Deep Virtual Exclusive Scattering and Spectator Tagging at an Electron Ion Collider

ructure. Excitations. Interactions

Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions November 2-3, 2017 Jefferson Lab • Newport News, VA

Charles Hyde Old Dominion University Norfolk VA Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions 2-3 November 2017, Newport News, VA

Why an EIC, and Why Now? I. Theory

- We are on the cusp of revolutionary advances in our understanding of the QCD structure of matter
 - Lattice QCD •
 - At the physical pion mass
 - Two- and Three-Body continuum
 - Effective Field Theory, in q-g and hadronic d.o.f.
 - Predictive Dyson Schwinger Equation calculations •
 - New QCD concepts (light-cone matrix elements):
 - 3-dimension imaging (2-space⊗momentum, 3-momentum)
 - Wigner functions (Diffractive di-jet production?)

- The EIC will extend the QCD program of JLab, RHIC, COMPASS, LHC, PANDA, JPARC... with unprecedented capabilities:
 - Doubly polarized ep, eD*, e³He, e⁶Li*, e⁷Li collisions (*JLEIC only)
 - No target dilution;
 - Ion species from D to U
 - Full reconstruction of Nuclear Final state
 - Integrate detector with accelerator lattice
 - Incident ion ^AZ has momentum per nucleon (ZP₀/A).
 - Fragment ^{A'}Z' has momentum per nucleon \approx (A'/Z') (ZP₀/A)

Why an EIC, and Why Now ? II. Experiment/Technology

• No transverse B-field to disrupt beams, or coils to block scattered particles

DIS Facilities: Past, Present, Future

EIC box includes different baseline and staging designs.

RF Upgrades to RHIC "Rapid cycling synchrotron" injector to electron storage ring.

C. Hyde

eRHIC

Parameters for maximal luminosity

Parameter	units	No Ion cooling	Coheren Electron Cooling
Momentum (Electron)	GeV/c	1	5
Momentum (Proton, Ion)	GeV/c, GeV/c/ u	275 137/u(N=Z),	(p), 110/u(N>Z
Crossing angle	mrad	2	2
Collision f	MHz	29	110
Luminosity	10 ³³ /cm ² /s	3	10

5

Novel Figure-8 Ring for polarization control Only solution allowing polarized deuterons (vector and tensor) CEBAF as full energy electron injector Fixed target program can continue

JLEIC

Parameter	units	maximal Lumi	mo er
Momentum (Electron)	GeV/c	5	
Momentum (Proton, Ion)	GeV/c, (GeV/c)/ u	100 50/u(N=Z))(p), , 40/u
Crossing angle	mrad	Ę	50
Collision f	MHz	497	
Luminosity	10 ³³ /cm ² /s	20	

10

110

6

Four EIC Detector Concepts

JLEIC Full Acceptance Detector Flux-return Fluxcoils Flux return yoke return Modular (muon chambers?) coils Hcal aerogel (iron) RICH solenoid coil (1.5 - 3 T) EMcal (Sci-Fi) PWO₄ **EMcal DIRC & TOF** Vertex (Si pixel) **GEM** trackers **Central tracker** Dual-Dipole (low-mass DC) radiator with field RICH exclusion EMca for e-beam ອອຍູ່ ອີຍູຊິກ ອີຍູຊິກ ອີຍູຊິກ ອີຍູຊິກ Endcap GEM trackers (top view) S 2 m 5 m 3.2 m central barrel electron endcap hadron endcap

ePHENIX, based on BaBAR Solenoid

C. Hyde

JLab Users Group 2017

Brookhaven *eA* Solenoidal Tracker **BeAST** detector layout $-3.5 < \eta < 3.5$: Tracking & e/m Calorimetry (hermetic coverage) e/m calorimeters 9.0m hadrons electrons GEM trackers 3T solenoid cryostat silicon trackers TPC magnet yoke Jul,8 2016 11/34

+eSTAR

ANL SiEIC **Particle FLow HCal**

- DVCS: ep—> ep γ : ef², gluons
- Deep Virtual ϕ :
- Gluons dominate with 10-20% s-quark interference at modest x • Strong Sudakov corrections for $Q^2 < 10 \text{ GeV}^2$ (Goloskokov & Kroll) • J/Psi: Gluons (intrinsic charm at high-x?)
- Pseudo Scaler mesons: Higher twist DA (instanton effects) and Nucleon transversity for $Q^2 < 10 \text{ GeV}^2$ (new data from Hall A, B)
- ρ , ω -meson, flavor sensitivity, mechanism unclear at modest Q²
 - strong violation of SCHC in JLab, HERMES data.
 - $\sigma_T/\sigma_I \gtrsim 10\%$ in HERA data for $Q^2 \leq 20$ GeV²

Imaging Quarks & Gluons in the Nucleon and in Nuclei

Deeply Virtual Compton Scattering on the Proton: Transverse Imaging vs x_B

- Tagging the recoil protons over the full momentum range is essential for precision imaging
- Repeat with longitudinally and transversely polarized beam

