N* transition form factors from the ANL-Osaka dynamical coupled-channels analysis of meson electroproductions

Hiroyuki Kamano (KEK)

Workshop on "Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions" Jefferson Lab, Newport News, VA, USA, November 2-3, 2017

Current trends in N* spectroscopy

N* & Δ * resonances below Re(M_R) ~ 1.7 GeV have been established !!

[One exception: Roper-like state of Δ (Δ (1600)3/2⁺ in PDG notation)]

- Establishing spectrum of high-mass N* & Δ* resonances [Re(M_R) > 1.7 GeV]
- "Complete" experiments for photoproduction reactions (ELSA, JLab, LEPS, MAMI,...)
- ✓ High-statistics measurements of pion-induced reactions: $πN \rightarrow ππN$, KΛ, KΣ,... (GSI, J-PARC,...)

- 2) Clarifying substructure of well-established N* & Δ^* resonances
- Electroproduction reactions (Q²>0 region) (JLab,...)
- Lepton-pair/baryon-pair productions (Q²<0 region) (Belle, BES, GSI,...)

Electromagnetic transition form factors: Key element of N* & Δ* substructure studies

e.m. N* transition form factor

e.g.) Roper resonance from DCC models (at long distance scales)

 "core" + meson cloud Suzuki et al., PRL104(2010)042302
meson-baryon molecule-like state Ronchen et al., EPJA49(2013)44
Further constraints provided by the e.m. transition form factors could judge the substructure of the Roper resonance !! [e.g., Segovia et al, PRL115(2015)171801]

(NOTE: obtained with πN analyses)

Electromagnetic transition form factors: Key element of N* & Δ* substructure studies

Dynamical coupled-channels (DCC) model for meson production reactions

ANL-Osaka DCC approach to N* and Δ*

Analysis of electroproduction reactions to determine N-N* e.m. transition form factors

Analysis of single-pion electroproduction reactions

cosθ

Resonance parameters defined by poles of scattering amplitudes

PROPER definition of

- ✓ Transition amplitudes between resonance and multi-particle states
- ✓ Hadron resonance masses (complex) → Pole positions of scattering amplitudes in the lower-half of complex-W plane
 - \rightarrow ~ Residues^{1/2} at the pole

Residue at the pole

Resonance theory based on Gamow vectors: [G. Gamow (1928), R. E. Peierls (1959), ...]

"Quantum resonance state is an (complex-)energy eigenstate of the *FULL* Hamiltonian of the *underlying theory* solved under the Purely Outgoing Boundary Condition (POBC)."

Energy eigenvalue

Transition matrix elements between \sim Residues^{1/2} at the pole resonance and multi-particle states

pole energy

See, e.g., R. de la Madrid, NPA812(2008)13;962(2017)24;arXiv:quant-ph/0201091

Electromagnetic transition form factors evaluated at resonance pole

- Evaluated at resonance pole position.
 - Form factors inevitably become complex (fundamental nature of decaying particles).

✓ All three dynamical model analyses show a rather convergent results.
→ Δ(1232)3/2⁺ e.m. transition form factors (pole definition) seem well established.

"Pion cloud" contribution

Electromagnetic transition form factors evaluated at resonance pole

Roper resonance [N(1440)1/2+]

✓ Imaginary part is small.

→ Real part & BW results show similar behavior.

 "w/o pion cloud" shows similar behavior to LFRQM and DSE.

NOTE: Form factors are REAL within Breit-Wigner (BW) analyses & static hadron models.

Summary

- Presented current status for 1π electroproduction analysis based on ANL-Osaka DCC approach in the kinematical region of Q² < 6 GeV² & W < ~2 GeV.
- Presented preliminary results of Δ(1232)3/2⁺ & N(1440)1/2⁺ electromagnetic transition form factors defined by poles.
 - Δ(1232)3/2⁺ form factors:
 - Results from different dynamical models agree very well (particularly for A3/2 & A1/2)
 - \rightarrow seems well established up to Q² = 6 GeV².
 - "pion cloud" contributions seem also quite similar regardless of dynamical models employed
 - N(1440)1/2⁺ form factors:
 - A_{1/2} amplitude w/o "pion cloud" shows a qualitatively similar behavior to 3-quark model and DSE calculation.

Form factors become complex !!

Full

πΝ-Ιοορ

Back up

Strategy for electroproduction analysis

Q² independent analysis:

Treat "bare" form factors as real parameters; determine them by fitting to each Q² independently.

Once a global solution is obtained, return to the Q² independent analysis using the solution as starting value.

 \rightarrow Similar to the procedure practically applied in the energy independent analyses of $\pi N \& \gamma N$ reactions.

Analysis of single-pion electroproduction reactions

Analysis of single-pion electroproduction reactions

Electromagnetic transition form factors evaluated at resonance pole

