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• Ground state baryons
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• Most static properties of the ground state baryons are governed by the group 
structure. 

• How can we get information on the dynamics of the constituents of hadrons?
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Figure 15.5: Excitation spectrum of the nucleon. Compared are the positions of the
excited states identified in experiment, to those predicted by a relativized quark model
calculation. Left hand side: isospin I = 1/2 N -states, right hand side: isospin I = 3/2
∆-states. Experimental: (columns labeled ’exp’), three- and four-star states are indicated
by full lines (two-star dashed lines, one-star dotted lines). At the very left and right of the
figure, the spectroscopic notation of these states is given. Quark model [29]: (columns
labeled ’QM’), all states for the N=1,2 bands, low-lying states for the N=3,4,5 bands. Full
lines: at least tentative assignment to observed states, dashed lines: so far no observed
counterparts. Many of the assignments between predicted and observed states are highly
tentative.

evidence (two or three star ratings) and partly without firm spin/parity assignments, so that
further experimental efforts are necessary before final conclusions can be drawn. We have added
their suggestions in Table 15.6.

In the non-strange sector there are two main problems which are illustrated in Fig. 15.5, where
the experimentally observed excitation spectrum of the nucleon (N and ∆ resonances) is compared
to the results of a typical quark model calculation [29]. The lowest states from the N=2 band,
the N(1440)1/2+ , and the ∆(1600)3/2+ , appear lower than the negative parity states from the
N=1 band (see Table 15.5) and much lower than predicted by most models. Also negative parity
∆ states from the N=3 band (∆(1900)1/2− , ∆(1940)3/2− , and ∆(1930)5/2−) are too low in
energy. Part of the problem could be experimental. Among the negative parity ∆ states, only
the ∆(1930)5/2− has three stars and the uncertainty in the position of the ∆(1600)3/2+ is large
(1550 - 1700 MeV).

Furthermore, many more states are predicted than observed. This has been known for a long
time as the ‘missing resonance’ problem [26]. Up to an excitation energy of 2.4 GeV, about 45
N states are predicted, but only 14 are established (four- or three-star; see Note on N and ∆
Resonances for the rating of the status of resonances) and 10 are tentative (two- or one-star).
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Sensitivity of baryon spectrum on dynamics

NRQM RQM OBEM

Chao, Isgur, Karl Isgur, Karl Glozman, Riska
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Table 1. Low-lying ⌅ and ⌦ baryon spectrum of spin 1/2 and 3/2 predicted by the non-relativistic quark model
of Chao et al. (CIK), relativized quark model of Capstick and Isgur (CI), Glozman-Riska model (GR), large Nc
analysis, algebraic model (BIL), and QCD sum rules (SR). The recent quark model prediction (QM) and the
Skyrme model results (SK) are given as well. The mass is given in the unit of MeV.

State CIK [4] CI [5] GR [6] Large-Nc [7–11] BIL [12] SR [13,14] QM [15] SK [1]
⌅( 1

2
+) 1325 1305 1320 1334 1320 (1320) 1325 1318

1695 1840 1798 1825 1727 1891 1932
1950 2040 1947 1839 1932 2014

⌅( 3
2
+) 1530 1505 1516 1524 1520 1539

1930 2045 1886 1854 1878 1934 2120
1965 2065 1947 1859 1979 2020

⌅( 1
2
�) 1785 1755 1758 1780 1869 1550 (1630) 1725 1614

1890 1810 1849 1922 1932 1811 1660
1925 1835 1889 1927 2076

⌅( 3
2
�) 1800 1785 1758 1815 1828 1840 1759 1820

1910 1880 1849 1973 1869 1826
1970 1895 1889 1980 1932

⌦( 1
2
+) 2190 2220 2068 2408 2085 2175 2140

2210 2255 2166 2219 2191
⌦( 3

2
+) 1675 1635 1651 1670 1656 1694

2065 2165 2020 1922 1998 2170 2282
2215 2280 2068 2120 2219 2182

⌦( 1
2
�) 2020 1950 1991 2061 1989 1923 1837

⌦( 3
2
�) 2020 2000 1991 2100 1989 1953 1978

These observations show that the investigation of multi-strangeness baryons gives another window
to understand the baryon structure. In addition, the studies on the production mechanisms of ⌅ baryons
give a tool to constrain the properties of S = �1 hyperon resonances. The investigation to understand
the production mechanisms of the ⌅ baryons was recently initiated by the CLAS Collboration at JLab
using the reaction of �p ! K+K+⌅� [16]. Theoretical investigation also started only recently [17–
19]. In the analysis on the possible production mechanisms, it was shown that the most important
contribution comes from the intermediate S = �1 hyperon resonances of jP = 1/2�, 3/2+, 5/2�, and
7/2+ [17,20]. Furthermore, through the list of PDG on the S = �1 hyperons, it can be found that many
hyperon resonances in the mass of around 2 GeV have high spins. Therefore, it is necessary to develop
a formalism to include high spin resonances for understanding the production process.

Based on the conventional Rarita-Schwinger formalism, neglecting the ambiguities arising from
the o↵-shell nature of the intermediate hyperon resonances, one can construct a general formalism
for high spin resonances [21]. Based on this formalism, the study on the role of high spin hyperon
resonances in ⌅ photoproduction was performed and the results for the invariant mass distribution
of the K+⌅� pair and the K+K+ pair in the reaction of �p ! K+K+⌅� are shown in Fig. 1. Here,
the dot-dashed lines are the results of Ref. [17] which considers the ⇤(1800) of jP = 1/2� and the
⇤(1890) of jP = 3/2+. The result of this model for the K+⌅� invariant mass distribution evidently
shows that the contribution from a resonance at a mass of around 2 GeV is missing. Among the
hyperon resonances listed in the PDG, the ⌃(2030) of jP = 7/2+ is the most probable state that can
represent such resonances. The contribution from the ⌃(2030) is shown by the dashed lines in Fig. 1,
which shows that this can explain the gap between the results of Ref. [17] and the experimental data as
shown by the solid lines. This investigation shows that the properties of high spin hyperon resonances
can be studied through the analyses of the production processes of the ⌅ baryons.

