrightarrow-i\left(T-T^{\dagger}\right)=T T^{\dagger}$

- 3-body unitarity:
discontinuities from t-channel exchanges
\rightarrow Meson exchange from requirements of the S-matrix

Other cuts

- to approximate left-hand cut \rightarrow Baryon u-channel exchange
- σ, ρ exchanges from crossing plus analytic continuation.

$\vec{q}=\overrightarrow{p_{1}}-\overrightarrow{p_{3}}$

$\vec{q}=\vec{q}_{1}-\vec{p}_{4}$

$$
\vec{q}=\vec{p}_{1}+\vec{p}_{2}=0
$$

Amplitude reconstruction from complete experiments and

 truncated partial-wave expansions[Workman, Tiator, Wunderlich, M.D., H. Haberzettl, PRC (2017)]

How do complete experiment and truncated partial wave complete experiment compare. Depending on which partial-wave content is admitted in the amplitude?

Set	Included Partial Waves	CEA	TPWA	Complete Sets for TPWA
1	$L=0\left(E_{0+}\right)$	1(1)	1(1)1	$I[1]$
2	$J=1 / 2\left(E_{0+}, M_{1-}\right)$	4(4)	$\begin{aligned} & 4(4) 1 \\ & 4(3) 2 \end{aligned}$	$\begin{aligned} & I[1], \check{P}[1], \check{C}_{x}[1], \check{C}_{z}[1] \\ & I[2], \check{P}[1], \check{C}_{x}[1] \end{aligned}$
3	$L=0,1\left(E_{0+}, M_{1-}, E_{1+}\right)$	6(6)	$\begin{aligned} & 6(6) 1 \\ & 6(4) 2 \\ & 6(3) 3 \end{aligned}$	$\begin{aligned} & I[1], \check{\Sigma}[1], \check{T}[1], \check{P}[1], \check{F}[1], \check{G}[1] \\ & I[2], \check{\Sigma}[1], \check{T}[2], \check{P}[1] \\ & I[3], \check{\Sigma}[1], \check{T}[2] \end{aligned}$
4	$L=0,1\left(E_{0+}, M_{1-}, E_{1+}, M_{1+}\right)$ full set of $4 S, P$ wave multipoles	\dagger	$\begin{aligned} & 8(5) 2 \\ & 8(4) 3 \\ & \hline \end{aligned}$	TPWA at 1 angle not possible $\begin{aligned} & I[2], \check{\Sigma}[1], \check{T}[2], \check{P}[2], \check{F}[1] \\ & I[3], \check{\Sigma}[1], \check{F}[2], \check{H}[2] \end{aligned}$
5	$L=0,1,2\left(E_{0+}, M_{1-}, E_{1+}, E_{2-}\right)$	8(8)	$\begin{aligned} & 8(8) 1 \\ & 8(4) 2 \\ & 8(3) 3 \end{aligned}$	$\begin{aligned} & I[1], \check{\Sigma}[1], \check{T}[1], \check{P}[1], \check{F}[1], \check{G}[1], \check{C}_{x}[1], \check{O}_{x}[1] \\ & I[2], \check{\Sigma}[2], \check{T}[2], \check{P}[2] \\ & I[3], \check{\Sigma}[2], \check{T}[3] \end{aligned}$
6	$J \leq 3 / 2\left(E_{0+}, M_{1-}, E_{1+}, M_{1+}, E_{2-}, M_{2-}\right)$	\dagger	$\begin{aligned} & 12(5) 3 \\ & 12(4) 4 \end{aligned}$	TPWA at 1 or 2 angles not possible $\begin{aligned} & I[3], \check{\Sigma}[2], \check{T}[3], \check{P}[2], \check{F}[2] \\ & I[4], \check{\Sigma}[2], \check{F}[3], \check{H}[3] \end{aligned}$
7	$L=0,1,2\left(E_{0+}, \ldots, M_{2+}\right)$ full set of $8 S, P, D$ wave multipoles	\dagger	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} 16(6) 3 \\ 16(5) 4 \end{array}\right. \\ \hline 16(4) 5 \end{array}$	$\begin{aligned} & \text { TPWA at } 1 \text { or } 2 \text { angles not possible } \\ & I[3], \check{\Sigma}[3], \check{T}[3], \check{P}[3], \check{F}[3], \check{G}[1] \\ & I[4], \check{\Sigma}[3], \check{T}[3], \check{P}[3], \check{F}[3] \\ & \hline I[5], \check{\Sigma}[3], \check{F}[4], \check{H}[4] \quad \text { Four are } \end{aligned}$

Order: \# of different measurements, \# of different observables \# of different angles

Connecting Theory and Phenomenology at the pole

T.A. Gail and T.R. Hemmert, Eur. Phys. J. A 28 (2006).