Detector Requirements: DVCS on the Proton(also π^{0} and η)

- Exclusivity: $p(e,e'\gamma p)$ triple coincidence (or N* \rightarrow N π veto) veto neutron in ZDC or proton with $p/p_0 \leq M/M^*$
- Imaging:
 - $t = \Delta^2$ resolution requires dispersive focus at Roman Pots. Measure $\Delta = (p'-p)$ [better resolution than $\Delta = (k-k'-q')$].
- Full proton detection acceptance to "Beam-Stay-Clear (BSC)" limit of ~10× beam rms emittance:
 - JLEIC: $\theta_p > 3 \text{ mrad OR } |\Delta p_L/p_0| \approx x_{Bj} > 0.003$

JLEIC Full Acceptance Detector

eRHIC Interaction Region Optics

 Spectator protons in RP1,2
DVCS Recoil protons in RP3,4

Deep Virtual Vector Meson Production

- p(e,e'V)X:
 - states: $\rho \rightarrow \pi^+ \pi^-, \phi \rightarrow K^+ K^-$
- Tagging/Veto required for exclusivity

• Reconstruct $t = \Delta^2 = (k - k' - p^-)^2$ from charged particle final

• $\omega \rightarrow \pi^+ \pi^- \pi^0$ constraint on ω mass refines ω momentum resolution.

DIS, DVES with Neutrons JLab LDRD, C.Weiss, et al.

• $P_R=0$ spectator proton (D rest frame) $\Rightarrow P_R = P_0/2$ forward proton in collider frame

K.Park, JLEIC systematic & statistical errors

 Deuteron Momentum Distribution D rest frame $\Rightarrow P_{S} = [M(\alpha - 1)/2, p_{T}]$ $\Rightarrow P_S = [M(\alpha - 1)/2, p_T]$ Collider frame • $-t' = M_N^2 - (P_D - P_R)^2 \ge 0$

Polarized DIS

The EMC Effect in the Deuteron

- Measure on-shell neutron by extrapolation at small $|\alpha-1|$
- Measure interacting neutron at large |α-1|

Deep Inelastic Scattering (DIS)

Incoherent Diffraction on D, ³He,...

 A clean probe of QCD structure of multinucleon dynamics

Only low energy NN, NNN FSI

• Event-by-event measurement of relative momentum of *np* pair (from D) or npp from ³He

Diffraction & Shadowing

X: small color neutral system No FSI with NN!

DVES on Nuclei

- Precision charge densities measured in 1970s
- "Neutron Skin" of heavy nuclei has implications for nuclear equation of state & neutron star structure.
 - $p/n \cong u$ -quark / d-quark
 - ρ, ω : DVES amplitude has charge weight $e_u \neq e_d$.
 - q + q-bar
- Gluon profiles of nuclei from J/Ψ and ϕ

Deeply Virtual Vector Meson Production on Nuclei

- High resolution reconstruction of |t| from e.g. (e,e' K^+K^-) kinematics.
 - Coherent nuclear recoil is unresolvable: lost in 10σ -BSC.
 - Dedicated 10% of run at large β^* (small beam P_{\perp})
- Excitation of bound-states will wash out minima of coherent scattering.
 - Doubly-magic nuclei, γ -decay energies are large

208Pb(e,e') & DVES

- If bound-excited states are not resolved, they smooth out the diffraction pattern. 3-(2.6MeV), 5-(3.2 MeV), 2+(4.1MeV), 4+(4.3MeV)
- In DVES@EIC, γ -cascade boosted (×40 JLEIC, ×100 eRHIC)
- High Resolution (PbWO₄) forward EMCal can veto (~50% acceptance) $E_{\gamma} > 100 \text{ MeV}.$
 - Backgrounds?

0.001, and for the 8^+ level a factor of 0.00003.

10⁴

10²

10⁻¹

10⁻²

10⁻³

10⁻⁴

10⁻⁵

 165 Institutions • 719 Members • Join us! Theorists, Accelerator Physics welcome!

Concluding Comment:

An arbitrary JLEIC Run-Plan (similar for eRHIC)

- Neither time- nor priority-ordered.
- 2 run periods per year
- 15 years for 'base program'

Luminosity is important, even for "low luminosity physics"

Species	e/A Energy/u	lon Pol	Run Periods
ер	10 x 100	L & T	2
	5 x 100	L & T	4
	10 x 40		1
e d	10 x 50	L & T	4
e ³ He	10 x 75?	L & T	3
e ⁴ He	10 x 50		1
e ⁹ Be	10 x 40		1
e ¹² C	10 x 50		1
e ⁴⁰ Ca	10 x 50		1
e ⁴⁸ Ca	10 x 40		1
e ¹²⁰ Sn	10 x 40		1
e ²⁰⁸ Pb	10 x 40		1
e ²³⁸ U	10 x 40		1
Positrons			8
Total			30