In summary, we have shown that the investigation of ⌅ baryons and their production processes
can open a way to learn about the baryon structure and the properties of S = �1 hyperon resonances
of high spins. Studies on the ⌅ spectrum can reveal the dynamics of the constituents that cannot be
seen in non-strangeness baryons. Although more sophisticated models for the production mechanisms
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Highly model-dependent and sensitive to dynamics
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At the mass region of > 1.8 GeV, many resonances are high spin states
j � 5/2
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• Missing resonances - couple weakly to 𝜋N ? 

• Search for resonances in the reactions other than the 𝜋N channel 

• 𝛾 N → ω N  
with A.I. Titov and T.-S.H. Lee (2001) * 

• 𝛾 N → ρ N 
with T.-S.H. Lee (2004) 

• 𝛾 N → 𝜙 N 
with A.I. Titov, S.N. Yang, T. Morii, H.-C. Bhang (1997,1999,2001) 

• 𝛾 N → K* 𝛬, K* 𝛴 
with Hungchong Kim (2006), with S.-H. Kim, S.-I. Nam, H.-Ch. Kim (2012) *  
B.-G. You and K.-J. Kong (2017)



Introduction & Motivation

• 𝛾 N → K K 𝛯 
with K. Nakayama, H. Haberzettl (2006,2011) * 

• Kbar N → K 𝛯 
with B. Jackson, K. Nakayama, H. Haberzettl (2012,2015) * 

• 𝛾 N → K 𝛴*(1385)  
with K. Nakayama and C.M. Ko (2008) 

• 𝜋 N → ω N  
YO (2011) * 

• What we need 

• vertices of  
for an arbitrary value of J

J± ! 0� +
1

2

+

, J± ! 1� +
1

2

+

, J± ! 0� +
3

2

+

, J± ! 1� +
3

2

+
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Importance of high-spin resonances

Nakayama, YO, Haberzettl, PRC 74 (2006) 035205
Man, YO, Nakayama, PRC 83 (2011) 055201

without ⌃(2030, 7/2+)

with ⌃(2030, 7/2+)

𝛾 p → K+ K+ 𝛯-
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FIG. 2. (Color online) Total cross sections for γp →
K+"0(1385) without resonance contributions. The pre-1970s data
are from Refs. [11–13] and the preliminary data of CLAS
Collaboration are from Ref. [5].

the contribution coming from the missing resonances (dash-
dash-dotted line) is small compared to the PDG resonance
contributions (dotted line), it moves the peak coming from
the resonant terms to a somewhat higher energy. This result
shows that most resonance contributions come from the sum
of the PDG resonances. However, it should be kept in mind
that this conclusion follows from the quark model predictions
of Refs. [10,30] for the empirically not-well-known decay
properties of the PDG resonances. Therefore, detailed studies
on this reaction could be used to constrain the properties of
the PDG resonances listed in Table I. The total cross sections
obtained by including only the PDG resonances and all the
resonances considered in the present work, which also include
the missing resonances predicted by quark models, are given,
respectively, by the solid line and the dot-dashed line in Fig. 3.
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FIG. 3. (Color online) Total cross sections for the γp →
K+"0(1385) reaction with the resonances listed in Tables I and II.
See the text for the details.
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FIG. 4. (Color online) Contributions from various resonances to
the total cross section for γp → K+"0(1385).

These results show that the peak observed in the preliminary
CLAS data can be successfully explained by these resonances.

The contributions from different resonances are shown
separately in Fig. 4. The solid line is the sum of all the
resonances considered in this work and, therefore, corresponds
to the dashed line in Fig. 3. The largest contribution comes
from the # resonance #(2000)F35 (the dot-dashed line in
Fig. 4), and the contributions from #(1940)D33 (the short
dashed line in Fig. 4) and N (2080)D13 (the dotted line in
Fig. 4) are also noticeable. One interesting result is that
the contribution from the missing resonance N 3

2
−

(2095) is
not the dominant one, although it is as large as that from
N (2080)D13. As discussed above, this missing resonance is
predicted to have a very large coupling to K"(1385). However,
its effect in the reaction γp → K+"0(1385) is not large as
a result of its rather small couplings to Nγ . Furthermore,
this resonance has a destructive interference with the other
missing resonance, # 3

2
−

(2145), so that the net contribution
from missing resonances becomes small. For N (2090)S11 and
N (2200)D15, their contributions are found to be too small to
be shown in Fig. 4.

B. Differential cross section and photon asymmetry

Similar conclusions on the role of resonances in the reaction
γp → K+"0(1385) can be drawn from its differential cross
sections shown in Fig. 5. The solid and dashed lines, which are
obtained with the PDG resonances and with all resonances,
respectively, are close to each other, but they can be distin-
guished from the dotted lines that are obtained without the
resonant contribution, provided the data are accurate enough,
particularly in the region of Eγ = 1.8 ∼ 1.9 GeV. At higher
energies, the models with and without resonances give nearly
the same result. The contributions from the sum of all the
resonances considered in the present work are given by the
dash-dotted lines.
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• Testing hadron models (such as quark models) 

• Data analyses: coupled-channels analyses 

extract coupling constants of effective interactions 

meson cloud effects (e.g. E2/M1 transition of Δ→N ) 

• Quark models can give predictions on the decay amplitudes. 