Lattice: Agadjanov, Bernard, Meißner, Rusetsky, Nucl. Phys. B 886 (2014)

New High-precision πN data

Data: EPECUR Analysis: SAID (dashed) Gridnev (solid) ArXiv: 1604.02379

Sharp structures seen in EPECUR data are largely accounted for by channel-coupling ($K \Sigma$) leaving less room for narrow resonance candidates.

In general:
Hadronic data serves as "input" for many PWAs!

$$
\begin{aligned}
& \begin{array}{c}
\tilde{A}_{\text {pole }}^{h}=A_{\text {pole }}^{h} e^{i \vartheta^{h}} \\
h=1 / 2,3 / 2
\end{array} \quad \tilde{A}_{\text {pole }}^{h}=I_{F} \sqrt{\frac{q_{p}}{k_{p}} \frac{2 \pi(2 J+1) \mathrm{E}_{0}}{m_{N} \mathrm{r}_{\pi N}}} \operatorname{Res} A_{L \pm}^{h} \\
& I_{F}: \text { isospin factor } \\
& q_{p}\left(k_{p}\right) \text { : meson (photon) momentum at the pole } \\
& J=L \pm 1 / 2 \text { total angular momentum } \\
& E_{0} \text { : pole position } \\
& r_{\pi N} \text { : elastic } \pi N \text { residue }
\end{aligned}
$$

$\mathrm{fit} \rightarrow$		$A_{\text {pole }}^{1 / 2}$		$\vartheta^{1 / 2}$		$A_{\text {pole }}^{3 / 2}$		$\vartheta^{3 / 2}$	
		$\left[10^{-3} \mathrm{GeV}^{-1 / 2}\right]$		[deg]		$\left[10^{-3} \mathrm{GeV}^{-1 / 2}\right]$		[deg]	
		1	2	1	2	1	2	1	2
$N(1710) 1 / 2^{+}$		15	28_{-2}^{+9}	13	77_{-9}^{+20}				
$\Delta(1232) 3 / 2^{+}$		-116	-114_{-3}^{+10}	-27	-27_{-2}^{+4}	-231	$-229+3$	-15	$-15_{-0.4}^{+0.3}$

Fit 1: only single polarization observables included
Fit 2: also double polarization observables included

FROST/CLAS (I)

The E-observable in charged-pion photoproduction
CLAS/BnGa/JuBo/SAID, PLB 750 (2015)

\rightarrow Significant impact on resonance parameters/
New resonance (BnGa) [$\Delta(2200) 7 / 2^{-}$], arXiv: 1503.05774

Data: Akondi et al. (A2 at MAMI) PRL 113, 102001 (2014)

-=-=- prediction
fit

Beam	Target	Recoil
0	$+y$	0
0	$-y$	0

Beam	Target	Recoil
+1	$+x$	0
-1	$+x$	0

Older, more incomplete Chiral unitary prediction
[Jido, M.D., Oset, PRC77 (2008)]

Input parameters and their stability

Eur. Phys. J. A (2013) 49: 44

Force bare mass of $\Delta(1600)$ to fixed value; refit full data base $\pi \mathbf{N} \rightarrow \pi \mathbf{N}, \eta \mathbf{N}, \mathrm{K} \bar{\Lambda}, \mathrm{K} \boldsymbol{\Sigma}$

How to quantify the impact of new measurements?

Consider correlations of helicity couplings extracted from experiment

Results from analysis of world data of η photoproduction
[M.D., D. Sadasivan, in preparation]

Here $A=|A| e^{i \phi}$ defined at the resonance pole.

Bulk properties of uncertainties from different data sets

Helicity Coupling	All	No E	No F	No T	No Σ
Number of Data Points	6425	6369	6281	6281	6022
Generalized Variance	0.0494	0.0521	0.1288	0.1239	6.664
$\sqrt{\operatorname{Tr} C}$	10.4965	10.51	12.00	11.423	19.85
Multicollinearity	8.173	8.203	9.280	9.5323	10.371
Condition number	133.61	132.10	173.664	164.1	322.66

C=Covariance Matrix

Generalized Variance
= Det[C] ~Volume of the Error Ellipsoid

Helicity Coupling	No artificial data	Cx	Cz	Cx and Cz
Number of Data Points	6425	6569	6569	6713
Generalized Variance	0.0494	0.03758	0.0362	$\underline{0.0132}$
$\sqrt{\operatorname{Tr} C}$	10.4965	10.72	10.487	10.102
Multicollinearity	8.173	7.599	6.770	6.157
Condition number	133.61	112.47	109.69	107.683

- Allows to trace quantitatively the impact of data sets and observables
- Helpful in design of new measurements
- Correlations allow to assess quality of theory predictions

The Jülich approach - Principles from scattering theory
[M.D., Haberzettl, Hanhart, Huang, Krewald, Meißner, Nakayama, Rönchen]

Field-theoretical approach; TOPT unitarized; implemented on supercomputers. Example:

$$
\gamma \mathrm{N}(\pi \mathrm{~N}) \rightarrow \mathrm{K} \Sigma
$$