• Decay width cannot determine the sign of the coupling constant (sign ambiguity) 

• need to work with decay amplitudes 

• need the relationship between coupling constants and the decay amplitudes 
predicted by baryon structure models 

• Tabel for 
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Formalism

• Rarita-Schwinger fields

• boson of spin-j: tensor of rank n=j R↵1↵2···↵n

(@µ@
µ +M2)R↵1↵2···↵n

= 0 with R↵1···↵i···↵j ···↵n
= R↵1···↵j ···↵i···↵n

subsidiary conditions

p↵1R↵1↵2···↵n
= 0, g↵1↵2R↵1↵2···↵n

= 0

• fermion of spin-j: tensor of rank n=j-1/2

(i/@ �M)R↵1↵2···↵n
= 0. with R↵1···↵i···↵j ···↵n

= R↵1···↵j ···↵i···↵n

subsidiary conditions

p↵1R↵1↵2···↵n
= 0, g↵1↵2R↵1↵2···↵n

= 0, �↵1R↵1↵2···↵n
= 0



Propagators
S(p) =

1

p2 �M2
�

�1···�n
↵1···↵n

for a boson

S(p) =
1

p2 �M2
(/p+M)�

�1···�n
↵1···↵n

for a fermion

with the projection operator
X

spin

R↵1···↵n
R�1···�n = ⇤±�

�1···�n
↵1···↵n

where
⇤± =

⇢
1 for a boson

(M ± /p)/2M for a fermion



Rushbrooke, PR 143 (66’)
Behrends and Fronsdal, PR 106 (57’)
Chang, PR 161 (67’)

General form
3

of the spin-1/2 Dirac field in the case of a fermion and
⇤± = 1 in the case of a boson.
In Refs. [20–23], the general expressions for the projec-

tion operator for a spin-j field with a momentum p, i.e.,

�
�1···�n
↵1···↵n

(j, p), are dervied. For a boson of spin j = n, we
have

�
�1···�n
↵1···↵n

(j, p) =

✓

1

n!

◆2
X

P (↵),P (�)

"

n

Y

i=1

ḡ
�i
↵i

+ a(n)1 ḡ
↵1↵2

ḡ�1�2

n

Y

i=3

ḡ
�i
↵i

+ · · ·+ a(n)
n/2ḡ↵1↵2

ḡ�1�2 · · · ḡ
↵n�1↵n

ḡ�n�1�n

#

, (8)

if n = j is an even integer and

�
�1···�n
↵1···↵n
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ḡ
�i
↵i

+ a(n)1 ḡ
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ḡ
�i
↵i

+ a(n)1 ḡ
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ḡ�1�2

n

Y

i=3

ḡ
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ḡ
�i
↵i

+ a(n)1 ḡ
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⌫

= �µ � 1

M2 /pp
µ. (13)

It is then straightforward to obtain the explicit expression
for �

�1···�n
↵1···↵n

(j, p) of a given spin and those for several
cases are given in the Appendix.

III. COUPLINGS OF BARYON RESONANCES
INTO A MESON AND SPIN-1/2 BARYON

In this Section, we construct the general forms of the
RN⇡ andRNV interactions, whereR stands for a baryon
resonance of spin-parity jP and V denotes a vector me-
son. The e↵ective Lagrnagian obtained for these inter-
actions describe the decays of jP ! 0� + 1/2+ and
jP ! 1� + 1/2+. Throughout this paper, we do not

consider the isospin factor. The isospin factor depends
on the flavor structure as shown, for example, in Ref. [24].
Since the final particle has jP = 1/2+, we represent it by
the nucleon.

spin s′ spin s

π

FIG. 1. Vertex of the pion decay of a spin-s0 baryon into a
spin-s baryon.

A. Pseudoscalar meson couplings

The number of independent form factors (or coupling
constants) of the decay of a spin-s0 particle into pion and
spin-s particle, depicted in Fig. 1 can be obtained by con-
sidering angular momentum conservation and invariance
under P and T transformations [25]. Shown in Table I
are the results for the two cases [25], namely, when the
particles other than the pion are fermions and bosons.

It is then clear that, for the decay of jP ! 0� +1/2+,
there is only one form factor as jmin = min(s, s0) is al-
ways 1/2. We present the explicit form of the interaction
Lagrangian below. For later use, we define

�(±) =

✓

�5
1

◆

, �(±)
µ

=

✓

�
µ

�5
�
µ

◆

. (14)

Fermion

3

of the spin-1/2 Dirac field in the case of a fermion and
⇤± = 1 in the case of a boson.
In Refs. [20–23], the general expressions for the projec-

tion operator for a spin-j field with a momentum p, i.e.,

�
�1···�n
↵1···↵n

(j, p), are dervied. For a boson of spin j = n, we
have

�
�1···�n
↵1···↵n

(j, p) =

✓

1

n!

◆2
X

P (↵),P (�)

"

n

Y

i=1

ḡ
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ḡ�n�1�n

#

, (8)

if n = j is an even integer and

�
�1···�n
↵1···↵n

(j, p) = �
✓

1

n!

◆2
X

P (↵),P (�)

"

n

Y

i=1

ḡ
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for a fermion field of spin j = n�1/2. The explicit forms

of the projection operator �
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(j, p) can be derived
from Eqs. (8) ,(9), and (10). Here, we present the explicit
formulas for the projection operators of fields upto spin-5
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ḡ
↵1↵2
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ḡ
�4
↵4

+
3

35
ḡ
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ḡ�1�2 ḡ�3�4

�

. (A11)

• spin-7/2

�
�1�2�3
↵1↵2↵3

( 72 , p) =
4

9
�↵�

�

�
��1�2�3
↵↵1↵2↵3

(4, p)

= � 1

36

X

P (↵),P (�)

⇢

ḡ
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ḡ�2�3

�

.

(A12)

Explicitly,



Explicitly,

11

for a fermion field of spin j = n�1/2. The explicit forms

of the projection operator �
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from Eqs. (8) ,(9), and (10). Here, we present the explicit
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↵�

. (A4)

The results are as follows.

• spin-1

��

↵

(1, p) = �ḡ�
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ḡ
�1
↵1
ḡ
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µ⌫

= ḡ
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ḡ↵� = 3,

{�̄
↵

, �̄
�

} = 2ḡ
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ḡ
�1
↵1
ḡ
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ḡ
�4
↵4

� 6

7
ḡ
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ḡ�1�2 ḡ�3�4

�

. (A11)

• spin-7/2

�
�1�2�3
↵1↵2↵3

( 72 , p) =
4

9
�↵�

�

�
��1�2�3
↵↵1↵2↵3

(4, p)

= � 1

36

X

P (↵),P (�)

⇢

ḡ
�1
↵1
ḡ
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5. Spin-9/2 resonance

to be filled

6. Summary

Thus the general form of the e↵ective Lagrangian for
the RN⇡ interaction can be written as
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(25)
where R stands for a spin-j resonance with j = n � 1/2
and N is the spin-1/2 field. The insertion of the factor
[i�(±)] should be made depending on the spin-parity of
the resonance and the pion mass M

⇡

is introduced to
make the coupling constant g

RN⇡

dimensionless.
The decay widths of jP ! 0� + 1/2+ obtained above

are summarized below.
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Our results are consistent with the formula of Ref. [22]
for the width of the R ! N⇡ decay, which reads
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g2

4⇡

2n(n!)2

n(2n)!

k2n�1
⇡

M
R

M2(n�1)
⇡

(E
N

±M
N

),

(27)
for (�1)nP

j

= ±1, where P
j

is the parity of the spin-j
resonance R and n = j + 1/2.

to be modified

B. Vector meson couplings

We now consider the decays of a spin-s0 baryon into
the vector meson and spin-s baryon channel, as shown
in Fig. 2. In this case, the number of independent cou-
plings is estimated in a more sophisticated way and we
quote the results of Ref. [25] in Table II. Here J0 is the

time component of the vector current and J+1 is its space
component, J±1 = ⌥(J

x

± iJ
y

)/
p
2. The total number

of independent couplings is the sum of the numbers for
J0 and J+1.

Table II indicates that in our case of R ! NV decay,
there are 3 independent form factors for j± ! 1�+1/2+

for j � 3/2, while the 1/2± ! 1�+1/2+ decay has 2 in-
dependent terms. The explicit forms of these interactions
are given below.

spin s′ spin s

V

FIG. 2. Vertex of the vector-meson decay of spin-s0 baryon
into a spin-s baryon.
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where q is the magnitude of the three-momentum of the
vector meson in the rest frame of the spin-j resonance R,
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The helicity amplitudes are then obtained as
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where M is the transition amplitude. The details of this
calculation is given in the Appendix.

1. Spin-1/2 resonance

In this case, we have two independent terms in the
interaction Lagrangian, which reads [27]
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We now consider the decays of a spin-s0 baryon into
the vector meson and spin-s baryon channel, as shown
in Fig. 2. In this case, the number of independent cou-
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component, J±1 = ⌥(J
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of independent couplings is the sum of the numbers for
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Table II indicates that in our case of R ! NV decay,
there are 3 independent form factors for j± ! 1�+1/2+

for j � 3/2, while the 1/2± ! 1�+1/2+ decay has 2 in-
dependent terms. The explicit forms of these interactions
are given below.
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where M is the transition amplitude. The details of this
calculation is given in the Appendix.

1. Spin-1/2 resonance

In this case, we have two independent terms in the
interaction Lagrangian, which reads [27]
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6

(�1)� = +1 (�1)� = �1

J0 J+1 J0 J+1

Nonidentical fermions (s0 = s) jmin + 1
2 2jmin jmin + 1

2 2jmin

(s0 6= s) jmin + 1
2 2jmin + 1 jmin + 1

2 2jmin + 1

Nonidentical bosons (s0 = s) jmin + 1 2jmin jmin 2jmin

(s0 6= s) jmin + 1 2jmin + 1 jmin 2jmin + 1

Identical fermions(s0 = s) jmin + 1
2 jmin + 1

2 — —

Identical bosons (s0 = s) jmin + 1 jmin — —

TABLE II. Number of independent form factors for the vector current of a spin-s0 particle into a spin-s particle transition [25].
Here � = s+ s0 +P , where (�1)P is the relative parity of the initial and final states whose spins are s0 and s, respectively, and
jmin = min(s, s0). See Ref. [25] for the details.
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Note that all g3 terms contain the vector meson mass
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.
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Then the helicity amplitudes are obtained as
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2. Spin-3/2 resonance

The e↵ective Lagrangian for the RNV interaction for
the resonance of spin j � 3/2 can be constructed by
using the field strength tensor of the vector meson, V
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. As discussed above, there are 3 independent
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The obtained decay width is
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where

ḡ1 =
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The obtained helicity amplitudes are

Durand III, DeCelles, Marr, PR (1962)



RNV interactions

5

5. Spin-9/2 resonance
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6. Summary

Thus the general form of the e↵ective Lagrangian for
the RN⇡ interaction can be written as
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where R stands for a spin-j resonance with j = n � 1/2
and N is the spin-1/2 field. The insertion of the factor
[i�(±)] should be made depending on the spin-parity of
the resonance and the pion mass M

⇡

is introduced to
make the coupling constant g
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dimensionless.
The decay widths of jP ! 0� + 1/2+ obtained above

are summarized below.
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Our results are consistent with the formula of Ref. [22]
for the width of the R ! N⇡ decay, which reads

�(R ! N⇡) =
g2

4⇡

2n(n!)2

n(2n)!

k2n�1
⇡

M
R

M2(n�1)
⇡

(E
N

±M
N

),

(27)
for (�1)nP

j

= ±1, where P
j

is the parity of the spin-j
resonance R and n = j + 1/2.

to be modified

B. Vector meson couplings

We now consider the decays of a spin-s0 baryon into
the vector meson and spin-s baryon channel, as shown
in Fig. 2. In this case, the number of independent cou-
plings is estimated in a more sophisticated way and we
quote the results of Ref. [25] in Table II. Here J0 is the

time component of the vector current and J+1 is its space
component, J±1 = ⌥(J

x

± iJ
y

)/
p
2. The total number

of independent couplings is the sum of the numbers for
J0 and J+1.

Table II indicates that in our case of R ! NV decay,
there are 3 independent form factors for j± ! 1�+1/2+

for j � 3/2, while the 1/2± ! 1�+1/2+ decay has 2 in-
dependent terms. The explicit forms of these interactions
are given below.
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FIG. 2. Vertex of the vector-meson decay of spin-s0 baryon
into a spin-s baryon.
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where q is the magnitude of the three-momentum of the
vector meson in the rest frame of the spin-j resonance R,
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The helicity amplitudes are then obtained as
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where M is the transition amplitude. The details of this
calculation is given in the Appendix.

1. Spin-1/2 resonance

In this case, we have two independent terms in the
interaction Lagrangian, which reads [27]
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q: three-momentum of the vector meson in the rest frame of R
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where R stands for a spin-j resonance with j = n � 1/2
and N is the spin-1/2 field. The insertion of the factor
[i�(±)] should be made depending on the spin-parity of
the resonance and the pion mass M
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make the coupling constant g
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Our results are consistent with the formula of Ref. [22]
for the width of the R ! N⇡ decay, which reads
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= ±1, where P
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is the parity of the spin-j
resonance R and n = j + 1/2.
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B. Vector meson couplings

We now consider the decays of a spin-s0 baryon into
the vector meson and spin-s baryon channel, as shown
in Fig. 2. In this case, the number of independent cou-
plings is estimated in a more sophisticated way and we
quote the results of Ref. [25] in Table II. Here J0 is the

time component of the vector current and J+1 is its space
component, J±1 = ⌥(J

x

± iJ
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)/
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2. The total number

of independent couplings is the sum of the numbers for
J0 and J+1.

Table II indicates that in our case of R ! NV decay,
there are 3 independent form factors for j± ! 1�+1/2+

for j � 3/2, while the 1/2± ! 1�+1/2+ decay has 2 in-
dependent terms. The explicit forms of these interactions
are given below.
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FIG. 2. Vertex of the vector-meson decay of spin-s0 baryon
into a spin-s baryon.
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where q is the magnitude of the three-momentum of the
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The helicity amplitudes are then obtained as
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where M is the transition amplitude. The details of this
calculation is given in the Appendix.

1. Spin-1/2 resonance

In this case, we have two independent terms in the
interaction Lagrangian, which reads [27]
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Thus the general form of the e↵ective Lagrangian for
the RN⇡ interaction can be written as
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where R stands for a spin-j resonance with j = n � 1/2
and N is the spin-1/2 field. The insertion of the factor
[i�(±)] should be made depending on the spin-parity of
the resonance and the pion mass M
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is introduced to
make the coupling constant g
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dimensionless.
The decay widths of jP ! 0� + 1/2+ obtained above

are summarized below.
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Our results are consistent with the formula of Ref. [22]
for the width of the R ! N⇡ decay, which reads
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for (�1)nP
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= ±1, where P
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is the parity of the spin-j
resonance R and n = j + 1/2.
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B. Vector meson couplings

We now consider the decays of a spin-s0 baryon into
the vector meson and spin-s baryon channel, as shown
in Fig. 2. In this case, the number of independent cou-
plings is estimated in a more sophisticated way and we
quote the results of Ref. [25] in Table II. Here J0 is the

time component of the vector current and J+1 is its space
component, J±1 = ⌥(J

x

± iJ
y

)/
p
2. The total number

of independent couplings is the sum of the numbers for
J0 and J+1.

Table II indicates that in our case of R ! NV decay,
there are 3 independent form factors for j± ! 1�+1/2+

for j � 3/2, while the 1/2± ! 1�+1/2+ decay has 2 in-
dependent terms. The explicit forms of these interactions
are given below.
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FIG. 2. Vertex of the vector-meson decay of spin-s0 baryon
into a spin-s baryon.
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where q is the magnitude of the three-momentum of the
vector meson in the rest frame of the spin-j resonance R,
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The helicity amplitudes are then obtained as
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where M is the transition amplitude. The details of this
calculation is given in the Appendix.

1. Spin-1/2 resonance

In this case, we have two independent terms in the
interaction Lagrangian, which reads [27]
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(�1)� = +1 (�1)� = �1

J0 J+1 J0 J+1

Nonidentical fermions (s0 = s) jmin + 1
2 2jmin jmin + 1

2 2jmin

(s0 6= s) jmin + 1
2 2jmin + 1 jmin + 1

2 2jmin + 1

Nonidentical bosons (s0 = s) jmin + 1 2jmin jmin 2jmin

(s0 6= s) jmin + 1 2jmin + 1 jmin 2jmin + 1

Identical fermions(s0 = s) jmin + 1
2 jmin + 1

2 — —

Identical bosons (s0 = s) jmin + 1 jmin — —

TABLE II. Number of independent form factors for the vector current of a spin-s0 particle into a spin-s particle transition [25].
Here � = s+ s0 +P , where (�1)P is the relative parity of the initial and final states whose spins are s0 and s, respectively, and
jmin = min(s, s0). See Ref. [25] for the details.

where V
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is the vector-meson field. Note that the g3 term contains @2V µ term, which is required to satisfy the gauge
invariance condition. This Lagrangian leads to
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Note that all g3 terms contain the vector meson mass
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.
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2. Spin-3/2 resonance

The e↵ective Lagrangian for the RNV interaction for
the resonance of spin j � 3/2 can be constructed by
using the field strength tensor of the vector meson, V
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The obtained decay width is
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+ ḡ23M
2
V

(E2
N

�M2
N

+ 3M2
V

)⌥ 2ḡ1ḡ2
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The obtained helicity amplitudes are
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TABLE II. Number of independent form factors for the vector current of a spin-s0 particle into a spin-s particle transition [25].
Here � = s+ s0 +P , where (�1)P is the relative parity of the initial and final states whose spins are s0 and s, respectively, and
jmin = min(s, s0). See Ref. [25] for the details.

where V
µ

is the vector-meson field. Note that the g3 term contains @2V µ term, which is required to satisfy the gauge
invariance condition. This Lagrangian leads to
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Note that all g3 terms contain the vector meson mass
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.
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2. Spin-3/2 resonance

The e↵ective Lagrangian for the RNV interaction for
the resonance of spin j � 3/2 can be constructed by
using the field strength tensor of the vector meson, V
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. As discussed above, there are 3 independent
coupling for this case. For spin-3/2 resonance, we have
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

E
N

2
(3M2

R

+M2
N

± 2M
N

M
R

+ 3M2
V

)�M2
N

(2M
R

±M
N

)

�

+ 2ḡ2ḡ3M
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The obtained helicity amplitudes are
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TABLE II. Number of independent form factors for the vector current of a spin-s0 particle into a spin-s particle transition [25].
Here � = s+ s0 +P , where (�1)P is the relative parity of the initial and final states whose spins are s0 and s, respectively, and
jmin = min(s, s0). See Ref. [25] for the details.
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Note that all g3 terms contain the vector meson mass
M

V

.
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Then the helicity amplitudes are obtained as
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2. Spin-3/2 resonance

The e↵ective Lagrangian for the RNV interaction for
the resonance of spin j � 3/2 can be constructed by
using the field strength tensor of the vector meson, V
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The obtained helicity amplitudes are
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TABLE II. Number of independent form factors for the vector current of a spin-s0 particle into a spin-s particle transition [25].
Here � = s+ s0 +P , where (�1)P is the relative parity of the initial and final states whose spins are s0 and s, respectively, and
jmin = min(s, s0). See Ref. [25] for the details.

where V
µ
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Note that all g3 terms contain the vector meson mass
M
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.
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Then the helicity amplitudes are obtained as
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2. Spin-3/2 resonance

The e↵ective Lagrangian for the RNV interaction for
the resonance of spin j � 3/2 can be constructed by
using the field strength tensor of the vector meson, V
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The obtained helicity amplitudes are
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to be checked

3. Spin-5/2 resonance

For spin-5/2 resonance, we have
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This leads to the decay width as
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to be checked
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to be checked

3. Spin-5/2 resonance

For spin-5/2 resonance, we have
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to be checked

3. Spin-5/2 resonance
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, ḡ2 =

g3
(2M

N

)3
, ḡ3 =
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to be checked

and so on …



  Similar to RNV interaction 
  But with  

1/24/2011 P. 26 

€ 

g3 = 0

Helicity amplitudes 



    

1/24/2011 P. 27 

€ 

J ± →0− +
3
2

+

Lagrangian 

Decay widths 

2010-05-31 MENU 2010, Williamsburg 11

∗Σܭܴ interactions

By angular momentum and parity 
conservation,

1 coupling for the resonance with ݆ ൌ 1/2
2 couplings for the resonance with ݆ ൒ 3/2

To determine the couplings with sign, we need the decay 
amplitudes. The decay width is not enough.



  Decay amplitude 

1/24/2011 P. 28 

Quark model predictions on 
G(l) 

€ 

For 
1
2

+

€ 

For 
1
2

−

€ 

For 
3
2

+

and so on … 

G’s can be related to cc 



Application
NUCLEON AND ! RESONANCES IN . . . PHYSICAL REVIEW C 77, 045204 (2008)

TABLE I. Resonances listed in the review of PDG [29] and their decay amplitudes of R → K"(1385) and of R → Nγ predicted in
Refs. [10,30]. The coupling constants are calculated using the resonance masses of PDG.

Resonance PDG [29] Amplitudes of R → K"(1385)a h1 h2 Amplitudes of R → Nγ b f1 f2

G(ℓ1) G(ℓ2) A
p
1/2 A

p
3/2

N 1
2

−
(1945) S∗

11(2090) G(2) = +1.7 – −9.8 – +12 – −0.055 –

N 3
2

−
(1960) D∗∗

13 (2080) G(0) = +1.3 G(2) = +1.4 0.24 −0.54 +36 −43 −1.25 1.21

N 5
2

−
(2095) D∗∗

15 (2200) G(2) = −2.0 G(4) = 0.0 0.29 −0.08 −9 −14 0.37 −0.57

! 3
2

−
(2080) D∗

33(1940) G(0) = −4.1 G(3) = −0.5 −0.68 1.00 −20 −6 0.39 −0.57

! 5
2

+
(1990) F ∗∗

35 (2000) G(1) = +4.0 G(3) = −0.1 −0.87 0.11 −10 −28 −0.68 −0.062

aIn
√

GeV.
bIn 10−3/

√
GeV.

γp → K+"0(1385) without the resonance contributions. For
the form factors in the s- and u-channel diagrams, we take
%B = 1.0 GeV with n = 1. For the t-channel K exchange, we
use %M = 0.83 GeV to reproduce the total cross section data
at Eγ ! 2.5 GeV. Following Ref. [31], we avoid the use of FM

for vector meson exchanges, and the t-channel K∗ exchange
is calculated by using the form factor FB with %B = 1.2 GeV
and n = 1. With the K∗N"∗ coupling constants determined
before, namely, g1 = −5.48 and g2 = g3 = 0, we find that
the contribution from the K∗ exchange is negligible in the
considered energy region. Even at higher energies, Eγ = 3 ∼
4 GeV, the K∗ exchange contribution is only at the level of
a few percent of those from other production mechanisms.
We have also tested the role of the K∗ exchange by allowing
nonvanishing values for g2 and g3. We again find that the
K∗ exchange is suppressed compared with other production
mechanisms unless g2 and/or g3 is as large as ∼100. Although
there is no constraint at present on the values of g2 and g3,
we regard such a large value as unrealistic. This leads us
to conclude that the role of K∗ exchange in this reaction is
negligibly small. However, since the K∗ trajectory has a larger
intercept than the K trajectory, the role of the K∗ exchange
would have a chance to be revealed at very high energies.
It is thus of interest to measure the cross sections at much
higher energies, and this would help constrain the values of
the coupling constants g2 and g3.

Our result on the total cross section is shown in Fig. 2
and is compared with the pre-1970s data [11–13] and the

preliminary CLAS data reported in Ref. [5].3 Comparison
with the preliminary CLAS data for the total cross section
of γp → K"0(1385) shows that this model can explain the
general energy dependence of the total cross section but not
the enhanced cross section at Eγ = 1.7 ∼ 1.9 GeV. Although
varying the cutoff parameters of employed form factors can
change the magnitude of the cross section, the peak arising
from the threshold effect cannot reproduce the observed peak
in the data. This implies that resonances play an important role
in the production mechanism.

Including the s-channel nucleon and ! resonances listed
in Tables I and II in the reaction γp → K+"0(1385), we
have recalculated its cross section. In this calculation, the
parameters of the nonresonant terms are fixed as before, while
the resonance terms are obtained by using the form factor FB in
the form of the Gaussian function obtained by taking n → ∞
and the cutoff %B = 1.0 GeV, as motivated by the Gaussian
radial wave functions in the quark model. The resulting total
cross section for the reaction γp → K+"0(1385) is shown in
Fig. 3. As shown by the dashed line, the contribution from all
resonances to the total cross section of γp → K+"0(1385) is
important in the region around Eγ = 1.8 ∼ 2.0 GeV. Although

3The preliminary CLAS data give very small cross sections for
Eγ " 1.7 GeV, which deviate significantly from our prediction. These
two data points are now corrected in the new analyses of the CLAS
data which are in progress [14].

TABLE II. Missing resonances and their decay amplitudes predicted in Refs. [10,30].

Resonance Amplitudes of R → K"(1385)a h1 h2 Amplitudes of R → Nγ b f1 f2

G(ℓ1) G(ℓ2) A
p
1/2 A

p
3/2

N 3
2

−
(2095) G(0) = +7.7 G(2) = −0.8 0.99 0.27 −9 −14 0.49 −0.83

N 5
2

+
(1980) G(1) = −3.6 G(3) = −0.1 0.59 0.24 −11 −6 0.019 −0.13

! 3
2

−
(2145) G(0) = +5.2 G(2) = −1.9 0.25 0.46 0 +10 0.11 −0.059

aIn
√

GeV.
bIn 10−3/

√
GeV.
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the form factors in the s- and u-channel diagrams, we take
%B = 1.0 GeV with n = 1. For the t-channel K exchange, we
use %M = 0.83 GeV to reproduce the total cross section data
at Eγ ! 2.5 GeV. Following Ref. [31], we avoid the use of FM

for vector meson exchanges, and the t-channel K∗ exchange
is calculated by using the form factor FB with %B = 1.2 GeV
and n = 1. With the K∗N"∗ coupling constants determined
before, namely, g1 = −5.48 and g2 = g3 = 0, we find that
the contribution from the K∗ exchange is negligible in the
considered energy region. Even at higher energies, Eγ = 3 ∼
4 GeV, the K∗ exchange contribution is only at the level of
a few percent of those from other production mechanisms.
We have also tested the role of the K∗ exchange by allowing
nonvanishing values for g2 and g3. We again find that the
K∗ exchange is suppressed compared with other production
mechanisms unless g2 and/or g3 is as large as ∼100. Although
there is no constraint at present on the values of g2 and g3,
we regard such a large value as unrealistic. This leads us
to conclude that the role of K∗ exchange in this reaction is
negligibly small. However, since the K∗ trajectory has a larger
intercept than the K trajectory, the role of the K∗ exchange
would have a chance to be revealed at very high energies.
It is thus of interest to measure the cross sections at much
higher energies, and this would help constrain the values of
the coupling constants g2 and g3.

Our result on the total cross section is shown in Fig. 2
and is compared with the pre-1970s data [11–13] and the

preliminary CLAS data reported in Ref. [5].3 Comparison
with the preliminary CLAS data for the total cross section
of γp → K"0(1385) shows that this model can explain the
general energy dependence of the total cross section but not
the enhanced cross section at Eγ = 1.7 ∼ 1.9 GeV. Although
varying the cutoff parameters of employed form factors can
change the magnitude of the cross section, the peak arising
from the threshold effect cannot reproduce the observed peak
in the data. This implies that resonances play an important role
in the production mechanism.

Including the s-channel nucleon and ! resonances listed
in Tables I and II in the reaction γp → K+"0(1385), we
have recalculated its cross section. In this calculation, the
parameters of the nonresonant terms are fixed as before, while
the resonance terms are obtained by using the form factor FB in
the form of the Gaussian function obtained by taking n → ∞
and the cutoff %B = 1.0 GeV, as motivated by the Gaussian
radial wave functions in the quark model. The resulting total
cross section for the reaction γp → K+"0(1385) is shown in
Fig. 3. As shown by the dashed line, the contribution from all
resonances to the total cross section of γp → K+"0(1385) is
important in the region around Eγ = 1.8 ∼ 2.0 GeV. Although

3The preliminary CLAS data give very small cross sections for
Eγ " 1.7 GeV, which deviate significantly from our prediction. These
two data points are now corrected in the new analyses of the CLAS
data which are in progress [14].

TABLE II. Missing resonances and their decay amplitudes predicted in Refs. [10,30].
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FIG. 2. (Color online) Total cross sections for γp →
K+"0(1385) without resonance contributions. The pre-1970s data
are from Refs. [11–13] and the preliminary data of CLAS
Collaboration are from Ref. [5].

the contribution coming from the missing resonances (dash-
dash-dotted line) is small compared to the PDG resonance
contributions (dotted line), it moves the peak coming from
the resonant terms to a somewhat higher energy. This result
shows that most resonance contributions come from the sum
of the PDG resonances. However, it should be kept in mind
that this conclusion follows from the quark model predictions
of Refs. [10,30] for the empirically not-well-known decay
properties of the PDG resonances. Therefore, detailed studies
on this reaction could be used to constrain the properties of
the PDG resonances listed in Table I. The total cross sections
obtained by including only the PDG resonances and all the
resonances considered in the present work, which also include
the missing resonances predicted by quark models, are given,
respectively, by the solid line and the dot-dashed line in Fig. 3.
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FIG. 3. (Color online) Total cross sections for the γp →
K+"0(1385) reaction with the resonances listed in Tables I and II.
See the text for the details.
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FIG. 4. (Color online) Contributions from various resonances to
the total cross section for γp → K+"0(1385).

These results show that the peak observed in the preliminary
CLAS data can be successfully explained by these resonances.

The contributions from different resonances are shown
separately in Fig. 4. The solid line is the sum of all the
resonances considered in this work and, therefore, corresponds
to the dashed line in Fig. 3. The largest contribution comes
from the # resonance #(2000)F35 (the dot-dashed line in
Fig. 4), and the contributions from #(1940)D33 (the short
dashed line in Fig. 4) and N (2080)D13 (the dotted line in
Fig. 4) are also noticeable. One interesting result is that
the contribution from the missing resonance N 3

2
−

(2095) is
not the dominant one, although it is as large as that from
N (2080)D13. As discussed above, this missing resonance is
predicted to have a very large coupling to K"(1385). However,
its effect in the reaction γp → K+"0(1385) is not large as
a result of its rather small couplings to Nγ . Furthermore,
this resonance has a destructive interference with the other
missing resonance, # 3

2
−

(2145), so that the net contribution
from missing resonances becomes small. For N (2090)S11 and
N (2200)D15, their contributions are found to be too small to
be shown in Fig. 4.

B. Differential cross section and photon asymmetry

Similar conclusions on the role of resonances in the reaction
γp → K+"0(1385) can be drawn from its differential cross
sections shown in Fig. 5. The solid and dashed lines, which are
obtained with the PDG resonances and with all resonances,
respectively, are close to each other, but they can be distin-
guished from the dotted lines that are obtained without the
resonant contribution, provided the data are accurate enough,
particularly in the region of Eγ = 1.8 ∼ 1.9 GeV. At higher
energies, the models with and without resonances give nearly
the same result. The contributions from the sum of all the
resonances considered in the present work are given by the
dash-dotted lines.
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separately in Fig. 4. The solid line is the sum of all the
resonances considered in this work and, therefore, corresponds
to the dashed line in Fig. 3. The largest contribution comes
from the # resonance #(2000)F35 (the dot-dashed line in
Fig. 4), and the contributions from #(1940)D33 (the short
dashed line in Fig. 4) and N (2080)D13 (the dotted line in
Fig. 4) are also noticeable. One interesting result is that
the contribution from the missing resonance N 3

2
−

(2095) is
not the dominant one, although it is as large as that from
N (2080)D13. As discussed above, this missing resonance is
predicted to have a very large coupling to K"(1385). However,
its effect in the reaction γp → K+"0(1385) is not large as
a result of its rather small couplings to Nγ . Furthermore,
this resonance has a destructive interference with the other
missing resonance, # 3

2
−

(2145), so that the net contribution
from missing resonances becomes small. For N (2090)S11 and
N (2200)D15, their contributions are found to be too small to
be shown in Fig. 4.

B. Differential cross section and photon asymmetry

Similar conclusions on the role of resonances in the reaction
γp → K+"0(1385) can be drawn from its differential cross
sections shown in Fig. 5. The solid and dashed lines, which are
obtained with the PDG resonances and with all resonances,
respectively, are close to each other, but they can be distin-
guished from the dotted lines that are obtained without the
resonant contribution, provided the data are accurate enough,
particularly in the region of Eγ = 1.8 ∼ 1.9 GeV. At higher
energies, the models with and without resonances give nearly
the same result. The contributions from the sum of all the
resonances considered in the present work are given by the
dash-dotted lines.
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FIG. 2. (Color online) Total cross sections for γp →
K+"0(1385) without resonance contributions. The pre-1970s data
are from Refs. [11–13] and the preliminary data of CLAS
Collaboration are from Ref. [5].

the contribution coming from the missing resonances (dash-
dash-dotted line) is small compared to the PDG resonance
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on this reaction could be used to constrain the properties of
the PDG resonances listed in Table I. The total cross sections
obtained by including only the PDG resonances and all the
resonances considered in the present work, which also include
the missing resonances predicted by quark models, are given,
respectively, by the solid line and the dot-dashed line in Fig. 3.
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FIG. 3. (Color online) Total cross sections for the γp →
K+"0(1385) reaction with the resonances listed in Tables I and II.
See the text for the details.
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B. Differential cross section and photon asymmetry

Similar conclusions on the role of resonances in the reaction
γp → K+"0(1385) can be drawn from its differential cross
sections shown in Fig. 5. The solid and dashed lines, which are
obtained with the PDG resonances and with all resonances,
respectively, are close to each other, but they can be distin-
guished from the dotted lines that are obtained without the
resonant contribution, provided the data are accurate enough,
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energies, the models with and without resonances give nearly
the same result. The contributions from the sum of all the
resonances considered in the present work are given by the
dash-dotted lines.

045204-6



Summary and Outlook

• Needs for High-spin baryon resonances 

• to understand the production mechanisms of various reactions in the resonance 
region ~ 2 GeV 

• To search for the missing resonances 

• To test various models of baryon structure 

• Further works 

• Extraction of coupling constants from various baryon models: A complete list for the 
coupling constants for various models 

• Issues on gauge invariance, off-shell parameters, etc  
(GWU group, V. Pascalutsa, T. Mart etc) 

• More results to come.


